
EControl Form Designer Pro

Copyright (c) 2004 - 2011 EControl Ltd.. All rights reserved.

Table of Contents

EControl Form Designer Pro 1
Overview 1

Features 2

Insallation 3

Using DesignIDE.BPL 5

Integration with scripters 6

License 8

Change Log 12

Version 2.00 12

Version 2.10 14

Version 2.20 15

Version 2.30 17

Version 2.40 17

Version 2.50 17

ecBtnPanel Namespace 18

Classes 18

TBtnMargins Class 18

TBtnMargins Properties 19

TCustomBtnPanel Class 20

TCustomBtnPanel Methods 22

TCustomBtnPanel Properties 24

TCustomBtnPanel Events 27

TBtnPanel Class 28

TBtnPanel Properties 32

Structs, Records, Enums 44

ecBtnPanel.TRowOrientation Enumeration 44

Types 45

ecBtnPanel.TButtonClickEvent Type 45

ecBtnPanel.TDrawButtonEvent Type 45

ecBtnPanel.TGetButtonHintEvent Type 45

ecDlList Namespace 45

Classes 46

TCustomPropList Class 46

TCustomPropList Methods 49

TCustomPropList Properties 50

EControl Form Designer Pro

ii

TCustomPropList Events 51

TDualList Class 52

TDualList Methods 54

TDualList Properties 58

TPropertyItem Class 61

TPropertyItem Methods 62

TPropertyItem Properties 64

TPropListRoot Class 65

TPropListRoot Methods 67

TPropListRoot Properties 68

Structs, Records, Enums 69

ecDlList.TCellType Enumeration 69

Types 69

ecDlList.TCustomPropDrawEvent Type 70

ecDlList.TGetCellParamsEvent Type 70

ecExtEdit Namespace 70

Classes 70

TBtnEdit Class 70

TBtnEdit Methods 73

TBtnEdit Properties 76

TBtnEdit Events 78

TCustomEditEx Class 78

TCustomEditEx Methods 82

TCustomEditEx Properties 84

TCustomEditEx Events 85

TEditEx Class 85

TEditEx Properties 92

TPopupListbox Class 105

TPopupListbox Methods 106

TPopupListbox Properties 106

TUnicodeEdit Class 107

TUnicodeEdit Methods 108

TUnicodeEdit Properties 108

Structs, Records, Enums 109

ecExtEdit.TInplaceEditStyle Enumeration 110

Types 110

ecExtEdit.TCloseUpEvent Type 110

ecExtEdit.TMeasureWidthEvent Type 110

ecExtEdit.TOnAcceptListValueEvent Type 111

ecHintHelper Namespace 111

Classes 111

EControl Form Designer Pro

iii

TecHintHelper Class 111

TecHintHelper Methods 112

TecHintHelper Properties 113

Structs, Records, Enums 114

ecHintHelper.TCMGetHintData Record 114

ecHintHelper.TecHintData Record 115

Types 115

ecHintHelper.PecHintData Type 115

Constants 115

ecHintHelper.CM_GETHINTDATA Constant 116

ecToolList Namespace 116

Classes 116

TCustomToolList Class 116

TCustomToolList Methods 118

TCustomToolList Properties 120

TCustomToolList Events 123

TToolItemStyle Class 123

TToolItemStyle Methods 124

TToolItemStyle Properties 124

TToolItemStyle Events 125

TToolList Class 125

TToolList Properties 130

TToolListItem Class 141

TToolListItem Properties 142

TToolListItems Class 143

TToolListItems Properties 143

Structs, Records, Enums 143

ecToolList.TItemShape Enumeration 144

Types 144

ecToolList.TToolItemState Type 144

ed_DsnBase Namespace 144

Classes 144

TBaseDesigner Class 144

TBaseDesigner Methods 146

TBaseDesigner Properties 151

TBaseDesigner Events 152

Structs, Records, Enums 155

ed_DsnBase.TDesignOperation Enumeration 155

ed_DsnBase.TDsnDragState Enumeration 155

Types 156

ed_DsnBase.TDesignOperations Type 156

EControl Form Designer Pro

iv

ed_DsnBase.THandleControlMessage Type 156

ed_Designer Namespace 156

Classes 156

TControlGroups Class 156

TControlGroups Methods 157

TControlGroups Properties 158

TPasteInfo Class 159

TPasteInfo Methods 159

TPasteInfo Properties 160

TzCustomFormDesigner Class 161

TzCustomFormDesigner Methods 170

TzCustomFormDesigner Properties 187

TzCustomFormDesigner Events 194

TzFormDesigner Class 201

TzFormDesigner Properties 214

Structs, Records, Enums 229

ed_Designer.TBufferizedType Enumeration 229

ed_Designer.TCompAlign Enumeration 229

ed_Designer.TCompSize Enumeration 230

ed_Designer.TGuidelinesStyle Enumeration 230

ed_Designer.TLocalMenuFilter Enumeration 231

Types 231

ed_Designer.TComponentEvent Type 232

ed_Designer.TCreateComponentEvent Type 232

ed_Designer.TCreateFrameEvent Type 232

ed_Designer.TCreateIconEvent Type 232

ed_Designer.TCreateMethodEvent Type 233

ed_Designer.TDrawControlEvent Type 233

ed_Designer.TGetComponentHintEvent Type 233

ed_Designer.TGetMethodNamesEvent Type 233

ed_Designer.TGetObjNameEvent Type 233

ed_Designer.TGetScriptProcEvent Type 234

ed_Designer.TGuidelinesStyles Type 234

ed_Designer.THandleActionEvent Type 234

ed_Designer.TLocalMenuFilters Type 234

ed_Designer.TNotificationEvent Type 234

ed_Designer.TRenameEvent Type 235

ed_Designer.TRenameMethodEvent Type 235

ed_Designer.TSetNameEvent Type 235

ed_Designer.TSetScriptProcEvent Type 235

ed_Designer.TShowMethodEvent Type 235

ed_Designer.TUndoRecEvent Type 236

EControl Form Designer Pro

v

ed_Designer.TValidateMethodEvent Type 236

Constants 236

ed_Designer.DM_POSCHANGED Constant 236

ed_Designer.sLineBreak Constant 236

ed_dsncont Namespace 237

Classes 237

TDesignSurface Class 237

TDesignSurface Methods 238

TDesignSurface Properties 239

Structs, Records, Enums 241

ed_dsncont.TRulerUnits Enumeration 241

ed_RegComps Namespace 242

Classes 242

Frames Class 242

TComponentClassInfo Class 242

TComponentClassInfo Methods 243

TComponentClassInfo Properties 244

TCustomModuleInfo Class 245

TFrameInfo Class 245

TFrameInfo Properties 246

TPackageInfo Class 246

TPackageInfo Methods 247

TPackageInfo Properties 247

TPackageMng Class 248

TPackageMng Methods 250

TPackageMng Properties 255

TPackageMng Events 256

Functions 256

ed_RegComps.DrawBtnIcon Function 257

Structs, Records, Enums 257

ed_RegComps.TIconBtnStyle Enumeration 257

Types 258

ed_RegComps.TComponentRegEvent Type 258

ed_RegComps.TComponentRegInfoEvent Type 258

Variables 258

ed_RegComps.PackageMng Variable 258

ed_RegComps.Runtime Variable 259

ed_RegMeth Namespace 259

Classes 259

TDefaultMethodRegister Class 259

TDefaultMethodRegister Fields 261

EControl Form Designer Pro

vi

TDefaultMethodRegister Methods 261

TDefaultMethodRegister Properties 265

Structs, Records, Enums 265

ed_RegMeth.TMethodInfo Record 265

Types 266

ed_RegMeth.PMethod Type 266

ed_RegMeth.PMethodInfo Type 266

Variables 266

ed_RegMeth.MethRegister Variable 267

ed_ObjTree Namespace 267

Classes 267

TCustomDesignerObjTree Class 267

TCustomDesignerObjTree Methods 269

TCustomDesignerObjTree Properties 271

TCustomDesignerObjTree Events 271

TDesignerObjTree Class 271

TDesignerObjTree Methods 277

TDesignerObjTree Properties 277

Functions 294

ed_ObjTree.CreateGhostedImages Function 294

Types 294

ed_ObjTree.TCreateSprigNodeEvent Type 295

ed_TextEdit Namespace 295

Classes 295

TDsnInplaceEditor Class 295

TDsnInplaceEditor Methods 299

TDsnInplaceEditor Properties 300

TInplaceComponentEditor Class 302

TInplaceComponentEditor Methods 303

TInplaceComponentEditor Properties 305

Functions 306

ed_TextEdit.CreateImplEditor Function 306

ed_TextEdit.RegisterInplaceComponentEditor Function 306

Types 307

ed_TextEdit.TInplaceComponentEditorClass Type 307

edActns Namespace 307

Classes 307

TDesignerAction Class 308

TDesignerAction Methods 309

TDesignerAction Properties 309

TdsnAlignmentDlg Class 311

EControl Form Designer Pro

vii

TdsnAlignmentDlg Methods 313

TdsnAlignToGrid Class 313

TdsnAlignToGrid Methods 314

TdsnBringToFront Class 315

TdsnBringToFront Methods 316

TdsnCopy Class 316

TdsnCreationOrderDlg Class 317

TdsnCreationOrderDlg Methods 318

TdsnCut Class 318

TdsnDelete Class 318

TdsnDesignMode Class 319

TdsnDesignMode Methods 320

TdsnFlipChildren Class 320

TdsnFlipChildren Methods 322

TdsnFlipChildrenAll Class 322

TdsnFlipChildrenAll Methods 323

TdsnGroupControls Class 323

TdsnGroupControls Methods 325

TdsnLockControls Class 325

TdsnLockControls Methods 326

TdsnPaste Class 327

TdsnRedo Class 327

TdsnScale Class 327

TdsnScale Methods 328

TDsnSelAction Class 329

TDsnSelAction Methods 330

TdsnSelectAll Class 330

TdsnSendToBack Class 330

TdsnSendToBack Methods 332

TdsnShowTabOrder Class 332

TdsnShowTabOrder Methods 333

TdsnSizeDlg Class 334

TdsnSizeDlg Methods 335

TdsnTabOrderDlg Class 335

TdsnTabOrderDlg Methods 336

TdsnTargetAction Class 337

TdsnTextEditMode Class 337

TdsnTextEditMode Methods 338

TdsnUndo Class 338

TdsnUngroupControls Class 339

TdsnUngroupControls Methods 340

edcCmbCombo Namespace 340

EControl Form Designer Pro

viii

Classes 340

TComponentCombo Class 341

TComponentCombo Methods 344

TComponentCombo Properties 346

TComponentCombo Events 358

Types 358

edcCmbCombo.TCanAddObjectEvent Type 359

edcCmbCombo.TGetClassNameEvent Type 359

edcCmbCombo.TGetComponentsEvent Type 359

edcCmbCombo.TSelChangedEvent Type 359

edcCompPal Namespace 359

Classes 360

TPalettePanel Class 360

TPalettePanel Methods 364

TPalettePanel Properties 366

TPaletteTab Class 377

TPaletteTab Properties 380

edcDsnEvents Namespace 389

Classes 389

TDesignerEvents Class 389

TDesignerEvents Events 391

Types 394

edcDsnEvents.TDesignerEvent Type 394

edcDsnEvents.TDsnItemEvent Type 395

edcDsnEvents.TDsnKeyDownEvent Type 395

edcDsnEvents.TDsnKeyPressEvent Type 395

edcDsnEvents.TGetGlobalsEvent Type 395

edcDsnEvents.TOnGetPoint Type 395

edcDsnEvents.TRegisterComponentEvent Type 396

edcPropCtrl Namespace 396

Classes 396

TCategoryNode Class 396

TCategoryNode Methods 398

TCustomInspectorList Class 399

TCustomInspectorList Methods 404

TCustomInspectorList Properties 407

TCustomInspectorList Events 412

TInspectorList Class 413

TInspectorList Properties 422

TPropertyNode Class 439

TPropertyNode Methods 441

EControl Form Designer Pro

ix

TPropertyNode Properties 441

TPropertyNodes Class 442

TPropertyNodes Methods 444

TzDesignerSelections Class 445

Structs, Records, Enums 445

edcPropCtrl.TTypeSelector Enumeration 446

Types 446

edcPropCtrl.IFormDesigner Type 446

edcPropCtrl.IProperty Type 446

edcPropCtrl.TAcceptCategoryEvent Type 447

edcPropCtrl.TAcceptPropertyEvent Type 447

edcPropCtrl.TChangeSelectionEvent Type 447

edcPropCtrl.TGetPropReadonlyEvent Type 447

edcPropCtrl.TOnInspSetPropValueEventA Type 447

edcPropCtrl.TOnInspSetPropValueEventW Type 448

edcPropEdit Namespace 448

Classes 448

TCustomPropertyEdit Class 448

TCustomPropertyEdit Methods 453

TCustomPropertyEdit Properties 455

TCustomPropertyEdit Events 456

TPropertyEdit Class 457

TPropertyEdit Properties 462

TPropertyNameProperty Class 463

Interfaces 464

IPropertyStatusImage Interface 464

IPropertyStatusImage Methods 464

Types 465

edcPropEdit.TOnSetPropValueEventA Type 465

edcPropEdit.TOnSetPropValueEventW Type 465

eddAlignDlg Namespace 465

Classes 465

TAlignmentDlg Class 465

eddAlignPal Namespace 466

Classes 466

TAlignPalette Class 466

eddCrOrdDl Namespace 467

Classes 467

TCreateOrderDlg Class 468

eddCustomPal Namespace 468

EControl Form Designer Pro

x

Classes 468

TCustomizePaletteDlg Class 468

edcToolList Namespace 469

Classes 470

TPaletteToolList Class 470

TPaletteToolList Methods 476

TPaletteToolList Properties 477

TPaletteToolList Events 489

eddDsnOpt Namespace 489

Classes 490

TDsnOptionsDlg Class 490

TDsnOptionsDlg Properties 491

eddObjInspProp Namespace 491

Classes 491

TObjInspPropDlg Class 491

TObjInspPropDlg Properties 493

eddPackageCtrl Namespace 493

Classes 493

TPackageCtrlDlg Class 493

eddPageName Namespace 494

Classes 494

TPageNameDlg Class 494

eddObjInspFrm Namespace 494

Classes 494

TObjectInspectorFrame Class 495

TObjectInspectorFrame Methods 496

TObjectInspectorFrame Properties 497

TObjectInspectorFrame Events 497

Types 498

eddObjInspFrm.TObjInspTabs Type 498

eddScaleDl Namespace 498

Classes 498

TScaleDlg Class 498

eddSelFrame Namespace 499

Classes 499

TSelFrameDlg Class 499

eddObjTreeFrame Namespace 499

Classes 500

TObjectTreeFrame Class 500

EControl Form Designer Pro

xi

TObjectTreeFrame Methods 500

TObjectTreeFrame Properties 501

eddSizeDlg Namespace 501

Classes 501

TSizeAdjDlg Class 501

eddTabOrdDl Namespace 502

Classes 502

TTabOrderDlg Class 502

edIOUtils Namespace 502

Functions 503

edIOUtils.zCopyCmpResource Function 504

edIOUtils.zReadCmpFromFile Function 504

edIOUtils.zReadCmpFromStream Function 504

edIOUtils.zWriteCmpToFile Function 505

edIOUtils.zWriteCmpToStream Function 505

edManager Namespace 505

Classes 505

TDesignerManager Class 505

TDesignerManager Methods 507

TDesignerManager Properties 510

Interfaces 511

IClassSelector Interface 511

IClassSelector Methods 511

IDesignIDEEvents Interface 512

IDesignIDEEvents Methods 512

Functions 513

edManager.GetClassDragImage Function 513

Structs, Records, Enums 513

edManager.TComponentClassDragImage Enumeration 513

Variables 514

edManager.DsnManager Variable 514

edsMenuDsn Namespace 514

Classes 514

TMenuDsnWnd Class 514

TzMenuEditor Class 515

TzMenuItemsPropertyEditor Class 515

eduDMContainer Namespace 515

Classes 515

TDsnDM Class 516

EControl Form Designer Pro

xii

eduServObj Namespace 516

Classes 516

TAlignRuler Class 516

TComponentCaption Class 517

TComponentIcon Class 517

TDraggedControl Class 517

TSmallRect Class 517

TTabOrderIcons Class 518

TTabOrderIcons Methods 519

TTabOrderIcons Properties 519

TzBoundCtrl Class 520

TzBoundCtrl Methods 521

TzBoundCtrl Properties 521

Functions 523

eduServObj.DrawPatternRect Function 523

eduServObj.IsServiceControl Function 523

Structs, Records, Enums 523

eduServObj.TMarkerShape Enumeration 524

eduServObj.TVerticalAlignment Enumeration 524

edUtils Namespace 524

Functions 524

edUtils.DsnAlignSelected Function 525

edUtils.DsnLoadPackage Function 525

edUtils.DsnReadCmpFromStream Function 525

edUtils.DsnReadFromFile Function 525

edUtils.DsnWriteCmpToStream Function 526

edUtils.DsnWriteToFile Function 526

edUtils.GetDesigner Function 526

edUtils.InvalidateControl Function 526

edUtils.IsControlParent Function 526

edUtils.NormalizeRect Function 527

edUtils.PerformDsnAction Function 527

edUtils.ShowDesignerOptionsDlg Function 527

edUtils.ShowDsnAbout Function 527

Structs, Records, Enums 527

edUtils.TDesignerAction Enumeration 528

Index a

EControl Form Designer Pro

xiii

1 EControl Form Designer Pro

1.1 Overview
EControl Form Designer Pro - powerful form designer which is based on the same concepts as Delphi's form designer. It
has similar to Delphi interface.

Developed for:

Delphi: 5, 6, 7, 2005, 2006, 2007, 2009, 2010, 2011 (XE), 2012 (XE2)

C++Builder: 5, 6, 2006, 2007, 2009, 2010, 2011 (XE), 2012 (XE2)

EControl Form Designer Pro has all required tools :

Designer (TzFormDesigner),

Design surface (TDesignSurface),

Object inspector (TInspectorList, TObjectInspector),

Component palette (TPalettePanel, TPaletteTab),

Component combo box (TComponentCombo),

Tools palette (TPaletteToolList),

Object tree view (TDesignerObjTree),

Design time dialogs (Align, Align Palette, Size, Scale, Tab order, Creation order, etc.),

Component palette and packages managing dialogs.

Using EControl Form Designer Pro you may easily create and integrate design environment in your applications. It uses all
registered property editors, component editors and other design objects. You may use all abilities of existed design objects
which are essential part of any VCL library.

Software branches where EControl Form Designer Pro will be very useful:

1. SCADA applications, Industrial automation.

2. Database applications which need to be extendable by users.

3. Engineering applications.

4. All others branches where runtime extensions are required.

Simple integration with scripts allows creating full featured IDE.

EControl Form Designer Pro may be easily integrated with different Scripters.

There is a set of events that allow to handle events assignment. In "Integration with scripters (see page 6)" you may read

1.1 Overview EControl Form Designer Pro

1

1

detailed description of this task by the example of integration with Fast Script library.

EControl Form Designer Pro allows editing of different targets :

Forms (any object derived from TForm),

Frames (any object derived from TFrame),

Data Modules (any object derived from TDataModule),

Control based classes (for example, quick report),

Only part of the form (for example, panel or tab sheet).

EControl Form Designer Pro is easy to use - just only drop TzFormDesigner,

select Target and activate.

1.2 Features
Main features

• Fully compatible with Delphi IDE

• It is based on the same interfaces like Delphi form designer

• You can edit forms, data modules, reports, controls on you form

• Full Unicode support.

• Undo, Redo operations.

• Design Surface - container for designed forms.

• Im-place text editing - original feature which provides ability of editing text captions directly on control. This makes
designing process more comfortable.

• Object inspector looks and works like Delphi's one and now has BDS style with support of property categories, gutter,
references, Unicode properties edit...

• State images - special interface to add images to property edit control at the left side.

• Easy integration with 3D-party Scripters

Other features

• Support custom modules

• Support property and component editors

• Collection, picture, string, dataset fields, actions and other editors are available

• "Object Inspector Properties" dialog.

• Cross modules references (object and method)

• Event properties editing

• Runtime package loading

• Palette panel for selecting Class to insert

• Palette tab control like Delphi one

• Alignment palette

• Align, Size, Scale, Tab Order, Creation Order dialogs

1.2 Features EControl Form Designer Pro

2

1

• Designer hints

• Clipboard operations compatible with Delphi (you can copy components to/ from Delphi)

• Customizable performance

• "Packages" dialog allows Load/Unload packages.

• "Customize Palette" dialog allows customizing component palette.

• Save/Load component palette and packages configuration.

• Frame support. You can insert and edit frames.

• Properties Root, Form, ContainerWindow are now public. To set design target Published property Target has been added.

• Property Edit - edit control for editing property value using property editors.

• BDS style design operations

• Object Tree View - displays a tree diagram of the visual and nonvisual components you place on a form, data module, or
frame.

• Tools palette list - Tool list with component palette. Allows in-place rearranging, autocollapsing, vertical categories,
components filtration, etc.

• Ready to-use frames: object inspector frame, component palette tool list frame, object tree view frame - encapsulate
default behavior and make creation of design environment faster.

• ...

1.3 Insallation
EControl Form Designer Pro consist of only one package: zDesignXX.bpl

1. Unpack source files , for example, in "C:\EControl".

There will be 6 directories:

C:\EControl\EControl_Designer\Packages

C:\EControl\EControl_Designer\Sources

C:\EControl\EControl_Designer\No_Bpl

C:\EControl\EControl_Designer\DsnEditors

C:\EControl\EControl_Designer\Demo

C:\EControl\EControl_Designer\Help

2. Update library path :

- Open in Delphi IDE dialog "Environment Options", tab sheet "Library"

- Add to "Library path"

• C:\EControl\EControl_Designer\Sources;

• C:\EControl\EControl_Designer\No_Bpl;

• C:\EControl\EControl_Designer\No_Bpl\DB;

• C:\EControl\EControl_Designer\No_Bpl\DB\Extra;

• C:\EControl\EControl_Designer\DsnEditors;

• $(DELPHI)\Source\ToolsApi in Delphi 5,6,7 or $(DELPHI)\Source\Win32\ToolsApi in BDS;

1.3 Insallation EControl Form Designer Pro

3

1

• $(DELPHI)\Source\Property editors in Delphi 5,6,7 or $(DELPHI)\Source\Win32\Property editors in BDS.

3. Open library project (EControl_Designer\Packages\):

zDesign5.dpk - Delphi 5;

zDesign6.dpk - Delphi 6;

zDesign7.dpk - Delphi 7;

zDesign9.bdsproj - Delphi 2005;

zDesign10.bdsproj - Delphi 2006;

zDesign11.dproj - Delphi 2007;

zDesign12.dproj - Delphi 2009;

zDesign14.dproj - Delphi 2010;

zDesign15.dproj - Delphi XE;

zDesign16.dproj - Delphi XE2, C++Builder XE2;

zDesignC5.bpk - C++Builder 5;

zDesignC6.bpk - C++Builder 6;

zDesign10C.bdsproj - C++Builder 2006;

zDesign11C.cbproj - C++Builder 2007

zDesign12C.cbproj - C++Builder 2009

zDesign14C.cbproj - C++Builder 2010

zDesign15C.cbproj - C++Builder XE

4. Install package.

In project popup menu select command "Install". Library will be compiled and installed.

5. Important conditionals (you should add them in project options)

EC_NO_BPL - added for applications without using runtime packages,

EC_DSN_REG - removes registration confirmation,

NEWNEWDESIGNER - required for applications without using runtime packages to compile TStringListProperty (unit stredit).

6. Building applications

EControl Form Designer Pro may be used in applications that are built with runtime packages and in applications without
using runtime packages, i.e. in standalone EXE. See Using DesignIDE.BPL (see page 5) topic for more details.

7. TRIAL version.

Trial version can be used only with runtime packages! To build any application you need to update project options (see
Using DesignIDE.BPL (see page 5) topic for more details).

Archive with trial version contains next files: zDesign##.bpl, zDesign##.dcp for Delphi; zDesignC##.bpl, zDesignC##.bpi,
zDesignC##.lib for C++Builder.

Unpack these files to "...\BPL" and "...\DCP" folders (depends on Delphi/C++Builder version). In IDE select "Component |
Install packages" menu where add zDesign##.bpl to installed packages.

1.3 Insallation EControl Form Designer Pro

4

1

8. C++ Builder specific

Concept of using Form Designer without runtime packages is based on recompilation of designIDE units from
($BDS)\Source\ToolsAPI; ($BDS)\Source\Win32\Property Editors and EControl_Designer\No_Bpl with global define
EC_NO_BPL. These files are Pascal units. In Delphi recompilation is performed automatically, but in C++Builder these units
will not be recompiled. Object files created when building package do not suit because they are compiled without
EC_NO_BPL define.

To resolve this problem you may use next approach: add to your C++ project one pascal file which will use units from folders
mentions above, for example:

unit Pas_In_Cpp;

interface

{$ObjExportAll On}

uses {$IFNDEF VER130}
 DesignWindows,
 ComponentDesigner,
 PropertyCategories,
 edsCompDsn,
 {$ENDIF}
 proxies,
 ed_Designer,
 StdRegComps,
 events,
 ecDlList,
 edActns,
 edcCmbCombo,
 edcCompPal,
 edcPropCtrl,
 picEdit,
 eddObjInspFrm;

{$IFNDEF EC_NO_BPL}
ERROR: This unit only to be used when compiling without runtime packages
{$ENDIF}

implementation

end.

This approach is used in demo EControl_Designer\Demo\MDI_CPP

1.4 Using DesignIDE.BPL
EControl Form Designer Pro may be used in applications that are built with runtime packages and in applications without
using runtime packages, i.e. in standalone EXE.

Using with runtime packages.

In this mode you may load design time packages at runtime. All design time classes will be registered automatically.

Advantages - automatic design objects registration, registration of not available in sources design objects, ability to extend at
runtime component base by loading design time packages.

There is only one disadvantage - you need to distribute DesignIDEXX.bpl . Distribution of this package is limited by Borland
(CodeGear) License (see page 8).

Such using is possible if you will use application on the computers where Delphi is installed.

1.4 Using DesignIDE.BPL EControl Form Designer Pro

5

1

Using without runtime packages.

When you build application without runtime packages all required code is included in executable file. In this case there is no
using of DesignIDEXX.BPL and there are no licensing and distribution restrictions.

Disadvantages:

1. You should register all design time objects programmatically. Usually you need to call Register methods of libraries units,
for example:

initialization
 bdereg. Register ;
 dbreg. Register ;
 cxEditReg. Register ;
 cxExtEditReg. Register ;
 cxGridReg. Register ;
 cxGridPopupMenuReg. Register ;
 ...

2. Limited ability to extend design environment at runtime.

Important:

If you build application without runtime packages add EC_NO_BPL, NEWNEWDESIGNER defines to project "Conditional
defines" (dialog "Project Options", tab sheet "Directories/Conditionals").

1.5 Integration with scripters
The main problem of integration designer environment and script engine is the ability to create and maintain event handlers.
EControl Form Designer Pro contains special set of events and included in library method property editor which allow easy
and event handlers creation and navigation in the same manner as we have in Delphi IDE.

Associations between event (procedural property) and script procedure may be saved in TStrings object as:

<ObjectName>.<EventPropertyName>=<ScriptProcedureName>. It is the easiest way to store associations.

Set StoreEvents (see page 191) property to True to handle events by designer. In this case event associations will be
saved in Events property (see page 189) and designer's I/O functions will save these events in file or stream automatically.

TzFormDesigner events for managing procedural properties:

OnGetScriptProc (see page 199) - called to get name of the script procedure assigned to the particular event of the
object. Use this event handler for manual events processing.

OnSetScriptProc (see page 200) - called to assign script procedure to the particular event of the object. If the script
procedure with the given name does not exist you should add it to the code editor. It occurs when user in the object
inspector enters name, selects procedure in drop down list or double click on the empty event.

procedure TForm4.zFormDesigner1SetScriptProc(Sender, Instance: TObject;
 pInfo: PPropInfo; const EventProc: String);
begin

1.5 Integration with scripters EControl Form Designer Pro

6

1

 if EventProc <> '' then
 begin
 // Creating event handler text body in code editor
 //
 end ;
end ;

OnShowMethod (see page 201) - called when in the object inspector user double clicks on the event with assigned script
procedure. Example below shows how to find and highlight script procedure using parsing results of EControl TSyntaxMemo.

// Show script procedure in code editor
function TForm4.ShowMethod(const MethodName: string): Boolean;
var R: TTextRange;
 st, en: integer;
begin
 R := FindMethod(MethodName);
 Result := R <> nil ;
 if Result then
 with CodeEditor.SyntObj do
 begin
 st := Tags[R.StartIdx].StartPos;
 if R.EndIdx <> -1 then
 en := Tags[R.EndIdx].EndPos
 else
 en := st;
 Windows.SetFocus(CodeEditor.Handle);
 CodeEditor.CaretStrPos := st;
 CodeEditor.CaretStrPos := en;
 CodeEditor.SetSelection(st , en - st);
 end ;
end ;

// Check existing script procedure
function TForm4.FindMethod(const MethName: string): TTextRange;
var i: integer;
 R: TTagBlockCondition;
begin
 if MethName <> '' then
 with CodeEditor.SyntObj do
 begin
 R := TTagBlockCondition(Owner.BlockRules.ItemByName('function'));
 if R <> nil then
 for i := 0 to RangeCount - 1 do
 if (Ranges[i].Rule = R) and
 SameText(TagStr[Ranges[i].StartIdx + 1], MethName) then
 begin
 Result := Ranges[i];
 Exit;
 end ;
 end ;
 Result := nil ;
end ;

OnGetMethodNames (see page 198) - called when user drop down pop-up list with events in the object inspector.
Example below shows how to extract script procedure names in code editor using results of text analysis by the EControl
Syntax Editor SDK.

// Returns existed script procedures
// Syntax Analyzer is used to extract available functions
// this allows correc event processing if the code contains erros
procedure TForm4.zFormDesigner1GetMethodNames(Sender: TObject;
 TypeData: PTypeData; Proc: TGetStrProc);
var i: integer;
 R: TTagBlockCondition;
begin
 with CodeEditor.SyntObj do
 begin
 // Looking for all text ranges with rule "function"
 R := TTagBlockCondition(Owner.BlockRules.ItemByName('function'));
 if R <> nil then
 for i := 0 to RangeCount - 1 do
 if (Ranges[i].Rule = R) then

1.5 Integration with scripters EControl Form Designer Pro

7

1

 Proc(TagStr[Ranges[i].StartIdx + 1]);
 end ;
end ;

Using text analysis provided by EControl Syntax Editor SDK allows you to make language independent text processing (for
example, to make this demo working with other script language you should only have a rule "function" in the lexer of that
language).

Script source (TStrings) and events associations (TStrings) may be stored with form which may be saved to any storage (file
- text or binary resource, database - in BLOB or MEMO field, etc.).

Example of form declaration with scripting support:

 TScriptForm = class (TForm)
 ...
 published
 property Code: TStrings ...
 property Events: TStrings ...
 end ;

Using such approach such form may be an independent all-sufficient unit.

The best solution is to combine EControl Form Designer Pro and EControl Syntax Editor SDK to develop convenient design
environment in your applications!

1.6 License
EControl Form Designer Pro

Copyright (c) 2004 - 2011, EControl Ltd., Zakharov Michael, All Rights Reserved

All copyrights to EControl Form Designer Pro are exclusively owned by the author - Zakharov Michael.

This software and accompanying documentation are protected by Russian Federation copyright law and also by
International Treaty provisions. Any use of this software in violation of copyright law or the terms of this agreement will be
prosecuted to the best of our ability.

License Agreement

You should carefully read the following terms and conditions before using the software. By using this software you indicate
that you accept the present license agreement.

Registered Version (Single Developer License)

One registered copy of this software may either be used by a single developer who uses the software personally on one or
more computers, or installed on a single workstation used non-simultaneously by multiple developers, but not both. Duration
of support service is 1 year. Support service includes: free updates of the library and documentation, priority processing of

1.6 License EControl Form Designer Pro

8

1

requested features and fixes, direct e-mail support from author.

Registered Version (Site License)

One registered copy of this software may be used by unlimited number of developers within the company and may be
installed on any number of computers in the company. Duration of support service is 2 year. Support service includes: free
updates of the library and documentation, priority processing of requested features and fixes, direct support from author.

Shareware Version

You may use shareware version for 30 days (TRIAL period). After that period has ended, to continue using this product you
have to purchase the Registered version.

Distribution

Provided that you verify that you are distributing the Shareware Version you are hereby licensed to make as many copies of
the Shareware version of the software and the documentation as you wish; give exact copies of the original Shareware
version to anyone; and distribute the Shareware version of the software and the documentation in its unmodified form via
electronic means. There is no charge for any of the above-mentioned actions.

You are prohibited from charging, or requesting donations, for any such copies, however made; and from distributing the
software and / or the documentation with other products (commercial or otherwise) without a prior written permission

DISCLAIMER

This software is provided on an "as is" basis without warranty of any kind, expressed or implied, including but not limited to
the implied warranties of merchantability and fitness for a particular purpose. The person using the software bears all risk as
to the quality and performance of the software. The author will not be liable for any special, incidental, consequential, indirect
or similar damages due to loss of data or any other reason, even if the author or an agent of the author has been advised of
the possibility of such damages. In no event shall the author's liability for any damages ever exceed the price paid for the
license to use the software, regardless of the form of the claim.

Registration

Ordering and registration of this software are available at:

http://www.econtrol.ru/order.html

1.7 Examples

1.7 Examples EControl Form Designer Pro TBtnMargins.Margins example

9

1

http://www.econtrol.ru/order.html

1.7.1 TBtnMargins.Margins example

This example demonstrates how to set Margins property at run-time

procedure TForm1.FormCreate(Sender: TObject);
begin
 PalettePanel1.Margins.Left := 5;
 PalettePanel1.Margins.Top := 2;
 PalettePanel1.Margins.Bottom := 2;
 PalettePanel1.Margins.Right := 5;
 PalettePanel1.Margins.BtnHorz := 4;
 PalettePanel1.Margins.BtnVert := 10;
end;

1.7.2 ButtonClick Example

This example demonstrates how descendant of TCustomBtnPanel overrides ButtonClick method to assign current class type
in DsnManager

procedure TPalettePanel.ButtonClick(AButton: integer; Shift: TShiftState);
begin
 DsnManager.ComponentClass := TComponentClassInfo(FCmpList[AButton]).AClass;
 DsnManager.MultiCreate := ssShift in Shift;
 inherited;
end;

1.7.3 Registration Method Example

This example demonstrates how to register methods and event handlers

Variant 1. Using MethRegister.AddMethod function

Step 1.

Create event handler or appropriate method (with right signature),

for example

procedure TForm1.User_ListViewCustomDraw(Sender: TCustomListView;
 const ARect: TRect; var DefaultDraw: Boolean);
begin
 //
end;

procedure TForm1.AnotherCustomDraw(Sender: TCustomListView;
 const ARect: TRect; var DefaultDraw: Boolean);
begin

Attention

It is necessary to place those declarations in published or 'automatic' (where all form's field and methods is automatically
added) section.

Step 2.

Somewhere in initialization code place MethRegister.AddMethod's calls

1.7 Examples EControl Form Designer Pro Registration Method Example

10

1

procedure TForm1.FormCreate(Sender: TObject);
begin
...
 MethRegister.AddMethod(GetTypeData(TypeInfo(TLVCustomDrawEvent)),
 Addr(TForm1.User_ListViewCustomDraw), Self);
 MethRegister.AddMethod(GetTypeData(TypeInfo(TLVCustomDrawEvent)),
 Addr(TForm1.AnotherCustomDraw), Self);
...
end;

Variant 2. Using Helper-functions

You can create helper functions for simple reuse of the same methods (with equal signature)

Step 1.

Create helper function for TLVCustomDrawEvent type

procedure AddCustomDrawEvent_Helper(ev: TLVCustomDrawEvent);
begin
 MethRegister.AddMethod(GetTypeData(TypeInfo(TLVCustomDrawEvent)), PMethod(@@ev)^);
end;

Step 2.

Now you can register method with more intuitive way

procedure TForm1.FormCreate(Sender: TObject);
begin
...
 AddCustomDrawEvent_Helper(User_ListViewCustomDraw);
 AddCustomDrawEvent_Helper(AnotherCustomDraw);
...
end;

Notes

MethRegister object have a list of built-in helpers

• procedure AddNotifyEvent(ev: TNotifyEvent);

• procedure AddMouseEvent(ev: TMouseEvent);

• procedure AddMouseMoveEvent(ev: TMouseMoveEvent);

• procedure AddKeyEvent(ev: TKeyEvent);

• procedure AddKeyPressEvent(ev: TKeyPressEvent);

• procedure AddDragOverEvent(ev: TDragOverEvent);

• procedure AddDragDropEvent(ev: TDragDropEvent);

• procedure AddStartDragEvent(ev: TStartDragEvent);

• procedure AddEndDragEvent(ev: TEndDragEvent);

• procedure AddDockDropEvent(ev: TDockDropEvent);

• procedure AddDockOverEvent(ev: TDockOverEvent);

• procedure AddUnDockEvent(ev: TUnDockEvent);

• procedure AddStartDockEvent(ev: TStartDockEvent);

• procedure AddGetSiteInfoEvent(ev: TGetSiteInfoEvent);

• procedure AddCanResizeEvent(ev: TCanResizeEvent);

• procedure AddConstrainedResizeEvent(ev: TConstrainedResizeEvent);

• procedure AddMouseWheelEvent(ev: TMouseWheelEvent);

• procedure AddMouseWheelUpDownEvent(ev: TMouseWheelUpDownEvent);

1.7 Examples EControl Form Designer Pro Registration Method Example

11

1

• procedure AddContextPopupEvent(ev: TContextPopupEvent);

1.8 Change Log

1.8.1 Version 2.00

Version 2.0 (from version 1.5)

ecDlList.pas

Custom property list control implemented using classes: TCustomPropList (see page 46), TPropertyItem (see page 61),
TPropListRoot (see page 65). Some functionality of inspector list is moved to these classes.

ecExtEdit.pas

TUnicodeEdit (see page 107) - base edit control which is used as base class of property edit control. This control may be
used as Ansi and as Unicode control.

TBtnEdit (see page 70) is derived from TUnicodeEdit. It contains new status area at left side of edit control. This status
area is used to draw status image in property edit control.

TExEdit class renamed on TCustomEditEx (see page 78).

ecToolList.pas (new)

TToolList (see page 125) control - categorized items list, with functionality similar Delphi's tools palette control. It is used
as base class for TPaletteToolList. (see page 470)

ecHintHelper.pas (new)

Provides unified hint processing. Hint helpers used by the tool lists, button panels and inspector lists, i.e.

TCustomBtnPanel.HintProps Property (see page 26)

TBtnPanel.HintProps Property (see page 37)

TPalettePanel.HintProps Property (see page 371)

TPaletteTab.HintProps Property (see page 382)

TCustomToolList.HintProps Property (see page 121)

TToolList.HintProps Property (see page 134)

TPaletteToolList.HintProps Property (see page 482)

TCustomInspectorList.HintProps Property (see page 410)

1.8 Change Log EControl Form Designer Pro Version 2.00

12

1

ed_DsnBase.pas

Handling drag&drop operations:

TBaseDesigner.DragDrop Method (see page 147)

TBaseDesigner.DragOver Method (see page 148)

TBaseDesigner.OnDragDrop Event (see page 152)

TBaseDesigner.OnDragOver Event (see page 152)

ed_Designer.pas

New functionality:

TzCustomFormDesigner.AddCompEditorMenu Method (see page 170)

TzCustomFormDesigner.CheckAction Method (see page 171)

TzCustomFormDesigner.ClearCompEditorMenu Method (see page 171)

TzCustomFormDesigner.EditAction Method (see page 172)

TzCustomFormDesigner.GetEditState Method (see page 173)

TzCustomFormDesigner.IsLocked Method (see page 179)

TzCustomFormDesigner.SelectedComponent Method (see page 185)

TzCustomFormDesigner.ShowPopupMenu Method (see page 186)

TzCustomFormDesigner.UndoLoad Property (see page 192)

TzCustomFormDesigner.OnCanEdit Event (see page 194)

TzCustomFormDesigner.OnGetComponentLocked Event (see page 195)

TzCustomFormDesigner.OnGetObjectName Event (see page 195)

ed_RegComps.pas

TComponentClassInfo Class (see page 242) was redesigned, fields are moved to private section. Property AClass was
replaced with property TComponentClassInfo.ComponentClass (see page 244). New Unicode property
TComponentClassInfo.DisplayName (see page 244) used by the component palette and palette tool list.

Registered component information may be accessed using TPackageMng.ComponentCount (see page 255) and
TPackageMng.Components (see page 255). Direct access via property CompInfos is removed.

Added several functions to manage component palette.

See TPackageMng class (see page 248).

edcCmbCombo.pas

1.8 Change Log EControl Form Designer Pro Version 2.00

13

1

New functionality to manage drop-down list:

TComponentCombo.DoAddObject Method (see page 345)

TComponentCombo.OnCanAddObject Event (see page 358)

Automatic hints:

TComponentCombo.AutoHint Property (see page 347)

edcPropCtrl.pas

New functionality of inspector list:

TCustomInspectorList.PopupListAlign (see page 411) - alignment of popup list.

TCustomInspectorList.OnChangeSelection (see page 412) - occurs when selected objects are changing.

TCustomInspectorList.OnGetPropReadOnly (see page 413) - occurs to define whether property is read-only.

TCustomInspectorList.OnSetPropValueA (see page 413) ; TCustomInspectorList.OnSetPropValueW (see page 413) -
allows adjusting value to be written in property.

TCustomInspectorList.DefPropNameDraw (see page 409) - disables property name drawing by the property editors.

edcPropEdit.pas

Uses new interface to draw and process status images:

IPropertyStatusImage Interface (see page 464)

New functionality to control value updating:

TCustomPropertyEdit.ChangePropertyValue Method (see page 453)

TCustomPropertyEdit.OnSetPropValueA Event (see page 457)

TCustomPropertyEdit.OnSetPropValueW Event (see page 457)

eddObjInspFrm.pas (new)

Object inspector frame control. Utilizes object inspector functionality for fast integration in application. See
TObjectInspectorFrame Class (see page 495) for more details.

1.8.2 Version 2.10

Version 2.1 (from version 2.0 (see page 12))

CodeGear RAD Studio 2009 support.

ed_Designer.pas

1.8 Change Log EControl Form Designer Pro Version 2.10

14

1

TzCustomFormDesigner.SelectedComponentsCount Method (see page 180)

TzCustomFormDesigner.OnPopUndo Event (see page 196)

TzCustomFormDesigner.OnPushUndo Event (see page 197)

TzCustomFormDesigner.OnSetNewName Event (see page 197)

TCustomFormDesigner supports standard actions TEditCopy, TEditCut, TEditPaste, TEditUndo, TEditSelectAll, TEditDelete
and allows handle other standard actions using corresponding events:

TzCustomFormDesigner.OnExecuteAction Event (see page 195)

TzCustomFormDesigner.OnUpdateAction Event (see page 198)

edcCmbCombo.pas

TComponentCombo.OnGetClassName Event (see page 358)

edManager.pas

TDesignerManager.SetActiveDesigner Method (see page 510)

See this topic for sample of using multiple groups of designers (each group with own manager).

ecToolList.pas

TCustomToolList.RightClickSelect Property (see page 122)

TCustomToolList.Selected Property (see page 122)

TCustomToolList.OnItemArranged Event (see page 123)

1.8.3 Version 2.20

Version 2.2 (from version 2.1 (see page 14))

Main changes:

1. Extended events support (in resource files)

2. Extended guidelines styles

3. Group operations

4. Local/global markers

5. Parent dragging limitation (ON/OFF)

6. Operations in inactive mode (ability of using component combo, object tree, object inspector with inactive designer)

7. Other fixes and minor improvements.

ed_Designer.pas

Simple file or stream I/O

TzCustomFormDesigner.SaveToFile Method (see page 179)

TzCustomFormDesigner.SaveToStream Method (see page 180)

1.8 Change Log EControl Form Designer Pro Version 2.20

15

1

TzCustomFormDesigner.LoadFromFile Method (see page 177)

TzCustomFormDesigner.LoadFromStream Method (see page 178)

TzCustomFormDesigner.IgnoreReadErrors Property (see page 191)

Self storage and events processing:

TzCustomFormDesigner.Events Property (see page 189)

TzCustomFormDesigner.StoreEvents Property (see page 191)

TzCustomFormDesigner.DragParentLimit Property (see page 189) - specifies whether drag mouse movement should be
clipped by parent's client area.

TzCustomFormDesigner.GuidelinesStyle Property (see page 191) - specifies guidelines options. Ability to display
guidelines in static mode, in keyboard operations.

TzCustomFormDesigner.Groups Property (see page 190) - component grouping support.

TControlGroups Class (see page 156) - control groups class.

ed_dsncont.pas

TDesignSurface.RulerClientArea Property (see page 240) - specifies whether ruler displays scale only for client area.

ed_ObjTree.pas

TCustomDesignerObjTree.Designer Property (see page 271) - Allows direct linking to the particular designer. In this case
object tree will work with objects of the Designer.Root and will work even when designer is not active.

edActns.pas

TdsnGroupControls Class (see page 323) - Group selected controls action.

TdsnUngroupControls Class (see page 339) - Ungroup selected controls action.

edcCmbCombo.pas

TComponentCombo.Designer Property (see page 348) - Allows direct linking to the particular designer. Component
combo can work also with inactive designer.

edIOUtils.pas

Updated functions to support inline events saving.

zReadCmpFromFile (see page 504)

zReadCmpFromStream (see page 504)

1.8 Change Log EControl Form Designer Pro Version 2.20

16

1

zWriteCmpToFile (see page 505)

zWriteCmpToStream (see page 505)

eduServObj.pas

TzBoundCtrl.Local Property (see page 522) - specifies whether markers are visible only in the parent window of selected
control. In Code Gear designer - markers are local. In MS Stidio designer - markers are not local.

1.8.4 Version 2.30

Version 2.3 (from version 2. (see page 14) 2)

1. Improved design grid painting (faster)

2. Customization of Tool Component Palette, see TPaletteToolList.CustomItems Property (see page 480)

3. Corrected inspector painting

4. Fixed problem of object inspector under D2009 (when properties of type string were not shown in object editor frame).
Added property TInspectorList.TypeSelector (see page 412).

5. Fixed problem of incorrect images deduplication procedure when adding actions in action list editor.

6. Registration of standard actions (StdRegComps.pas)

7. Redesigned standard actions (cut, copy, paste, delete, undo, select all). Now they derived from TEdit____ actions. This
allows using them for edit controls and for designer.

8. Property search functionality. In object inspector press TAB and input first letters of property display name to search it in
list. See TCustomInspectorList.SearchPropMode Property (see page 411), TCustomInspectorList.SearchPropKey
Property (see page 411).

9. Using drag images when dragging component from component palette or component tool list. See
TPalettePanel.DragImageType Property (see page 370), TPaletteToolList.DragImageType Property (see page 481),
TPaletteTab.PalettePanel Property (see page 386)

10. TzCustomFormDesigner.OnDrawControl Event (see page 195)

1.8.5 Version 2.40

Version 2.4 (from version 2. (see page 14) 3)

1. RAD Studio XE support.

2. "Show Tab Order" design mode - allows easy to view and change tab order (TzCustomFormDesigner.TabOrderIcons
Property (see page 191)).

3. RTL support. Allows designing of windows with WS_EX_LAYOUTRTL style (right-to-left).

1.8.6 Version 2.50

Embarcadero RAD Studio XE2 support.

1.9 ecBtnPanel Namespace EControl Form Designer Pro

17

1

1.9 ecBtnPanel Namespace

1.9.1 Classes

The following table lists classes in this documentation.

Classes

Class Description

TBtnMargins (see page 18) Contains margins and spaces for a button's array in TCustomBtnPanel (see
page 20)

TCustomBtnPanel (see page 20) TCustomBtnPanel is the base class for panels with button array.

TBtnPanel (see page 28) Control with multiple buttons.

1.9.1.1 TBtnMargins Class
Contains margins and spaces for a button's array in TCustomBtnPanel (see page 20)

Class Hierarchy

TBtnMargins = class (TPersistent);

File

ecBtnPanel

Description

TBtnMargins is used in the Margins property of TCustomBtnPanel (see page 20) and its descendants (i.e. TPalettePanel).

It specifies the Left (see page 19), Top (see page 20), Right (see page 20) and Bottom (see page 19) margins
between buttons and underlaying panel as well as horizontal and vertical spaces between buttons themselves.

Example

This example (see page 10) demonstrates how to set Margins property at run-time

Members

TBtnMargins Properties

TBtnMargins Properties Description

 Bottom (see page 19) Specifies the bottom margin between underlaying panel and the very lower
line of buttons

 BtnHorz (see page 19) Specifies the horizontal spaces between the buttons

 BtnVert (see page 19) Specifies the vertical spaces between the buttons

 Left (see page 19) Specifies the left margin between underlaying panel and the very left button.

 Right (see page 20) Specifies the right margin between underlaying panel and the very right button.

 Top (see page 20) Specifies the top margin between underlaying panel and the very upper line of
buttons

Legend

Property

1.9 ecBtnPanel Namespace EControl Form Designer Pro Classes

18

1

TBtnMargins Properties

TBtnMargins Properties Description

 Bottom (see page 19) Specifies the bottom margin between underlaying panel and the very lower
line of buttons

 BtnHorz (see page 19) Specifies the horizontal spaces between the buttons

 BtnVert (see page 19) Specifies the vertical spaces between the buttons

 Left (see page 19) Specifies the left margin between underlaying panel and the very left button.

 Right (see page 20) Specifies the right margin between underlaying panel and the very right button.

 Top (see page 20) Specifies the top margin between underlaying panel and the very upper line of
buttons

1.9.1.1.1 TBtnMargins Properties

1.9.1.1.1.1 TBtnMargins.Bottom Property

Specifies the bottom margin between underlaying panel and the very lower line of buttons

property Bottom: integer;

Description

Use the Bottom property to determine or set bottom margin.

Example

This example (see page 10) demonstrates how to set Bottom property at run-time

1.9.1.1.1.2 TBtnMargins.BtnHorz Property

Specifies the horizontal spaces between the buttons

property BtnHorz: integer;

Description

Use the BtnHorz property to determine or set horizontal spaces between buttons on the panel.

Example

This example (see page 10) demonstrates how to set BtnHorz property at run-time

1.9.1.1.1.3 TBtnMargins.BtnVert Property

Specifies the vertical spaces between the buttons

property BtnVert: integer;

Description

Use the BtnVert property to determine or set vartical spaces between buttons on the panel.

Example

This example (see page 10) demonstrates how to set BtnVert property at run-time

1.9.1.1.1.4 TBtnMargins.Left Property

Specifies the left margin between underlaying panel and the very left button.

property Left: integer;

Description

Use the Left property to determine or set the left margin.

Example

This example (see page 10) demonstrates how to set Left property at run-time

1.9 ecBtnPanel Namespace EControl Form Designer Pro Classes

19

1

1.9.1.1.1.5 TBtnMargins.Right Property

Specifies the right margin between underlaying panel and the very right button.

property Right: integer;

Description

Use the Right property to determine or set the right margin.

Example

This example (see page 10) demonstrates how to set Right property at run-time

1.9.1.1.1.6 TBtnMargins.Top Property

Specifies the top margin between underlaying panel and the very upper line of buttons

property Top: integer;

Description

Use the Top property to determine or set top margin.

Example

This example (see page 10) demonstrates how to set Top property at run-time

1.9.1.2 TCustomBtnPanel Class
TCustomBtnPanel is the base class for panels with button array.

Class Hierarchy

TCustomBtnPanel = class (TCustomPanel);

File

ecBtnPanel

Description

Buttons are not controls. This class was created to optimize rendering of big buttons array, for example, in component
palette.

Members

TCustomBtnPanel Methods

TCustomBtnPanel Methods Description

 ButtonAtPos (see page 22) Returns the index of the button indicated by the coordinates of a point on the
panel.

 ButtonClick (see page 22) Generates an OnButtonClick (see page 27) event.

 ButtonRect (see page 22) Indicates the rectangle occupied by the particular button.

 CanAutoSize (see page 23) Specifies whether the TCustomBtnPanel sizes itself automatically to
accommodate its contents.

 Create (see page 23) Creates and initializes a TCustomBtnPanel instance.

 Destroy (see page 23) Destroys an instance of TCustomBtnPanel.

 DrawButton (see page 23) Generates an OnDrawButton (see page 27) event.

 GetButtonHint (see page 24) Returns hint text for the particular button.

 InvalidateButtons (see page 24) Repaints just pushed and released buttons.

 Loaded (see page 24) Finally initializes the TCustomBtnPanel after it is loaded from a stream.

 MouseDown (see page 24) Calls ButtonClick (see page 22) method.

 Paint (see page 24) Renders the image of a TCustomBtnPanel.

1.9 ecBtnPanel Namespace EControl Form Designer Pro Classes

20

1

TCustomBtnPanel Properties

TCustomBtnPanel Properties Description

 AutoSize (see page 25) Specifies whether the TCustomBtnPanel sizes itself automatically to
accommodate its contents. This is inherited property from TControl.

 ButtonCount (see page 25) Indicates the number of buttons in the array.

 ButtonHeight (see page 25) Specifies the height of the buttons in array.

 ButtonWidth (see page 25) Specifies the width of the buttons in array.

 Caption (see page 25) Specifies a text string that identifies the control to the user. This is inherited
property from TControl.

 DownButton (see page 26) Specifies index of pressed button.

 Flat (see page 26) Dictates whether the button should have a 2D look instead of the usual 3D
look.

 HintProps (see page 26) Provide properties to adjust hints processing.

 Margins (see page 26) Specifies positioning of button array

 Orientation (see page 26) Specifies whether the panel's array of button is horizontal or vertical.

 RowCount (see page 27) Indicates the number of button rows in the panel.

 Transparent (see page 27) Specifies whether the background of the button is transparent.

TCustomBtnPanel Events

TCustomBtnPanel Events Description

 OnButtonClick (see page 27) Occurs when the user clicks the button on the underlying panel.

 OnDrawButton (see page 27) Occurs when a particular button on the panel needs to be drawn.

 OnGetButtonHint (see page 28) Occurs before hint window will be displayed.

Legend

Method

protected

virtual

Property

Event

TCustomBtnPanel Events

TCustomBtnPanel Events Description

 OnButtonClick (see page 27) Occurs when the user clicks the button on the underlying panel.

 OnDrawButton (see page 27) Occurs when a particular button on the panel needs to be drawn.

 OnGetButtonHint (see page 28) Occurs before hint window will be displayed.

TCustomBtnPanel Methods

TCustomBtnPanel Methods Description

 ButtonAtPos (see page 22) Returns the index of the button indicated by the coordinates of a point on the
panel.

 ButtonClick (see page 22) Generates an OnButtonClick (see page 27) event.

 ButtonRect (see page 22) Indicates the rectangle occupied by the particular button.

 CanAutoSize (see page 23) Specifies whether the TCustomBtnPanel sizes itself automatically to
accommodate its contents.

 Create (see page 23) Creates and initializes a TCustomBtnPanel instance.

 Destroy (see page 23) Destroys an instance of TCustomBtnPanel.

 DrawButton (see page 23) Generates an OnDrawButton (see page 27) event.

 GetButtonHint (see page 24) Returns hint text for the particular button.

 InvalidateButtons (see page 24) Repaints just pushed and released buttons.

 Loaded (see page 24) Finally initializes the TCustomBtnPanel after it is loaded from a stream.

 MouseDown (see page 24) Calls ButtonClick (see page 22) method.

 Paint (see page 24) Renders the image of a TCustomBtnPanel.

TCustomBtnPanel Properties

TCustomBtnPanel Properties Description

 AutoSize (see page 25) Specifies whether the TCustomBtnPanel sizes itself automatically to
accommodate its contents. This is inherited property from TControl.

 ButtonCount (see page 25) Indicates the number of buttons in the array.

 ButtonHeight (see page 25) Specifies the height of the buttons in array.

1.9 ecBtnPanel Namespace EControl Form Designer Pro Classes

21

1

 ButtonWidth (see page 25) Specifies the width of the buttons in array.

 Caption (see page 25) Specifies a text string that identifies the control to the user. This is inherited
property from TControl.

 DownButton (see page 26) Specifies index of pressed button.

 Flat (see page 26) Dictates whether the button should have a 2D look instead of the usual 3D
look.

 HintProps (see page 26) Provide properties to adjust hints processing.

 Margins (see page 26) Specifies positioning of button array

 Orientation (see page 26) Specifies whether the panel's array of button is horizontal or vertical.

 RowCount (see page 27) Indicates the number of button rows in the panel.

 Transparent (see page 27) Specifies whether the background of the button is transparent.

1.9.1.2.1 TCustomBtnPanel Methods

1.9.1.2.1.1 TCustomBtnPanel.ButtonAtPos Method

Returns the index of the button indicated by the coordinates of a point on the panel.

function ButtonAtPos(Pos: TPoint): integer;

Description

Use ButtonAtPos to detect if a button exists at a particular point in the underlying panel.

The Pos parameter is the point in the panel in window coordinates.

If Pos is out of buttons coordinates, ButtonAtPos returns -1, otherwise it returns absolute index of underlying button.

ButtonAtPos is used internally for TCustomBtnPanel (see page 20) purposes, i.e. in TCustomBtnPanel.MouseDown (
see page 24) and TCustomBtnPanel.WMMouseMove procedures to determine particular button for subsequent operations.

1.9.1.2.1.2 TCustomBtnPanel.ButtonClick Method

Generates an OnButtonClick (see page 27) event.

procedure ButtonClick(AButton: integer; Shift: TShiftState); virtual ;

Description

ButtonClick is called automatically when user presses mouse button with the mouse pointer over the particular button. Then
it generates an OnButtonClick (see page 27) event.

The AButton parameter indicates index of corresponding button.

The Shift parameter indicates which shift keys (Shift, Ctrl, or Alt) were down when the user pressed the mouse button.

Override this method to add class-specific processing when the button clicks.

Example

See (see page 10) how descendant of TCustomBtnPanel (see page 20) overrides this method to assign current class
type in DsnManager

1.9.1.2.1.3 TCustomBtnPanel.ButtonRect Method

Indicates the rectangle occupied by the particular button.

function ButtonRect(idx: integer): TRect;

1.9 ecBtnPanel Namespace EControl Form Designer Pro Classes

22

1

Description

Used internally to determine rectangle occupied by the particular button.

1.9.1.2.1.4 TCustomBtnPanel.CanAutoSize Method

Specifies whether the TCustomBtnPanel (see page 20) sizes itself automatically to accommodate its contents.

function CanAutoSize(var NewWidth: Integer; var NewHeight: Integer): Boolean; override ;

Description

Specifies whether the TCustomBtnPanel (see page 20) sizes itself automatically to accommodate its contents. This is
setter for the AutoSize (see page 25) property.

CanAutoSize is called automatically when the AutoSize (see page 25) property is true and an attempt is made to resize
the control.

It resize control depending on RowCount (see page 27), ButtonCount (see page 25) and Orientation (see page 26)
properties.

Method always returns True and the NewWidth and NewHeight parameters indicate the proposed new dimensions of the
control.

1.9.1.2.1.5 TCustomBtnPanel.Create Constructor

Creates and initializes a TCustomBtnPanel instance.

constructor Create(AOwner: TComponent); override ;

Description

Use Create to programmatically instantiate a TCustomBtnPanel component. Components added in the form designer are
created automatically.

AOwner is the component that is responsible for freeing the component instance. It becomes the value of the Owner
property.

1.9.1.2.1.6 TCustomBtnPanel.Destroy Destructor

Destroys an instance of TCustomBtnPanel.

destructor Destroy; override ;

Description

Do not call Destroy directly. Call Free instead. Free verifies that the object reference is not nil before calling Destroy.

1.9.1.2.1.7 TCustomBtnPanel.DrawButton Method

Generates an OnDrawButton (see page 27) event.

procedure DrawButton(var Rect: TRect; Index : Integer); virtual ;

Description

Simply generates an OnDrawButton (see page 27) event after rendering this button in TCustomBtnPanel.Paint (see
page 24).

The Rect parameter indicates the location of the button on the canvas.

The Index parameter indicates index of corresponding button.

1.9 ecBtnPanel Namespace EControl Form Designer Pro Classes

23

1

1.9.1.2.1.8 TCustomBtnPanel.GetButtonHint Method

Returns hint text for the particular button.

function GetButtonHint(Index : Integer): WideString; virtual ;

Description

Returns hint text for the particular button.

The Index parameter indicates index of corresponding button.

1.9.1.2.1.9 TCustomBtnPanel.InvalidateButtons Method

Repaints just pushed and released buttons.

procedure InvalidateButtons(b1: integer; b2: integer);

Description

Completely repaints just pushed and released buttons.

Used internally immediately after setting new button down.

First parameter indicates released, second one - pushed button.

1.9.1.2.1.10 TCustomBtnPanel.Loaded Method

Finally initializes the TCustomBtnPanel (see page 20) after it is loaded from a stream.

procedure Loaded; override ;

1.9.1.2.1.11 TCustomBtnPanel.MouseDown Method

Calls ButtonClick (see page 22) method.

procedure MouseDown(Button: TMouseButton; Shift: TShiftState; X: Integer; Y: Integer);
override ;

Description

Determines button at cursor and calls ButtonClick (see page 22) method.

The Button parameter determines which mouse button the user pressed.

Shift indicates which shift keys (Shift, Ctrl, or Alt) were down when the user pressed the mouse button.

X and Y are the pixel coordinates of the mouse pointer within the client area of the TCustomBtnPanel (see page 20).

1.9.1.2.1.12 TCustomBtnPanel.Paint Method

Renders the image of a TCustomBtnPanel (see page 20).

procedure Paint; override ;

Description

Renders the whole image of a TCustomBtnPanel (see page 20) including buttons, images and so on.

1.9.1.2.2 TCustomBtnPanel Properties

1.9 ecBtnPanel Namespace EControl Form Designer Pro Classes

24

1

1.9.1.2.2.1 TCustomBtnPanel.AutoSize Property

Specifies whether the TCustomBtnPanel (see page 20) sizes itself automatically to accommodate its contents. This is
inherited property from TControl.

property AutoSize;

Description

Use AutoSize to specify whether the TCustomBtnPanel (see page 20) sizes itself automatically. When AutoSize is True,
the TCustomBtnPanel (see page 20) resizes automatically to arrange all the buttons in array.

By default, AutoSize is True.

1.9.1.2.2.2 TCustomBtnPanel.ButtonCount Property

Indicates the number of buttons in the array.

property ButtonCount: integer;

Description

ButtonCount gives the number of buttons in the array. Set this property to change count of buttons.

Notes

Trying to set ButtonCount to negative number is ignored.

1.9.1.2.2.3 TCustomBtnPanel.ButtonHeight Property

Specifies the height of the buttons in array.

property ButtonHeight: integer;

Description

ButtonHeight represents the height, in pixels, of the buttons on the panel.

Setting this property to value less then 2 pixels throws an Exception.

By default, ButtonHeight is 25.

1.9.1.2.2.4 TCustomBtnPanel.ButtonWidth Property

Specifies the width of the buttons in array.

property ButtonWidth: integer;

Description

ButtonWidth represents the width, in pixels, of the buttons on the panel.

Setting this property to value less then 2 pixels throws an Exception.

By default, ButtonWidth is 25.

1.9.1.2.2.5 TCustomBtnPanel.Caption Property

Specifies a text string that identifies the control to the user. This is inherited property from TControl.

property Caption;

1.9 ecBtnPanel Namespace EControl Form Designer Pro Classes

25

1

Description

Use Caption to specify the text string that labels the control.

By default, Caption is empty.

1.9.1.2.2.6 TCustomBtnPanel.DownButton Property

Specifies index of pressed button.

property DownButton: integer;

Description

Specifies index of the button which is in selected state where 0 is the first button, 1 is the second and so on;

Set this property to change selected button in the array.

By default, DownButton is -1;

1.9.1.2.2.7 TCustomBtnPanel.Flat Property

Dictates whether the button should have a 2D look instead of the usual 3D look.

property Flat: Boolean;

Description

Set Flat to True if you want the button to display the button without the edge bevel that gives buttons a 3D look.

By default, Flat is True.

1.9.1.2.2.8 TCustomBtnPanel.HintProps Property

Provide properties to adjust hints processing.

property HintProps: TecHintHelper ;

1.9.1.2.2.9 TCustomBtnPanel.Margins Property

Specifies positioning of button array

property Margins: TBtnMargins ;

Description

Margins specifies the Left, Top, Right and Bottom margins between buttons and underlaying panel as well as horizontal and
vertical spaces between buttons themselves.

Example

This example (see page 10) demonstrates how to set Margins property at run-time

1.9.1.2.2.10 TCustomBtnPanel.Orientation Property

Specifies whether the panel's array of button is horizontal or vertical.

property Orientation: TRowOrientation ;

Description

Use Orientation to specify whether the the panel's array of button is horizontal or vertical.

1.9 ecBtnPanel Namespace EControl Form Designer Pro Classes

26

1

By default, Orientation is roHorizontal.

1.9.1.2.2.11 TCustomBtnPanel.RowCount Property

Indicates the number of button rows in the panel.

property RowCount: integer;

Description

Read RowCount to determine the number of rows in the button's array are placed.

Set RowCount to add or delete rows to rearrange buttons.

By default, RowCount is 1.

1.9.1.2.2.12 TCustomBtnPanel.Transparent Property

Specifies whether the background of the button is transparent.

property Transparent: Boolean;

Description

Use Transparent to specify whether the background of the button is transparent.

1.9.1.2.3 TCustomBtnPanel Events

1.9.1.2.3.1 TCustomBtnPanel.OnButtonClick Event

Occurs when the user clicks the button on the underlying panel.

property OnButtonClick: TButtonClickEvent ;

Description

Use the OnButtonClick event handler to respond when the user clicks the button on the TCustomBtnPanel (see page 20).

OnButtonClick occurs when the user presses mouse button with the mouse pointer over the corresponding rectangle of the
underlying TCustomBtnPanel (see page 20).

The Sender parameter is the object whose event handler is called.

The Index parameter indicates index of pressed button.

1.9.1.2.3.2 TCustomBtnPanel.OnDrawButton Event

Occurs when a particular button on the panel needs to be drawn.

property OnDrawButton: TDrawButtonEvent ;

Description

Write an OnDrawButtonl event handler to draw the particular button.

The Sender parameter is the object whose event handler is called.

The Rect parameter indicates the location of the button on the canvas.

The Index parameter indicates index of corresponding button button.

1.9 ecBtnPanel Namespace EControl Form Designer Pro Classes

27

1

1.9.1.2.3.3 TCustomBtnPanel.OnGetButtonHint Event

Occurs before hint window will be displayed.

property OnGetButtonHint: TGetButtonHintEvent ;

Description

Use this event to specify hint text for particular button.

The Sender parameter is the object whose event handler is called.

The Index parameter indicates index of corresponding button button.

The AHint parameter used to assign Hint to be displayed for particular button.

1.9.1.3 TBtnPanel Class
Control with multiple buttons.

Class Hierarchy

TBtnPanel = class (TCustomBtnPanel);

File

ecBtnPanel

Description

Buttons are not controls. This class was created to optimize rendering of big buttons array, for example, in component
palette.

Members

TCustomBtnPanel Methods

TCustomBtnPanel Methods Description

 ButtonAtPos (see page 22) Returns the index of the button indicated by the coordinates of a point on the
panel.

 ButtonClick (see page 22) Generates an OnButtonClick (see page 27) event.

 ButtonRect (see page 22) Indicates the rectangle occupied by the particular button.

 CanAutoSize (see page 23) Specifies whether the TCustomBtnPanel (see page 20) sizes itself
automatically to accommodate its contents.

 Create (see page 23) Creates and initializes a TCustomBtnPanel instance.

 Destroy (see page 23) Destroys an instance of TCustomBtnPanel.

 DrawButton (see page 23) Generates an OnDrawButton (see page 27) event.

 GetButtonHint (see page 24) Returns hint text for the particular button.

 InvalidateButtons (see page 24) Repaints just pushed and released buttons.

 Loaded (see page 24) Finally initializes the TCustomBtnPanel (see page 20) after it is loaded from
a stream.

 MouseDown (see page 24) Calls ButtonClick (see page 22) method.

 Paint (see page 24) Renders the image of a TCustomBtnPanel (see page 20).

TCustomBtnPanel Properties

TCustomBtnPanel Properties Description

 AutoSize (see page 25) Specifies whether the TCustomBtnPanel (see page 20) sizes itself
automatically to accommodate its contents. This is inherited property from
TControl.

 ButtonCount (see page 25) Indicates the number of buttons in the array.

 ButtonHeight (see page 25) Specifies the height of the buttons in array.

 ButtonWidth (see page 25) Specifies the width of the buttons in array.

1.9 ecBtnPanel Namespace EControl Form Designer Pro Classes

28

1

 Caption (see page 25) Specifies a text string that identifies the control to the user. This is inherited
property from TControl.

 DownButton (see page 26) Specifies index of pressed button.

 Flat (see page 26) Dictates whether the button should have a 2D look instead of the usual 3D
look.

 HintProps (see page 26) Provide properties to adjust hints processing.

 Margins (see page 26) Specifies positioning of button array

 Orientation (see page 26) Specifies whether the panel's array of button is horizontal or vertical.

 RowCount (see page 27) Indicates the number of button rows in the panel.

 Transparent (see page 27) Specifies whether the background of the button is transparent.

TBtnPanel Class

TBtnPanel Class Description

 Align (see page 32) Determines how the control aligns within its container (parent control).

 Anchors (see page 33) Specifies how the control is anchored to its parent.

 AutoSize (see page 33) Specifies whether the TCustomBtnPanel sizes itself automatically to
accommodate its contents. This is inherited property from TControl.

 BevelInner (see page 33) Specifies the cut of the inner bevel.

 BevelOuter (see page 33) Specifies the cut of the outer bevel.

 BevelWidth (see page 34) Determines the width, in pixels, of both the inner and outer bevels of a panel.

 BiDiMode (see page 34) Specifies the bi-directional mode for the control.

 BorderStyle (see page 34) Determines the style of the line drawn around the perimeter of the panel
control.

 BorderWidth (see page 34) Specifies the distance, in pixels, between the outer and inner bevels.

 ButtonCount (see page 35) Indicates the number of buttons in the array.

 ButtonHeight (see page 35) Specifies the height of the buttons in array.

 ButtonWidth (see page 35) Specifies the width of the buttons in array.

 Color (see page 35) Specifies the background color of the control.

 Constraints (see page 36) Specifies the size constraints for the control.

 Ctl3D (see page 36) Determines whether a control has a three-dimensional (3-D) or
two-dimensional look.

 DownButton (see page 36) Specifies index of pressed button.

 DragCursor (see page 36) Indicates the image used to represent the mouse pointer when the control is
being dragged.

 DragKind (see page 36) Specifies whether the control is being dragged normally or for docking.

 DragMode (see page 37) Determines how the control initiates drag-and-drop or drag-and-dock
operations.

 Enabled (see page 37) Controls whether the control responds to mouse, keyboard, and timer events.

 Flat (see page 37) Dictates whether the button should have a 2D look instead of the usual 3D
look.

 Font (see page 37) Controls the attributes of text written on or in the control.

 HintProps (see page 37) Provide properties to adjust hints processing.

 Margins (see page 37) Specifies positioning of button array

 OnButtonClick (see page 38) Occurs when the user clicks the button on the underlying panel.

 OnCanResize (see page 38) Occurs when an attempt is made to resize the control.

 OnClick (see page 38) Occurs when the user clicks the control.

 OnConstrainedResize (see page 38) Adjust resize constraints.

 OnContextPopup (see page 39) Occurs when the user right-clicks the control or otherwise invokes the popup
menu (such as using the keyboard).

 OnDblClick (see page 39) Occurs when the user double-clicks the left mouse button when the mouse
pointer is over the control.

 OnDragDrop (see page 39) Occurs when the user drops an object being dragged.

 OnDragOver (see page 39) Occurs when the user drags an object over a control.

 OnDrawButton (see page 40) Occurs when a particular button on the panel needs to be drawn.

 OnEndDrag (see page 40) Occurs when the dragging of an object ends, either by dropping the object or
by canceling the dragging.

 OnEnter (see page 40) Occurs when a control receives the input focus.

 OnExit (see page 40) Occurs when the input focus shifts away from one control to another.

 OnGetButtonHint (see page 41) Occurs before hint window will be displayed.

 OnMouseDown (see page 41) Occurs when the user presses a mouse button with the mouse pointer over a
control.

 OnMouseMove (see page 41) Occurs when the user moves the mouse pointer while the mouse pointer is
over a control.

1.9 ecBtnPanel Namespace EControl Form Designer Pro Classes

29

1

 OnMouseUp (see page 41) Occurs when the user releases a mouse button that was pressed with the
mouse pointer over a component.

 OnResize (see page 42) Occurs immediately after the control is resized.

 OnStartDrag (see page 42) Occurs when the user begins to drag the control or an object it contains by
left-clicking on the control and holding the mouse button down.

 Orientation (see page 42) Specifies whether the panel's array of button is horizontal or vertical.

 ParentBiDiMode (see page 42) Specifies whether the control uses its parent’s BiDiMode.

 ParentColor (see page 42) Determines where a control looks for its color information.

 ParentCtl3D (see page 43) Determines where a component looks to determine if it should appear three
dimensional.

 ParentFont (see page 43) Determines where a control looks for its font information.

 ParentShowHint (see page 43) Determines where a control looks to find out if its Help Hint should be shown.

 PopupMenu (see page 43) Identifies the pop-up menu associated with the control.

 RowCount (see page 43) Indicates the number of button rows in the panel.

 ShowHint (see page 43) Determines whether the control displays a Help Hint when the mouse pointer
rests momentarily on the control.

 TabOrder (see page 43) Indicates the position of the control in its parent's tab order.

 TabStop (see page 43) Determines if the user can tab to a control.

 Transparent (see page 44) Specifies whether the background of the button is transparent.

 Visible (see page 44) Determines whether the component appears on screen.

TCustomBtnPanel Events

TCustomBtnPanel Events Description

 OnButtonClick (see page 27) Occurs when the user clicks the button on the underlying panel.

 OnDrawButton (see page 27) Occurs when a particular button on the panel needs to be drawn.

 OnGetButtonHint (see page 28) Occurs before hint window will be displayed.

Legend

Method

protected

virtual

Property

Event

TCustomBtnPanel Events

TCustomBtnPanel Events Description

 OnButtonClick (see page 27) Occurs when the user clicks the button on the underlying panel.

 OnDrawButton (see page 27) Occurs when a particular button on the panel needs to be drawn.

 OnGetButtonHint (see page 28) Occurs before hint window will be displayed.

TCustomBtnPanel Methods

TCustomBtnPanel Methods Description

 ButtonAtPos (see page 22) Returns the index of the button indicated by the coordinates of a point on the
panel.

 ButtonClick (see page 22) Generates an OnButtonClick (see page 27) event.

 ButtonRect (see page 22) Indicates the rectangle occupied by the particular button.

 CanAutoSize (see page 23) Specifies whether the TCustomBtnPanel (see page 20) sizes itself
automatically to accommodate its contents.

 Create (see page 23) Creates and initializes a TCustomBtnPanel instance.

 Destroy (see page 23) Destroys an instance of TCustomBtnPanel.

 DrawButton (see page 23) Generates an OnDrawButton (see page 27) event.

 GetButtonHint (see page 24) Returns hint text for the particular button.

 InvalidateButtons (see page 24) Repaints just pushed and released buttons.

 Loaded (see page 24) Finally initializes the TCustomBtnPanel (see page 20) after it is loaded from
a stream.

 MouseDown (see page 24) Calls ButtonClick (see page 22) method.

 Paint (see page 24) Renders the image of a TCustomBtnPanel (see page 20).

1.9 ecBtnPanel Namespace EControl Form Designer Pro Classes

30

1

TCustomBtnPanel Properties

TCustomBtnPanel Properties Description

 AutoSize (see page 25) Specifies whether the TCustomBtnPanel (see page 20) sizes itself
automatically to accommodate its contents. This is inherited property from
TControl.

 ButtonCount (see page 25) Indicates the number of buttons in the array.

 ButtonHeight (see page 25) Specifies the height of the buttons in array.

 ButtonWidth (see page 25) Specifies the width of the buttons in array.

 Caption (see page 25) Specifies a text string that identifies the control to the user. This is inherited
property from TControl.

 DownButton (see page 26) Specifies index of pressed button.

 Flat (see page 26) Dictates whether the button should have a 2D look instead of the usual 3D
look.

 HintProps (see page 26) Provide properties to adjust hints processing.

 Margins (see page 26) Specifies positioning of button array

 Orientation (see page 26) Specifies whether the panel's array of button is horizontal or vertical.

 RowCount (see page 27) Indicates the number of button rows in the panel.

 Transparent (see page 27) Specifies whether the background of the button is transparent.

TBtnPanel Class

TBtnPanel Class Description

 Align (see page 32) Determines how the control aligns within its container (parent control).

 Anchors (see page 33) Specifies how the control is anchored to its parent.

 AutoSize (see page 33) Specifies whether the TCustomBtnPanel sizes itself automatically to
accommodate its contents. This is inherited property from TControl.

 BevelInner (see page 33) Specifies the cut of the inner bevel.

 BevelOuter (see page 33) Specifies the cut of the outer bevel.

 BevelWidth (see page 34) Determines the width, in pixels, of both the inner and outer bevels of a panel.

 BiDiMode (see page 34) Specifies the bi-directional mode for the control.

 BorderStyle (see page 34) Determines the style of the line drawn around the perimeter of the panel
control.

 BorderWidth (see page 34) Specifies the distance, in pixels, between the outer and inner bevels.

 ButtonCount (see page 35) Indicates the number of buttons in the array.

 ButtonHeight (see page 35) Specifies the height of the buttons in array.

 ButtonWidth (see page 35) Specifies the width of the buttons in array.

 Color (see page 35) Specifies the background color of the control.

 Constraints (see page 36) Specifies the size constraints for the control.

 Ctl3D (see page 36) Determines whether a control has a three-dimensional (3-D) or
two-dimensional look.

 DownButton (see page 36) Specifies index of pressed button.

 DragCursor (see page 36) Indicates the image used to represent the mouse pointer when the control is
being dragged.

 DragKind (see page 36) Specifies whether the control is being dragged normally or for docking.

 DragMode (see page 37) Determines how the control initiates drag-and-drop or drag-and-dock
operations.

 Enabled (see page 37) Controls whether the control responds to mouse, keyboard, and timer events.

 Flat (see page 37) Dictates whether the button should have a 2D look instead of the usual 3D
look.

 Font (see page 37) Controls the attributes of text written on or in the control.

 HintProps (see page 37) Provide properties to adjust hints processing.

 Margins (see page 37) Specifies positioning of button array

 OnButtonClick (see page 38) Occurs when the user clicks the button on the underlying panel.

 OnCanResize (see page 38) Occurs when an attempt is made to resize the control.

 OnClick (see page 38) Occurs when the user clicks the control.

 OnConstrainedResize (see page 38) Adjust resize constraints.

 OnContextPopup (see page 39) Occurs when the user right-clicks the control or otherwise invokes the popup
menu (such as using the keyboard).

 OnDblClick (see page 39) Occurs when the user double-clicks the left mouse button when the mouse
pointer is over the control.

 OnDragDrop (see page 39) Occurs when the user drops an object being dragged.

 OnDragOver (see page 39) Occurs when the user drags an object over a control.

 OnDrawButton (see page 40) Occurs when a particular button on the panel needs to be drawn.

1.9 ecBtnPanel Namespace EControl Form Designer Pro Classes

31

1

 OnEndDrag (see page 40) Occurs when the dragging of an object ends, either by dropping the object or
by canceling the dragging.

 OnEnter (see page 40) Occurs when a control receives the input focus.

 OnExit (see page 40) Occurs when the input focus shifts away from one control to another.

 OnGetButtonHint (see page 41) Occurs before hint window will be displayed.

 OnMouseDown (see page 41) Occurs when the user presses a mouse button with the mouse pointer over a
control.

 OnMouseMove (see page 41) Occurs when the user moves the mouse pointer while the mouse pointer is
over a control.

 OnMouseUp (see page 41) Occurs when the user releases a mouse button that was pressed with the
mouse pointer over a component.

 OnResize (see page 42) Occurs immediately after the control is resized.

 OnStartDrag (see page 42) Occurs when the user begins to drag the control or an object it contains by
left-clicking on the control and holding the mouse button down.

 Orientation (see page 42) Specifies whether the panel's array of button is horizontal or vertical.

 ParentBiDiMode (see page 42) Specifies whether the control uses its parent’s BiDiMode.

 ParentColor (see page 42) Determines where a control looks for its color information.

 ParentCtl3D (see page 43) Determines where a component looks to determine if it should appear three
dimensional.

 ParentFont (see page 43) Determines where a control looks for its font information.

 ParentShowHint (see page 43) Determines where a control looks to find out if its Help Hint should be shown.

 PopupMenu (see page 43) Identifies the pop-up menu associated with the control.

 RowCount (see page 43) Indicates the number of button rows in the panel.

 ShowHint (see page 43) Determines whether the control displays a Help Hint when the mouse pointer
rests momentarily on the control.

 TabOrder (see page 43) Indicates the position of the control in its parent's tab order.

 TabStop (see page 43) Determines if the user can tab to a control.

 Transparent (see page 44) Specifies whether the background of the button is transparent.

 Visible (see page 44) Determines whether the component appears on screen.

1.9.1.3.1 TBtnPanel Properties

1.9.1.3.1.1 TBtnPanel.Align Property

Determines how the control aligns within its container (parent control).

property Align;

Description

Use Align to align a control to the top, bottom, left, or right of a form or panel and have it remain there even if the size of the
form, panel, or component that contains the control changes. When the parent is resized, an aligned control also resizes so
that it continues to span the top, bottom, left, or right edge of the parent.

For example, to use a panel component with various controls on it as a tool palette, change the panel’s Align value to alLeft.
The value of alLeft for the Align property of the panel guarantees that the tool palette remains on the left side of the form and
always equals the client height of the form.

The default value of Align is alNone, which means a control remains where it is positioned on a form or panel.

Tip: If Align is set to alClient, the control fills the entire client area so that it is impossible to select the parent form by clicking
on it. In this case, select the parent by selecting the control on the form and pressing Esc, or by using the Object Inspector.

Any number of child components within a single parent can have the same Align value, in which case they stack up along
the edge of the parent. The child controls stack up in z-order. To adjust the order in which the controls stack up, drag the
controls into their desired positions.

1.9 ecBtnPanel Namespace EControl Form Designer Pro Classes

32

1

Note: To cause a control to maintain a specified relationship with an edge of its parent, but not necessarily lie along one
edge of the parent, use the Anchors property instead.

1.9.1.3.1.2 TBtnPanel.Anchors Property

Specifies how the control is anchored to its parent.

property Anchors;

Description

Use Anchors to ensure that a control maintains its current position relative to an edge of its parent, even if the parent is
resized. When its parent is resized, the control holds its position relative to the edges to which it is anchored.

If a control is anchored to opposite edges of its parent, the control stretches when its parent is resized. For example, if a
control has its Anchors property set to [akLeft, akRight], the control stretches when the width of its parent changes.

Anchors is enforced only when the parent is resized. Thus, for example, if a control is anchored to opposite edges of a form
at design time and the form is created in a maximized state, the control is not stretched because the form is not resized after
the control is created.

Note: If a control should maintain contact with three edges of its parent (hugging one side of the parent and stretching the
length of that side), use the Align property instead. Unlike Anchors, Align allows controls to adjust to changes in the size of
other aligned sibling controls as well as changes to the parent’s size.

1.9.1.3.1.3 TBtnPanel.AutoSize Property

Specifies whether the TCustomBtnPanel sizes itself automatically to accommodate its contents. This is inherited property
from TControl.

property AutoSize;

Description

Use AutoSize to specify whether the TCustomBtnPanel sizes itself automatically. When AutoSize is True, the
TCustomBtnPanel resizes automatically to arrange all the buttons in array.

By default, AutoSize is True.

1.9.1.3.1.4 TBtnPanel.BevelInner Property

Specifies the cut of the inner bevel.

property BevelInner;

Description

Use BevelInner to specify whether the inner bevel has a raised, lowered, or flat look.

The inner bevel appears immediately inside the outer bevel. If there is no outer bevel (BevelOuter is bvNone), the inner
bevel appears immediately inside the border.

1.9.1.3.1.5 TBtnPanel.BevelOuter Property

Specifies the cut of the outer bevel.

property BevelOuter;

1.9 ecBtnPanel Namespace EControl Form Designer Pro Classes

33

1

Description

Use BevelInner to specify whether the outer bevel has a raised, lowered, or flat look.

The outer bevel appears immediately inside the border and outside the inner bevel.

1.9.1.3.1.6 TBtnPanel.BevelWidth Property

Determines the width, in pixels, of both the inner and outer bevels of a panel.

property BevelWidth;

Description

Use BevelWidth to specify how wide the inner or outer bevel should be. Do not confuse BevelWidth, which is the width of the
bevels, with BorderWidth, which is the space between the bevels.

If both the BevelInner and BevelOuter properties are bvNone, BevelWidth has no effect. To remove both bevels, set the
BevelInner and BevelOuter properties to bvNone, rather than setting the BevelWidth to 0, as this involves less overhead
when painting.

1.9.1.3.1.7 TBtnPanel.BiDiMode Property

Specifies the bi-directional mode for the control.

property BiDiMode;

Description

Use BiDiMode to enable the control to adjust its appearance and behavior automatically when the application runs in a
locale that reads from right to left instead of left to right. The bi-directional mode controls the reading order for the text, the
placement of the vertical scroll bar, and whether the alignment is changed.

Alignment does not change for controls that are known to contain number, date, time, or currency values. For example, with
data aware controls, the alignment does not change for the following field types: ftSmallint, ftInteger, ftWord, ftFloat,
ftCurrency, ftBCD, ftDate, ftTime, ftDateTime, ftAutoInc.

1.9.1.3.1.8 TBtnPanel.BorderStyle Property

Determines the style of the line drawn around the perimeter of the panel control.

property BorderStyle;

Description

Use BorderStyle to specify whether the panel has a single line drawn around it. These are the possible values:

Value Meaning

bsNone No visible border

bsSingle Single-line border

Do not confuse the line drawn around the panel with the BorderWidth of the panel. The BorderWidth of the panel is the
distance between the outer and inner bevels.

1.9.1.3.1.9 TBtnPanel.BorderWidth Property

Specifies the distance, in pixels, between the outer and inner bevels.

property BorderWidth;

1.9 ecBtnPanel Namespace EControl Form Designer Pro Classes

34

1

Description

Use BorderWidth to specify how wide the border around the panel should be. A value of 0 (zero) means no border should
appear.

The border of a panel is the area between the outer and inner bevels. It is visible only if the inner bevel is raised or lowered,
but affects the inset of the caption within the panel even if BevelInner is bvNone. If the Alignment property is not taCenter,
the Caption will be aligned to the inner edge of the border. This edge is BorderWidth pixels in from the outer bevel if
BevelInner is bvNone. It is the inner edge of the inner bevel otherwise.

Do not confuse the border of the panel with line drawn around the panel itself. The line around the panel is specified by the
BorderStyle property.

1.9.1.3.1.10 TBtnPanel.ButtonCount Property

Indicates the number of buttons in the array.

property ButtonCount: integer;

Description

ButtonCount gives the number of buttons in the array. Set this property to change count of buttons.

Notes

Trying to set ButtonCount to negative number is ignored.

1.9.1.3.1.11 TBtnPanel.ButtonHeight Property

Specifies the height of the buttons in array.

property ButtonHeight: integer;

Description

ButtonHeight represents the height, in pixels, of the buttons on the panel.

Setting this property to value less then 2 pixels throws an Exception.

By default, ButtonHeight is 25.

1.9.1.3.1.12 TBtnPanel.ButtonWidth Property

Specifies the width of the buttons in array.

property ButtonWidth: integer;

Description

ButtonWidth represents the width, in pixels, of the buttons on the panel.

Setting this property to value less then 2 pixels throws an Exception.

By default, ButtonWidth is 25.

1.9.1.3.1.13 TBtnPanel.Color Property

Specifies the background color of the control.

property Color;

1.9 ecBtnPanel Namespace EControl Form Designer Pro Classes

35

1

Description

Use Color to read or change the background color of the control.

If a control's ParentColor property is true, then changing the Color property of the control's parent automatically changes the
Color property of the control. When the value of the Color property is changed, the control's ParentColor property is
automatically set to false.

1.9.1.3.1.14 TBtnPanel.Constraints Property

Specifies the size constraints for the control.

property Constraints;

Description

Use Constraints to specify the minimum and maximum width and height of the control. When Constraints contains maximum
or minimum values, the control cannot be resized to violate those constraints.

Warning: Do not set up constraints that conflict with the value of the Align or Anchors property. When these properties
conflict, the response of the control to resize attempts is not well-defined.

1.9.1.3.1.15 TBtnPanel.Ctl3D Property

Determines whether a control has a three-dimensional (3-D) or two-dimensional look.

property Ctl3D;

Description

Ctl3D is provided for backward compatibility. It is not used by 32-bit versions of Windows or NT4.0 and later.

On earlier platforms, Ctl3D controlled whether the control had a flat or beveled appearance.

1.9.1.3.1.16 TBtnPanel.DownButton Property

Specifies index of pressed button.

property DownButton: integer;

Description

Specifies index of the button which is in selected state where 0 is the first button, 1 is the second and so on;

Set this property to change selected button in the array.

By default, DownButton is -1;

1.9.1.3.1.17 TBtnPanel.DragCursor Property

Indicates the image used to represent the mouse pointer when the control is being dragged.

property DragCursor;

Description

Use the DragCursor property to change the cursor image presented when the control is being dragged.

Note: To make a custom cursor available for the DragCursor property, see the Cursor property.

1.9.1.3.1.18 TBtnPanel.DragKind Property

Specifies whether the control is being dragged normally or for docking.

1.9 ecBtnPanel Namespace EControl Form Designer Pro Classes

36

1

property DragKind;

Description

Use DragKind to get or set whether the control participates in drag-and-drop operations, or drag-and-dock operations.

1.9.1.3.1.19 TBtnPanel.DragMode Property

Determines how the control initiates drag-and-drop or drag-and-dock operations.

property DragMode;

Description

Use DragMode to control when the user can drag the control. Disable the drag-and-drop or drag-and-dock capability at
runtime by setting the DragMode property value to dmManual. Enable automatic dragging by setting DragMode to
dmAutomatic.

1.9.1.3.1.20 TBtnPanel.Enabled Property

Controls whether the control responds to mouse, keyboard, and timer events.

property Enabled;

Description

Use Enabled to change the availability of the control to the user. To disable a control, set Enabled to false. Disabled controls
appear dimmed. If Enabled is false, the control ignores mouse, keyboard, and timer events.

To re-enable a control, set Enabled to true. The control is no longer dimmed, and the user can use the control.

1.9.1.3.1.21 TBtnPanel.Flat Property

Dictates whether the button should have a 2D look instead of the usual 3D look.

property Flat: Boolean;

Description

Set Flat to True if you want the button to display the button without the edge bevel that gives buttons a 3D look.

By default, Flat is True.

1.9.1.3.1.22 TBtnPanel.Font Property

Controls the attributes of text written on or in the control.

property Font;

Description

To change to a new font, specify a new TFont object. To modify a font, change the value of the Charset, Color, Height,
Name, Pitch, Size, or Style of the TFont object.

1.9.1.3.1.23 TBtnPanel.HintProps Property

Provide properties to adjust hints processing.

property HintProps: TecHintHelper ;

1.9.1.3.1.24 TBtnPanel.Margins Property

Specifies positioning of button array

property Margins: TBtnMargins ;

1.9 ecBtnPanel Namespace EControl Form Designer Pro Classes

37

1

Description

Margins specifies the Left, Top, Right and Bottom margins between buttons and underlaying panel as well as horizontal and
vertical spaces between buttons themselves.

Example

This example (see page 10) demonstrates how to set Margins property at run-time

1.9.1.3.1.25 TBtnPanel.OnButtonClick Property

Occurs when the user clicks the button on the underlying panel.

property OnButtonClick: TButtonClickEvent ;

Description

Use the OnButtonClick event handler to respond when the user clicks the button on the TCustomBtnPanel.

OnButtonClick occurs when the user presses mouse button with the mouse pointer over the corresponding rectangle of the
underlying TCustomBtnPanel.

The Sender parameter is the object whose event handler is called.

The Index parameter indicates index of pressed button.

1.9.1.3.1.26 TBtnPanel.OnCanResize Property

Occurs when an attempt is made to resize the control.

property OnCanResize;

Description

Use OnCanResize to adjust the way a control is resized. If necessary, change the new width and height of the control in the
OnCanResize event handler. The OnCanResize event handler also allows applications to indicate that the entire resize
should be aborted.

If there is no OnCanResize event handler, or if the OnCanResize event handler indicates that the resize attempt can
proceed, the OnCanResize event is followed immediately by an OnConstrainedResize event.

1.9.1.3.1.27 TBtnPanel.OnClick Property

Occurs when the user clicks the control.

property OnClick;

1.9.1.3.1.28 TBtnPanel.OnConstrainedResize Property

Adjust resize constraints.

property OnConstrainedResize;

Description

Use OnConstrainedResize to adjust a control’s constraints when an attempt is made to resize it. Upon entry to the
OnConstrainedResize event handler, the parameters of the event handler are set to the corresponding properties of the
control’s Constraints object. The event handler can adjust those values before they are applied to the new height and width
that is being applied to the control. (The CanAutoSize method or an OnCanResize event handler may already have adjusted
this new height and width).

1.9 ecBtnPanel Namespace EControl Form Designer Pro Classes

38

1

On exit from the OnConstrainedResize event handler, the constraints are applied to the attempted new height and width.
Once the constraints are applied, the control’s height and width are changed. After the control’s height and width change, an
OnResize event occurs to allow any final adjustments or responses.

Notes

The OnConstrainedResize handler is called immediately after the OnCanResize handler.

1.9.1.3.1.29 TBtnPanel.OnContextPopup Property

Occurs when the user right-clicks the control or otherwise invokes the popup menu (such as using the keyboard).

property OnContextPopup;

Description

The OnContextPopup handler is called when the user uses the mouse or keyboard to request a popup menu. The
OnContextPopup event is generated by a WM_CONTEXTMENU message, which is itself generated by the user clicking the
right mouse button or by pressing SHIFT+F10 or the Applications key.

This event is especially useful when the control does not have an associated popup menu (the PopupMenu property is not
set) or if the AutoPopup property of the control’s associated popup menu is false. However, the OnContextPopup can also
be used to override the automatic context menu that appears when the control has an associated popup menu with an
AutoPopup property of true. In this last case, if the event handler displays its own menu, it should set the Handled parameter
to true to suppress the default context menu.

The handler’s MousePos parameter indicates the position of the mouse, in client coordinates.. If the event was not
generated by a mouse click, MousePos is (-1,-1).

Note: Parent controls receive an OnContextPopup event before their child controls. In addition, for many child controls, the
default window procedure causes the parent control to receive an OnContextPopup event after the child control. As a result,
when parent controls do not set Handled to true in an OnContextPopup event handler, the event handler may be called
multiple times for each context menu invocation.

1.9.1.3.1.30 TBtnPanel.OnDblClick Property

Occurs when the user double-clicks the left mouse button when the mouse pointer is over the control.

property OnDblClick;

Description

Use the OnDblClick event to respond to mouse double-clicks.

1.9.1.3.1.31 TBtnPanel.OnDragDrop Property

Occurs when the user drops an object being dragged.

property OnDragDrop;

Description

Use the OnDragDrop event handler to specify what happens when the user drops an object. The Source parameter of the
OnDragDrop event is the object being dropped, and the Sender is the control the object is being dropped on. The X and Y
parameters are the coordinates of the mouse positioned over the control.

1.9.1.3.1.32 TBtnPanel.OnDragOver Property

Occurs when the user drags an object over a control.

1.9 ecBtnPanel Namespace EControl Form Designer Pro Classes

39

1

property OnDragOver;

Description

Use an OnDragOver event to signal that the control can accept a dragged object so the user can drop or dock it.

Within the OnDragOver event handler, change the Accept parameter to false to reject the dragged object. Leave Accept as
true to allow the user to drop or dock the dragged object on the control.

To change the shape of the cursor, indicating that the control can accept the dragged object, change the value of the
DragCursor property for the control before the OnDragOver event occurs.

The Source is the object being dragged, the Sender is the potential drop or dock site, and X and Y are screen coordinates in
pixels. The State parameter specifies how the dragged object is moving over the control.

Note: Within the OnDragOver event handler, the Accept parameter defaults to true. However, if an OnDragOver event
handler is not supplied, the control rejects the dragged object, as if the Accept parameter were changed to false.

1.9.1.3.1.33 TBtnPanel.OnDrawButton Property

Occurs when a particular button on the panel needs to be drawn.

property OnDrawButton: TDrawButtonEvent ;

Description

Write an OnDrawButtonl event handler to draw the particular button.

The Sender parameter is the object whose event handler is called.

The Rect parameter indicates the location of the button on the canvas.

The Index parameter indicates index of corresponding button button.

1.9.1.3.1.34 TBtnPanel.OnEndDrag Property

Occurs when the dragging of an object ends, either by dropping the object or by canceling the dragging.

property OnEndDrag;

Description

Use the OnEndDrag event handler to specify any special processing that occurs when dragging stops.

1.9.1.3.1.35 TBtnPanel.OnEnter Property

Occurs when a control receives the input focus.

property OnEnter;

Description

Use the OnEnter event handler to cause any special processing to occur when a control becomes active.

The OnEnter event does not occur when switching between forms or between another application and the application that
includes the control.

1.9.1.3.1.36 TBtnPanel.OnExit Property

Occurs when the input focus shifts away from one control to another.

1.9 ecBtnPanel Namespace EControl Form Designer Pro Classes

40

1

property OnExit;

Description

Use the OnExit event handler to provide special processing when the control ceases to be active.

The OnExit event does not occur when switching between forms or between another application and your application.

1.9.1.3.1.37 TBtnPanel.OnGetButtonHint Property

Occurs before hint window will be displayed.

property OnGetButtonHint: TGetButtonHintEvent ;

Description

Use this event to specify hint text for particular button.

The Sender parameter is the object whose event handler is called.

The Index parameter indicates index of corresponding button button.

The AHint parameter used to assign Hint to be displayed for particular button.

1.9.1.3.1.38 TBtnPanel.OnMouseDown Property

Occurs when the user presses a mouse button with the mouse pointer over a control.

property OnMouseDown;

Description

Use the OnMouseDown event handler to implement any special processing that should occur as a result of pressing a
mouse button.

The OnMouseDown event handler can respond to left, right, or center mouse button presses and shift key plus
mouse-button combinations. Shift keys are the Shift, Ctrl, and Alt keys. X and Y are the pixel coordinates of the mouse
pointer in the client area of the Sender.

1.9.1.3.1.39 TBtnPanel.OnMouseMove Property

Occurs when the user moves the mouse pointer while the mouse pointer is over a control.

property OnMouseMove;

Description

Use the OnMouseMove event handler to respond when the mouse pointer moves after the control has captured the mouse.

Use the Shift parameter of the OnMouseDown event handler, to determine to the state of the shift keys and mouse buttons.
Shift keys are the Shift, Ctrl, and Alt keys or shift key-mouse button combinations. X and Y are pixel coordinates of the new
location of the mouse pointer in the client area of the Sender.

1.9.1.3.1.40 TBtnPanel.OnMouseUp Property

Occurs when the user releases a mouse button that was pressed with the mouse pointer over a component.

property OnMouseUp;

Description

Use an OnMouseUp event handler to implement special processing when the user releases a mouse button.

The OnMouseUp event handler can respond to left, right, or center mouse button presses and shift key plus mouse-button

1.9 ecBtnPanel Namespace EControl Form Designer Pro Classes

41

1

combinations. Shift keys are the Shift, Ctrl, and Alt keys. X and Y are the pixel coordinates of the mouse pointer in the client
area of the Sender.

1.9.1.3.1.41 TBtnPanel.OnResize Property

Occurs immediately after the control is resized.

property OnResize;

Description

Use OnResize to make any final adjustments after a control is resized.

To modify the way a control responds when an attempt is made to resize it, use OnCanResize or OnConstrainedResize.

1.9.1.3.1.42 TBtnPanel.OnStartDrag Property

Occurs when the user begins to drag the control or an object it contains by left-clicking on the control and holding the mouse
button down.

property OnStartDrag;

Description

Use the OnStartDrag event handler to implement special processing when the user starts to drag the control or an object it
contains. OnStartDrag only occurs if DragKind is dkDrag.

Sender is the control that is about to be dragged, or that contains the object about to be dragged.

The OnStartDrag event handler can create a TDragControlObjectEx instance for the DragObject parameter to specify the
drag cursor, or, optionally, a drag image list. If you create a TDragControlObjectEx instance, there is no need to call the Free
method for the DragObject when dragging is over. If you create, instead, a TDragControlObject instance, your application is
responsible for freeing the drag object instance.

If the OnStartDrag event handler sets the DragObject parameter to nil (Delphi) or NULL (C++), a TDragControlObject object
is automatically created and dragging begins on the control itse

1.9.1.3.1.43 TBtnPanel.Orientation Property

Specifies whether the panel's array of button is horizontal or vertical.

property Orientation: TRowOrientation ;

Description

Use Orientation to specify whether the the panel's array of button is horizontal or vertical.

By default, Orientation is roHorizontal.

1.9.1.3.1.44 TBtnPanel.ParentBiDiMode Property

Specifies whether the control uses its parent’s BiDiMode.

property ParentBiDiMode;

1.9.1.3.1.45 TBtnPanel.ParentColor Property

Determines where a control looks for its color information.

property ParentColor;

1.9 ecBtnPanel Namespace EControl Form Designer Pro Classes

42

1

1.9.1.3.1.46 TBtnPanel.ParentCtl3D Property

Determines where a component looks to determine if it should appear three dimensional.

property ParentCtl3D;

Description

ParentCtl3D is provided for backwards compatibility. It has no effect on 32-bit versions of Windows or NT 4.0 and later.

ParentCtl3D determines whether the control uses its parent’s Ctl3D property.

1.9.1.3.1.47 TBtnPanel.ParentFont Property

Determines where a control looks for its font information.

property ParentFont;

1.9.1.3.1.48 TBtnPanel.ParentShowHint Property

Determines where a control looks to find out if its Help Hint should be shown.

property ParentShowHint;

1.9.1.3.1.49 TBtnPanel.PopupMenu Property

Identifies the pop-up menu associated with the control.

property PopupMenu;

Description

Assign a value to PopupMenu to make a pop-up menu appear when the user selects the control and clicks the right mouse
button. If the TPopupMenu’s AutoPopup property is true, the pop-up menu appears automatically. If the menu’s AutoPopup
property is false, display the menu with a call to its Popup method from the control’s OnContextPopup event handler.

1.9.1.3.1.50 TBtnPanel.RowCount Property

Indicates the number of button rows in the panel.

property RowCount: integer;

Description

Read RowCount to determine the number of rows in the button's array are placed.

Set RowCount to add or delete rows to rearrange buttons.

By default, RowCount is 1.

1.9.1.3.1.51 TBtnPanel.ShowHint Property

Determines whether the control displays a Help Hint when the mouse pointer rests momentarily on the control.

property ShowHint;

1.9.1.3.1.52 TBtnPanel.TabOrder Property

Indicates the position of the control in its parent's tab order.

property TabOrder;

1.9.1.3.1.53 TBtnPanel.TabStop Property

Determines if the user can tab to a control.

1.9 ecBtnPanel Namespace EControl Form Designer Pro Classes

43

1

property TabStop;

Description

Use the TabStop to allow or disallow access to the control using the Tab key.

If TabStop is true, the control is in the tab order. If TabStop is false, the control is not in the tab order and the user can't
press the Tab key to move to the control.

1.9.1.3.1.54 TBtnPanel.Transparent Property

Specifies whether the background of the button is transparent.

property Transparent: Boolean;

Description

Use Transparent to specify whether the background of the button is transparent.

1.9.1.3.1.55 TBtnPanel.Visible Property

Determines whether the component appears on screen.

property Visible;

Description

Use the Visible property to control the visibility of the control at runtime. If Visible is true, the control appears. If Visible is
false, the control is not visible.

Calling the Show method sets the control's Visible property to true. Calling the Hide method sets it to false.

1.9.2 Structs, Records, Enums

The following table lists structs, records, enums in this documentation.

Enumerations

Enumeration Description

 TRowOrientation (see page 44) Specifies orientation of the button panel.

Legend

Enumeration

1.9.2.1 ecBtnPanel.TRowOrientation Enumeration
TRowOrientation = (
 roHorizontal,
 roVertical,
 roList
);

File

ecBtnPanel

Members

Members Description

roHorizontal Horizontal from left to right, no captions

roVertical Vertical without columns

roList Vertical, in one column with captions

1.9 ecBtnPanel Namespace EControl Form Designer Pro Structs, Records, Enums

44

1

Description

Specifies orientation of the button panel.

1.9.3 Types

The following table lists types in this documentation.

Types

Type Description

TButtonClickEvent (see page 45) See TCustomBtnPanel.OnButtonClick Event (see page 27)

TDrawButtonEvent (see page 45) See TCustomBtnPanel.OnDrawButton Event (see page 27)

TGetButtonHintEvent (see page 45) See TCustomBtnPanel.OnGetButtonHint Event (see page 28)

1.9.3.1 ecBtnPanel.TButtonClickEvent Type
TButtonClickEvent = procedure (Sender: TObject; Index : integer; Shift: TShiftState) of
object ;

File

ecBtnPanel

Description

See TCustomBtnPanel.OnButtonClick Event (see page 27)

1.9.3.2 ecBtnPanel.TDrawButtonEvent Type
TDrawButtonEvent = procedure (Sender: TObject; var Rect: TRect; Index : Integer) of object ;

File

ecBtnPanel

Description

See TCustomBtnPanel.OnDrawButton Event (see page 27)

1.9.3.3 ecBtnPanel.TGetButtonHintEvent Type
TGetButtonHintEvent = procedure (Sender: TObject; Index : Integer; var AHint: WideString) of
object ;

File

ecBtnPanel

Description

See TCustomBtnPanel.OnGetButtonHint Event (see page 28)

1.10 ecDlList Namespace

1.10 ecDlList Namespace EControl Form Designer Pro Classes

45

1

1.10.1 Classes

The following table lists classes in this documentation.

Classes

Class Description

TCustomPropList (see page 46) Implements custom properties list.

TDualList (see page 52) TDualList implements list with two columns

TPropertyItem (see page 61) TPropertyItem is the base class for all nodes in the Property List
(TCustomPropList (see page 46))

TPropListRoot (see page 65) Property items collection.

1.10.1.1 TCustomPropList Class
Implements custom properties list.

Class Hierarchy

TCustomPropList = class (TDualList);

File

ecDlList

Description

Additionally to dual list implements gutter, base property items processing, items folding.

Members

TDualList Methods

TDualList Methods Description

 Create (see page 54) Creates and initializes an instance of TDualList (see page 52).

 CreateEditor (see page 54) Creates in-place editor. Must be overridden in derived classes.

 CreateHandle (see page 54) Creates underlying screen object.

 Destroy (see page 54) Destroys an instance of TDualList (see page 52).

 DoMouseWheel (see page 54) Processes mouse wheel motion.

 DrawCell (see page 55) Draws a specified cell.

 DrawStr (see page 55) Draws string in the specified rectangle

 DrawStrW (see page 55) Draws Unicode string in the specified rectangle

 ExecuteAction (see page 55) Invokes an action with the component as its target.

 FocusEditor (see page 56) Moves focus from list control to child in-place editor.

 IsHeaderItem (see page 56) Determines if specified item is header.

 ItemRect (see page 56) Returns the rectangle that surrounds the item specified in the Item parameter.

 KeyDown (see page 56) Respond to key press events.

 MouseDown (see page 56) Generates an OnMouseUp event.

 MouseMove (see page 56) Respond to mouse moving over control area..

 MouseToItem (see page 57) Returns item index depending on coordinates specified in Y parameter.

 MouseUp (see page 57) Generates an OnMouseUp event.

 Paint (see page 57) Renders the image of a dual list.

 SetItemIndex (see page 57) Set method of ItemIndex (see page 59) property.

 UpdateAction (see page 57) Updates an action component to reflect the current state of the component.

 UpdateEditor (see page 58) Updates current Editor (see page 59).

TCustomPropList Class

TCustomPropList Class Description

 Create (see page 49) Creates and initializes an instance of TDualList.

1.10 ecDlList Namespace EControl Form Designer Pro Classes

46

1

 CreateItems (see page 49) Creates root item.

 Current (see page 49) Returns current selected item. If there is no item selected Current returns nil.

 Destroy (see page 49) Destroys an instance of TDualList.

 DoPrepareCanvas (see page 50) Prepares Canvas (see page 58) before painting cell.

 DrawCell (see page 50) Draws dual list cell.

 DrawPropCell (see page 50) Draws cell content.

 GutterWidth (see page 50) Returns gutter width for specified row in list.

 IsHeaderItem (see page 50) Determines if specified item is header.

 MouseDown (see page 50) Generates an OnMouseUp event.

TDualList Properties

TDualList Properties Description

 BorderStyle (see page 58) Determines the style of the line drawn around the perimeter of the panel
control.

 Canvas (see page 58) Provides access to a drawing surface that represents the TDualList (see
page 52).

 Editor (see page 59) In-place editor

 EditorVisible (see page 59) Specifies whether editor is visible in the selected row

 ItemCount (see page 59) Specifies the number of items in the DualList

 ItemHeight (see page 59) Specifies the height, in pixels, of the items in the dual list

 ItemIndex (see page 59) Specifies the index of the selected item.

 OnClick (see page 60) Occurs when the user clicks the dual list.

 ShowGrid (see page 60) Determines whether lines are drawn separating items in the list

 ShowSelFrame (see page 60) Specifies whether frame rectangle should be painted around selected item.

 SplitPos (see page 60) Specifies width of the first column in pixels (or splitter position)

 TabOrder (see page 60) Indicates the position of the control in its parent's tab order.

 TabStop (see page 60) Add a summary here...

 TopItem (see page 60) Specifies the topmost row that appears in the dual list.

TCustomPropList Class

TCustomPropList Class Description

 cGutter (see page 50) Specifies color of gutter background.

 cGutterBnd (see page 51) Specifies color of border which separates gutter from the rest of control.

 cHighlight (see page 51) Specifies background color of selected item.

 cHighlightText (see page 51) Specifies font color of selected item.

 FoldingIcon (see page 51) Holds folding icon images.

 Items (see page 51) Reference to root item. Particular root item class may be different in derived
classes. Items are accessible via root item.

 LeftMargin (see page 51) Specifies left margin.

 LevelWidth (see page 51) Specifies offset for each level of items.

 ShowGutter (see page 51) Specifies whether gutter is visible.

TCustomPropList Events

TCustomPropList Class

TCustomPropList Class Description

 OnDrawPropCell (see page 51) Draws cell content.

 OnGetCellParams (see page 52) Occurs to adjust cell properties.

Legend

Constructor

virtual

protected

Property

read only

Event

1.10 ecDlList Namespace EControl Form Designer Pro Classes

47

1

TCustomPropList Events

TCustomPropList Class

TCustomPropList Class Description

 OnDrawPropCell (see page 51) Draws cell content.

 OnGetCellParams (see page 52) Occurs to adjust cell properties.

TDualList Methods

TDualList Methods Description

 Create (see page 54) Creates and initializes an instance of TDualList (see page 52).

 CreateEditor (see page 54) Creates in-place editor. Must be overridden in derived classes.

 CreateHandle (see page 54) Creates underlying screen object.

 Destroy (see page 54) Destroys an instance of TDualList (see page 52).

 DoMouseWheel (see page 54) Processes mouse wheel motion.

 DrawCell (see page 55) Draws a specified cell.

 DrawStr (see page 55) Draws string in the specified rectangle

 DrawStrW (see page 55) Draws Unicode string in the specified rectangle

 ExecuteAction (see page 55) Invokes an action with the component as its target.

 FocusEditor (see page 56) Moves focus from list control to child in-place editor.

 IsHeaderItem (see page 56) Determines if specified item is header.

 ItemRect (see page 56) Returns the rectangle that surrounds the item specified in the Item parameter.

 KeyDown (see page 56) Respond to key press events.

 MouseDown (see page 56) Generates an OnMouseUp event.

 MouseMove (see page 56) Respond to mouse moving over control area..

 MouseToItem (see page 57) Returns item index depending on coordinates specified in Y parameter.

 MouseUp (see page 57) Generates an OnMouseUp event.

 Paint (see page 57) Renders the image of a dual list.

 SetItemIndex (see page 57) Set method of ItemIndex (see page 59) property.

 UpdateAction (see page 57) Updates an action component to reflect the current state of the component.

 UpdateEditor (see page 58) Updates current Editor (see page 59).

TCustomPropList Class

TCustomPropList Class Description

 Create (see page 49) Creates and initializes an instance of TDualList.

 CreateItems (see page 49) Creates root item.

 Current (see page 49) Returns current selected item. If there is no item selected Current returns nil.

 Destroy (see page 49) Destroys an instance of TDualList.

 DoPrepareCanvas (see page 50) Prepares Canvas (see page 58) before painting cell.

 DrawCell (see page 50) Draws dual list cell.

 DrawPropCell (see page 50) Draws cell content.

 GutterWidth (see page 50) Returns gutter width for specified row in list.

 IsHeaderItem (see page 50) Determines if specified item is header.

 MouseDown (see page 50) Generates an OnMouseUp event.

TDualList Properties

TDualList Properties Description

 BorderStyle (see page 58) Determines the style of the line drawn around the perimeter of the panel
control.

 Canvas (see page 58) Provides access to a drawing surface that represents the TDualList (see
page 52).

 Editor (see page 59) In-place editor

 EditorVisible (see page 59) Specifies whether editor is visible in the selected row

 ItemCount (see page 59) Specifies the number of items in the DualList

 ItemHeight (see page 59) Specifies the height, in pixels, of the items in the dual list

 ItemIndex (see page 59) Specifies the index of the selected item.

 OnClick (see page 60) Occurs when the user clicks the dual list.

 ShowGrid (see page 60) Determines whether lines are drawn separating items in the list

 ShowSelFrame (see page 60) Specifies whether frame rectangle should be painted around selected item.

 SplitPos (see page 60) Specifies width of the first column in pixels (or splitter position)

1.10 ecDlList Namespace EControl Form Designer Pro Classes

48

1

 TabOrder (see page 60) Indicates the position of the control in its parent's tab order.

 TabStop (see page 60) Add a summary here...

 TopItem (see page 60) Specifies the topmost row that appears in the dual list.

TCustomPropList Class

TCustomPropList Class Description

 cGutter (see page 50) Specifies color of gutter background.

 cGutterBnd (see page 51) Specifies color of border which separates gutter from the rest of control.

 cHighlight (see page 51) Specifies background color of selected item.

 cHighlightText (see page 51) Specifies font color of selected item.

 FoldingIcon (see page 51) Holds folding icon images.

 Items (see page 51) Reference to root item. Particular root item class may be different in derived
classes. Items are accessible via root item.

 LeftMargin (see page 51) Specifies left margin.

 LevelWidth (see page 51) Specifies offset for each level of items.

 ShowGutter (see page 51) Specifies whether gutter is visible.

1.10.1.1.1 TCustomPropList Methods

1.10.1.1.1.1 TCustomPropList.Create Constructor

Creates and initializes an instance of TDualList.

constructor Create(AOwner: TComponent); override ;

Description

Calling Create constructs and initializes an instance of TDualList.

After calling the inherited TCustomControl constructor, Create initializes the dual list.

1.10.1.1.1.2 TCustomPropList.CreateItems Method

Creates root item.

function CreateItems: TPropListRoot ; virtual ;

Description

CreateItems creates items storage.

1.10.1.1.1.3 TCustomPropList.Current Method

Returns current selected item. If there is no item selected Current returns nil.

function Current: TPropertyItem ;

1.10.1.1.1.4 TCustomPropList.Destroy Destructor

Destroys an instance of TDualList.

destructor Destroy; override ;

Description

Do not call Destroy directly in an application. Instead, call Free. Free verifies that the control is not nil, and only then calls
Destroy.

Applications should only free controls explicitly when the constructor was called without assigning an owner to the control.

As the dual list is destroyed, it destroys all the objects it owns and then call inherited Destroy procedure;

1.10 ecDlList Namespace EControl Form Designer Pro Classes

49

1

1.10.1.1.1.5 TCustomPropList.DoPrepareCanvas Method

Prepares Canvas (see page 58) before painting cell.

procedure DoPrepareCanvas(Node: TPropertyItem ; CellType: TCellType ; var Alignment:
TAlignment); virtual ;

Description

Node and CellType specifies position in list. Change property of control Canvas (see page 58) and Alignment parameter to
change cell painting style.

1.10.1.1.1.6 TCustomPropList.DrawCell Method

Draws dual list cell.

procedure DrawCell(Rect: TRect; ACol: Integer; ARow: Integer; Selected: Boolean); override ;

1.10.1.1.1.7 TCustomPropList.DrawPropCell Method

Draws cell content.

procedure DrawPropCell(const R: TRect; Node: TPropertyItem ; CellType: TCellType ; Alignment:
TAlignment); virtual ;

1.10.1.1.1.8 TCustomPropList.GutterWidth Method

Returns gutter width for specified row in list.

function GutterWidth(Row: integer): integer;

1.10.1.1.1.9 TCustomPropList.IsHeaderItem Method

Determines if specified item is header.

function IsHeaderItem(Index : integer): Boolean; override ;

Description

If IsHeaderItem is True, item is header, i.e. it occupies two columns and in-place editor is not created for this one.

In TDualList it always returns false. Descendants must override this function to make result sensible.

1.10.1.1.1.10 TCustomPropList.MouseDown Method

Generates an OnMouseUp event.

procedure MouseDown(Button: TMouseButton; Shift: TShiftState; X: Integer; Y: Integer);
override ;

Description

Overridden from TControl.MouseDown.

After calls inherited procedure dual list determines item at mouse and adjusts ItemIndex property

1.10.1.1.2 TCustomPropList Properties

1.10.1.1.2.1 TCustomPropList.cGutter Property

Specifies color of gutter background.

property cGutter: TColor;

1.10 ecDlList Namespace EControl Form Designer Pro Classes

50

1

1.10.1.1.2.2 TCustomPropList.cGutterBnd Property

Specifies color of border which separates gutter from the rest of control.

property cGutterBnd: TColor;

1.10.1.1.2.3 TCustomPropList.cHighlight Property

Specifies background color of selected item.

property cHighlight: TColor;

1.10.1.1.2.4 TCustomPropList.cHighlightText Property

Specifies font color of selected item.

property cHighlightText: TColor;

1.10.1.1.2.5 TCustomPropList.FoldingIcon Property

Holds folding icon images.

property FoldingIcon: TBitmap;

Description

FoldingIcon should contain two images in a row, first - collapse icon (-), second - expand icon (+).

Color of bottom-left pixel is used as mask color.

Folding icon is initialized from resource when control is created at design time.

1.10.1.1.2.6 TCustomPropList.Items Property

Reference to root item. Particular root item class may be different in derived classes. Items are accessible via root item.

property Items: TPropListRoot ;

1.10.1.1.2.7 TCustomPropList.LeftMargin Property

Specifies left margin.

property LeftMargin: integer;

1.10.1.1.2.8 TCustomPropList.LevelWidth Property

Specifies offset for each level of items.

property LevelWidth: integer;

1.10.1.1.2.9 TCustomPropList.ShowGutter Property

Specifies whether gutter is visible.

property ShowGutter: Boolean;

1.10.1.1.3 TCustomPropList Events

1.10.1.1.3.1 TCustomPropList.OnDrawPropCell Event

Draws cell content.

property OnDrawPropCell: TCustomPropDrawEvent ;

Description

Write OnDrawPropCell event handler to implement custom drawing of the cell content. If OnDrawPropCell event is assigned
control does not perform default drawing, but it prepares Canvas (see page 58) for drawing.

1.10 ecDlList Namespace EControl Form Designer Pro Classes

51

1

1.10.1.1.3.2 TCustomPropList.OnGetCellParams Event

Occurs to adjust cell properties.

property OnGetCellParams: TGetCellParamsEvent ;

Description

Write OnGetCellParams event handler to change cell properties by assigning new values to Alignment parameter and to
Pen, Font and Brush of the property list Canvas (see page 58).

1.10.1.2 TDualList Class
TDualList implements list with two columns

Class Hierarchy

TDualList = class (TCustomControl);

File

ecDlList

Description

TDualList is used as the base class for TCustomInspectorList. It implements list with two columns. First column is used for
names, second one for values. In-place editor are used to edit values in the second column.

Members

TDualList Methods

TDualList Methods Description

 Create (see page 54) Creates and initializes an instance of TDualList.

 CreateEditor (see page 54) Creates in-place editor. Must be overridden in derived classes.

 CreateHandle (see page 54) Creates underlying screen object.

 Destroy (see page 54) Destroys an instance of TDualList.

 DoMouseWheel (see page 54) Processes mouse wheel motion.

 DrawCell (see page 55) Draws a specified cell.

 DrawStr (see page 55) Draws string in the specified rectangle

 DrawStrW (see page 55) Draws Unicode string in the specified rectangle

 ExecuteAction (see page 55) Invokes an action with the component as its target.

 FocusEditor (see page 56) Moves focus from list control to child in-place editor.

 IsHeaderItem (see page 56) Determines if specified item is header.

 ItemRect (see page 56) Returns the rectangle that surrounds the item specified in the Item parameter.

 KeyDown (see page 56) Respond to key press events.

 MouseDown (see page 56) Generates an OnMouseUp event.

 MouseMove (see page 56) Respond to mouse moving over control area..

 MouseToItem (see page 57) Returns item index depending on coordinates specified in Y parameter.

 MouseUp (see page 57) Generates an OnMouseUp event.

 Paint (see page 57) Renders the image of a dual list.

 SetItemIndex (see page 57) Set method of ItemIndex (see page 59) property.

 UpdateAction (see page 57) Updates an action component to reflect the current state of the component.

 UpdateEditor (see page 58) Updates current Editor (see page 59).

TDualList Properties

TDualList Properties Description

 BorderStyle (see page 58) Determines the style of the line drawn around the perimeter of the panel
control.

 Canvas (see page 58) Provides access to a drawing surface that represents the TDualList.

 Editor (see page 59) In-place editor

 EditorVisible (see page 59) Specifies whether editor is visible in the selected row

1.10 ecDlList Namespace EControl Form Designer Pro Classes

52

1

 ItemCount (see page 59) Specifies the number of items in the DualList

 ItemHeight (see page 59) Specifies the height, in pixels, of the items in the dual list

 ItemIndex (see page 59) Specifies the index of the selected item.

 OnClick (see page 60) Occurs when the user clicks the dual list.

 ShowGrid (see page 60) Determines whether lines are drawn separating items in the list

 ShowSelFrame (see page 60) Specifies whether frame rectangle should be painted around selected item.

 SplitPos (see page 60) Specifies width of the first column in pixels (or splitter position)

 TabOrder (see page 60) Indicates the position of the control in its parent's tab order.

 TabStop (see page 60) Add a summary here...

 TopItem (see page 60) Specifies the topmost row that appears in the dual list.

Legend

Constructor

virtual

protected

Property

read only

TDualList Methods

TDualList Methods Description

 Create (see page 54) Creates and initializes an instance of TDualList.

 CreateEditor (see page 54) Creates in-place editor. Must be overridden in derived classes.

 CreateHandle (see page 54) Creates underlying screen object.

 Destroy (see page 54) Destroys an instance of TDualList.

 DoMouseWheel (see page 54) Processes mouse wheel motion.

 DrawCell (see page 55) Draws a specified cell.

 DrawStr (see page 55) Draws string in the specified rectangle

 DrawStrW (see page 55) Draws Unicode string in the specified rectangle

 ExecuteAction (see page 55) Invokes an action with the component as its target.

 FocusEditor (see page 56) Moves focus from list control to child in-place editor.

 IsHeaderItem (see page 56) Determines if specified item is header.

 ItemRect (see page 56) Returns the rectangle that surrounds the item specified in the Item parameter.

 KeyDown (see page 56) Respond to key press events.

 MouseDown (see page 56) Generates an OnMouseUp event.

 MouseMove (see page 56) Respond to mouse moving over control area..

 MouseToItem (see page 57) Returns item index depending on coordinates specified in Y parameter.

 MouseUp (see page 57) Generates an OnMouseUp event.

 Paint (see page 57) Renders the image of a dual list.

 SetItemIndex (see page 57) Set method of ItemIndex (see page 59) property.

 UpdateAction (see page 57) Updates an action component to reflect the current state of the component.

 UpdateEditor (see page 58) Updates current Editor (see page 59).

TDualList Properties

TDualList Properties Description

 BorderStyle (see page 58) Determines the style of the line drawn around the perimeter of the panel
control.

 Canvas (see page 58) Provides access to a drawing surface that represents the TDualList.

 Editor (see page 59) In-place editor

 EditorVisible (see page 59) Specifies whether editor is visible in the selected row

 ItemCount (see page 59) Specifies the number of items in the DualList

 ItemHeight (see page 59) Specifies the height, in pixels, of the items in the dual list

 ItemIndex (see page 59) Specifies the index of the selected item.

 OnClick (see page 60) Occurs when the user clicks the dual list.

 ShowGrid (see page 60) Determines whether lines are drawn separating items in the list

 ShowSelFrame (see page 60) Specifies whether frame rectangle should be painted around selected item.

 SplitPos (see page 60) Specifies width of the first column in pixels (or splitter position)

 TabOrder (see page 60) Indicates the position of the control in its parent's tab order.

 TabStop (see page 60) Add a summary here...

 TopItem (see page 60) Specifies the topmost row that appears in the dual list.

1.10 ecDlList Namespace EControl Form Designer Pro Classes

53

1

1.10.1.2.1 TDualList Methods

1.10.1.2.1.1 TDualList.Create Constructor

Creates and initializes an instance of TDualList (see page 52).

constructor Create(AOwner: TComponent); override ;

Description

Calling Create constructs and initializes an instance of TDualList (see page 52).

After calling the inherited TCustomControl constructor, Create initializes the dual list.

1.10.1.2.1.2 TDualList.CreateEditor Method

Creates in-place editor. Must be overridden in derived classes.

function CreateEditor: TCustomEditEx ; virtual ;

Description

This procedure creates in-place editor. It must be overridden in derived classes.

1.10.1.2.1.3 TDualList.CreateHandle Method

Creates underlying screen object.

procedure CreateHandle; override ;

Description

This is overridden procedure from TWinControl.CreateHandle.

After calling inherited TWinControl.CreateHandle it adjusts dual list representation so that current Editor (see page 59) will
be visible and focused.

1.10.1.2.1.4 TDualList.Destroy Destructor

Destroys an instance of TDualList (see page 52).

destructor Destroy; override ;

Description

Do not call Destroy directly in an application. Instead, call Free. Free verifies that the control is not nil, and only then calls
Destroy.

Applications should only free controls explicitly when the constructor was called without assigning an owner to the control.

As the dual list is destroyed, it destroys all the objects it owns and then call inherited Destroy procedure;

1.10.1.2.1.5 TDualList.DoMouseWheel Method

Processes mouse wheel motion.

function DoMouseWheel(Shift: TShiftState; WheelDelta: Integer; MousePos: TPoint): Boolean;
override ;

Description

Overridden from TControl.DoMouseWheel.

1.10 ecDlList Namespace EControl Form Designer Pro Classes

54

1

First dual list calls inherited TControl.DoMouseWheel procedure and then adjust TopItem (see page 60) property;

1.10.1.2.1.6 TDualList.DrawCell Method

Draws a specified cell.

procedure DrawCell(Rect: TRect; ACol: integer; ARow: integer; Selected: Boolean); virtual ;

Description

In the TDualList (see page 52) it does nothing. Descendants must override this method to do some useful things.

1.10.1.2.1.7 TDualList.DrawStr Method

Draws string in the specified rectangle

procedure DrawStr(Rect: TRect; const S: string ; Align: TAlignment);

Description

Draws string in the specified rectangle. Rect specifies the rectangle for output, S specifies text string, and Align specifies
how text is aligned when draws.

This procedure internally calls Win32API method DrawText.

1.10.1.2.1.8 TDualList.DrawStrW Method

Draws Unicode string in the specified rectangle

procedure DrawStrW(Rect: TRect; const S: WideString; Align: TAlignment);

Description

Draws Unicode string in the specified rectangle. Rect specifies the rectangle for output, S specifies text string, and Align
specifies how text is aligned when draws.

This procedure internally calls Win32API method DrawTextW.

1.10.1.2.1.9 TDualList.ExecuteAction Method

Invokes an action with the component as its target.

function ExecuteAction(Action: TBasicAction): Boolean; override ;

Description

When the user invokes an action, VCL makes a series of calls to respond to that action. First, it generates an OnExecute
event of the action list that contains the action. If the action list does not handle the OnExecute event, then the action is
routed to the Application object’s ExecuteAction method, which invokes the OnActionExecute event handler. If the
OnActionExecute event handler does not handle the action, then it is routed to the action’s OnExecute event handler. If that
does not handle the action, the active control’s ExecuteAction method is called.

The Action parameter specifies the action that was invoked. ExecuteAction returns true if the action was successfully
dispatched, and false if the component could not handle the action. If ExecuteAction returns false for the active control, VCL
calls the active form’s ExecuteAction method. If this returns false, VCL tries all active controls in the form. If these all return
false, VCL repeats the process with the main form, if that is different from the active form.

1.10 ecDlList Namespace EControl Form Designer Pro Classes

55

1

1.10.1.2.1.10 TDualList.FocusEditor Method

Moves focus from list control to child in-place editor.

procedure FocusEditor; virtual ;

1.10.1.2.1.11 TDualList.IsHeaderItem Method

Determines if specified item is header.

function IsHeaderItem(Index : integer): Boolean; virtual ;

Description

If IsHeaderItem is True, item is header, i.e. it occupies two columns and in-place editor is not created for this one.

In TDualList (see page 52) it always returns false. Descendants must override this function to make result sensible.

1.10.1.2.1.12 TDualList.ItemRect Method

Returns the rectangle that surrounds the item specified in the Item parameter.

function ItemRect(Index : integer): TRect;

Description

Use ItemRect to get the coordinates of a particular item in the dual list.

The Item parameter is the ItemIndex (see page 59) of the item whose position is queried.

1.10.1.2.1.13 TDualList.KeyDown Method

Respond to key press events.

procedure KeyDown(var Key: Word; Shift: TShiftState); override ;

Description

Overridden from TWinControl.KeyDown.

After call the inherited method it determines Key parameter and adjust ItemIndex (see page 59) and TopItem (see page
60) property.

1.10.1.2.1.14 TDualList.MouseDown Method

Generates an OnMouseUp event.

procedure MouseDown(Button: TMouseButton; Shift: TShiftState; X: Integer; Y: Integer);
override ;

Description

Overridden from TControl.MouseDown.

After calls inherited procedure dual list determines item at mouse and adjusts ItemIndex (see page 59) property

1.10.1.2.1.15 TDualList.MouseMove Method

Respond to mouse moving over control area..

procedure MouseMove(Shift: TShiftState; X: Integer; Y: Integer); override ;

1.10 ecDlList Namespace EControl Form Designer Pro Classes

56

1

Description

Overridden from TControl.MouseDown (see page 56).

After calling inherited procedure dual list do next:

• if "virtual splitter" is captured then adjusts SplitPos (see page 60)

• else determines item at mouse and adjusts ItemIndex (see page 59);

1.10.1.2.1.16 TDualList.MouseToItem Method

Returns item index depending on coordinates specified in Y parameter.

function MouseToItem(Y: integer): integer;

Description

Returns item index for the given Y coordinate. If Y coordinate is out of items, MouseToItem returns -1

1.10.1.2.1.17 TDualList.MouseUp Method

Generates an OnMouseUp event.

procedure MouseUp(Button: TMouseButton; Shift: TShiftState; X: Integer; Y: Integer);
override ;

Description

Overridden from TControl.MouseUp.

After calling inherited procedure dual list releases mouse capture, "virtual splitter" and stops the inner timer.

1.10.1.2.1.18 TDualList.Paint Method

Renders the image of a dual list.

procedure Paint; override ;

Description

Overridden from TCustomControl.Paint

After calling inherited procedure dual list do all its specified painting tasks.

1.10.1.2.1.19 TDualList.SetItemIndex Method

Set method of ItemIndex (see page 59) property.

procedure SetItemIndex(Value: integer); virtual ;

Description

Derived classes may change default behavior of changing item, for example, to restrict some indexes.

1.10.1.2.1.20 TDualList.UpdateAction Method

Updates an action component to reflect the current state of the component.

function UpdateAction(Action: TBasicAction): Boolean; override ;

Description

When the application is idle, VCL makes a series of calls to update the properties (such as whether it is enabled, checked,

1.10 ecDlList Namespace EControl Form Designer Pro Classes

57

1

and so on) of every action that is linked to a visible control or menu item. First, VCL generates an OnUpdate event of the
action list that contains the action. If the action list does not handle the OnUpdate event, then the action is routed to the
Application object’s UpdateAction method, which invokes the OnActionUpdate event handler. If the OnActionUpdate event
handler does not update the action, then it is routed to the action’s OnUpdate event handler. If that does not update the
action, the active control’s UpdateAction method is called.

The Action parameter specifies the action component that should be updated. UpdateAction returns true if the action
component now reflects the state of the component, and false if it did not know how to update the action. If UpdateAction
returns false for the active component, VCL calls the active form’

s UpdateAction method.

Do not call UpdateAction. It is called automatically when the application is idle. As implemented in TComponent,
UpdateAction allows the action to update itself with the component as a target. Descendants can override this method to
perform updates that reflect class-specific properties or states.

1.10.1.2.1.21 TDualList.UpdateEditor Method

Updates current Editor (see page 59).

procedure UpdateEditor; virtual ;

Description

This procedure clears Text and EditMask properties and sets MaxLength to 0.

Descendants must override this to make it more sensible.

1.10.1.2.2 TDualList Properties

1.10.1.2.2.1 TDualList.BorderStyle Property

Determines the style of the line drawn around the perimeter of the panel control.

property BorderStyle: TBorderStyle;

Description

Use BorderStyle to specify whether the panel has a single line drawn around it. These are the possible values:

Value Meaning

bsNone No visible border

bsSingle Single-line border

Do not confuse the line drawn around the panel with the BorderWidth of the panel. The BorderWidth of the panel is the
distance between the outer and inner bevels.

1.10.1.2.2.2 TDualList.Canvas Property

Provides access to a drawing surface that represents the TDualList (see page 52).

property Canvas;

Description

This property is inherited and redeclared as public for using in descendants of TDualList (see page 52).

1.10 ecDlList Namespace EControl Form Designer Pro Classes

58

1

1.10.1.2.2.3 TDualList.Editor Property

In-place editor

property Editor: TCustomEditEx ;

Description

Represents in-place editor for selected row in list. Depending on EditStyle it can be simple, with ellipsis (...) button or with
drop-down list.

1.10.1.2.2.4 TDualList.EditorVisible Property

Specifies whether editor is visible in the selected row

property EditorVisible: Boolean;

Description

Specifies whether editor is visible or not in the selected row.

This property may become False when corresponding property node is not a TPropertyNode type. For example wnen user
switches object inspector's "Property" tab in "By Category" mode.

1.10.1.2.2.5 TDualList.ItemCount Property

Specifies the number of items in the DualList

property ItemCount: integer;

Description

Specifies the number of items in the DualList.

Read ItemCount to get the number of items in the dual list. ItemCount is the number of all items, not just those that are
visible at one time.

1.10.1.2.2.6 TDualList.ItemHeight Property

Specifies the height, in pixels, of the items in the dual list

property ItemHeight: integer;

Description

Read ItemHeight to determine the height of the items in the dual list. Set this property to change height of the items.

1.10.1.2.2.7 TDualList.ItemIndex Property

Specifies the index of the selected item.

property ItemIndex: integer;

Description

Read ItemIndex to determine which item is selected. The first item in the list has index 0, the second item has index 1, and
so on.

Set ItemIndex programmatically to select an item by passing in the index value.

If new value less then 0 and ItemCount (see page 59) > 0 then ItemIndex will be 0,

else if new value exceeds ItemCount (see page 59)-1 then ItemIndex will be ItemCount (see page 59)-1.

Else ItemIndex will be set to new value.

1.10 ecDlList Namespace EControl Form Designer Pro Classes

59

1

1.10.1.2.2.8 TDualList.OnClick Property

Occurs when the user clicks the dual list.

property OnClick;

Description

OnClick is inherited event from TControl.

Use the OnClick event handler to respond when the user clicks the dual list.

1.10.1.2.2.9 TDualList.ShowGrid Property

Determines whether lines are drawn separating items in the list

property ShowGrid: Boolean;

Description

Specifies whether horizontal grid lines is visible.

Set ShowGrid to True to add lines that separate the items in the dual list.

1.10.1.2.2.10 TDualList.ShowSelFrame Property

Specifies whether frame rectangle should be painted around selected item.

property ShowSelFrame: Boolean;

1.10.1.2.2.11 TDualList.SplitPos Property

Specifies width of the first column in pixels (or splitter position)

property SplitPos: integer;

Description

Specifies width of the first column (or splitter position). Width of the second column equals to Width - SplitPos.

Set SplitPos programmatically to change width of columns.

Minimal value of SplitPos is 20;

1.10.1.2.2.12 TDualList.TabOrder Property

Indicates the position of the control in its parent's tab order.

property TabOrder;

Description

It is inherited property from TWinControl. See the TWinControl.TabOrder for description.

1.10.1.2.2.13 TDualList.TabStop Property

Add a summary here...

property TabStop;

Description

It is inherited property from TWinControl. See the TWinControl.Stop for description.

1.10.1.2.2.14 TDualList.TopItem Property

Specifies the topmost row that appears in the dual list.

1.10 ecDlList Namespace EControl Form Designer Pro Classes

60

1

property TopItem: integer;

Description

When TopItem is changed, the dual list scrolls vertically so that the specified row is topmost in the view.

1.10.1.3 TPropertyItem Class
TPropertyItem is the base class for all nodes in the Property List (TCustomPropList (see page 46))

Class Hierarchy

TPropertyItem = class ;

File

ecDlList

Description

TPropNodeBase introduces base functionality.

Members

TPropertyItem Methods

TPropertyItem Methods Description

 Add (see page 62) Adds new property item.

 Changed (see page 62) Called when property item was changed.

 Clear (see page 62) Deletes all items from the node.

 Create (see page 62) Creates and initializes a TPropertyItem instance.

 Delete (see page 63) Deletes Item at index

 Destroy (see page 63) Destroys an instance of TPropertyItem.

 Expandable (see page 63) Specifies whether property item can be expanded.

 GetName (see page 63) Returns name of the item. May be overridden in derived class.

 HasValue (see page 63) Specifies whether property item has value. For example, category item does
not have value.

 IndexOf (see page 63) Returns index of child item. If Item is not a child returns -1.

 Insert (see page 63) Adds a property item to the Items (see page 64) array at the position
specified by Index.

 IsEqual (see page 63) Returns True if property items are equal.

 IsRoot (see page 63) Returns True if the item is root (see page 64) item.

 Move (see page 63) Changes the position of an item in the Items (see page 64) array.

 Root (see page 64) Specifies Root item.

TPropertyItem Properties

TPropertyItem Properties Description

 Count (see page 64) Determines count of child items.

 DisplayName (see page 64) Specifies name displayed on screen

 Expanded (see page 64) Specifies if node is expanded or not.

 Items (see page 64) Provides indexed access to the child items.

 Level (see page 64) Indicates the level of indentation of a item within the property list control..

 Name (see page 64) Specifies the name of the property node.

 Parent (see page 65) Indicates the parent property of the node.

 PathName (see page 65) Returns path of the item. Path is combined from the item name and all parent
names.

 Visible (see page 65) Specifies whether item is selected.

Legend

Method

protected

virtual

Property

1.10 ecDlList Namespace EControl Form Designer Pro Classes

61

1

read only

TPropertyItem Methods

TPropertyItem Methods Description

 Add (see page 62) Adds new property item.

 Changed (see page 62) Called when property item was changed.

 Clear (see page 62) Deletes all items from the node.

 Create (see page 62) Creates and initializes a TPropertyItem instance.

 Delete (see page 63) Deletes Item at index

 Destroy (see page 63) Destroys an instance of TPropertyItem.

 Expandable (see page 63) Specifies whether property item can be expanded.

 GetName (see page 63) Returns name of the item. May be overridden in derived class.

 HasValue (see page 63) Specifies whether property item has value. For example, category item does
not have value.

 IndexOf (see page 63) Returns index of child item. If Item is not a child returns -1.

 Insert (see page 63) Adds a property item to the Items (see page 64) array at the position
specified by Index.

 IsEqual (see page 63) Returns True if property items are equal.

 IsRoot (see page 63) Returns True if the item is root (see page 64) item.

 Move (see page 63) Changes the position of an item in the Items (see page 64) array.

 Root (see page 64) Specifies Root item.

TPropertyItem Properties

TPropertyItem Properties Description

 Count (see page 64) Determines count of child items.

 DisplayName (see page 64) Specifies name displayed on screen

 Expanded (see page 64) Specifies if node is expanded or not.

 Items (see page 64) Provides indexed access to the child items.

 Level (see page 64) Indicates the level of indentation of a item within the property list control..

 Name (see page 64) Specifies the name of the property node.

 Parent (see page 65) Indicates the parent property of the node.

 PathName (see page 65) Returns path of the item. Path is combined from the item name and all parent
names.

 Visible (see page 65) Specifies whether item is selected.

1.10.1.3.1 TPropertyItem Methods

1.10.1.3.1.1 TPropertyItem.Add Method

Adds new property item.

procedure Add(Item: TPropertyItem);

1.10.1.3.1.2 TPropertyItem.Changed Method

Called when property item was changed.

procedure Changed; virtual ;

1.10.1.3.1.3 TPropertyItem.Clear Method

Deletes all items from the node.

procedure Clear; virtual ;

1.10.1.3.1.4 TPropertyItem.Create Constructor

Creates and initializes a TPropertyItem instance.

constructor Create;

1.10 ecDlList Namespace EControl Form Designer Pro Classes

62

1

Description

Use Create to programmatically instantiate a TPropertyItem object.

1.10.1.3.1.5 TPropertyItem.Delete Method

Deletes Item at index

procedure Delete(Index : integer);

1.10.1.3.1.6 TPropertyItem.Destroy Destructor

Destroys an instance of TPropertyItem.

destructor Destroy; override ;

Description

Do not call Destroy directly. Call Free instead. Free verifies that the object reference is not nil before calling Destroy.

1.10.1.3.1.7 TPropertyItem.Expandable Method

Specifies whether property item can be expanded.

function Expandable: Boolean; virtual ;

1.10.1.3.1.8 TPropertyItem.GetName Method

Returns name of the item. May be overridden in derived class.

function GetName: string ; virtual ;

1.10.1.3.1.9 TPropertyItem.HasValue Method

Specifies whether property item has value. For example, category item does not have value.

function HasValue: Boolean; virtual ;

1.10.1.3.1.10 TPropertyItem.IndexOf Method

Returns index of child item. If Item is not a child returns -1.

function IndexOf(Item: TPropertyItem): integer;

1.10.1.3.1.11 TPropertyItem.Insert Method

Adds a property item to the Items (see page 64) array at the position specified by Index.

procedure Insert(Index : integer; Item: TPropertyItem);

1.10.1.3.1.12 TPropertyItem.IsEqual Method

Returns True if property items are equal.

function IsEqual(Other: TPropertyItem): Boolean; virtual ;

1.10.1.3.1.13 TPropertyItem.IsRoot Method

Returns True if the item is root (see page 64) item.

function IsRoot: Boolean;

1.10.1.3.1.14 TPropertyItem.Move Method

Changes the position of an item in the Items (see page 64) array.

procedure Move(CurIndex: integer; NewIndex: integer);

1.10 ecDlList Namespace EControl Form Designer Pro Classes

63

1

Description

Call Move to move the item at the position CurIndex so that it occupies the position NewIndex. CurIndex and NewIndex are
zero-based indexes into the Items (see page 64) array.

1.10.1.3.1.15 TPropertyItem.Root Method

Specifies Root item.

function Root: TPropertyItem ;

1.10.1.3.2 TPropertyItem Properties

1.10.1.3.2.1 TPropertyItem.Count Property

Determines count of child items.

property Count: integer;

Description

This property have meaning only when node is expanded.

1.10.1.3.2.2 TPropertyItem.DisplayName Property

Specifies name displayed on screen

property DisplayName: WideString;

Description

This name may differ from Name (see page 64) property (due to localization e.g.)

1.10.1.3.2.3 TPropertyItem.Expanded Property

Specifies if node is expanded or not.

property Expanded: Boolean;

Description

Set this property to True to make the node expanded or to False to close it up.

1.10.1.3.2.4 TPropertyItem.Items Property

Provides indexed access to the child items.

property Items [Index : integer]: TPropertyItem ;

Description

Use Item to access a child node based on its Index property. The first child node has an index of 0, the second an index of 1,
and so on.

1.10.1.3.2.5 TPropertyItem.Level Property

Indicates the level of indentation of a item within the property list control..

property Level: integer;

1.10.1.3.2.6 TPropertyItem.Name Property

Specifies the name of the property node.

property Name: string ;

1.10 ecDlList Namespace EControl Form Designer Pro Classes

64

1

Description

In this class Name returns an empty string.

This property overrides in descendants to become sensible.

1.10.1.3.2.7 TPropertyItem.Parent Property

Indicates the parent property of the node.

property Parent: TPropertyItem ;

Description

Use the Parent property to get the parent node of this control.

1.10.1.3.2.8 TPropertyItem.PathName Property

Returns path of the item. Path is combined from the item name and all parent names.

property PathName: string ;

1.10.1.3.2.9 TPropertyItem.Visible Property

Specifies whether item is selected.

property Visible: Boolean;

1.10.1.4 TPropListRoot Class
Property items collection.

Class Hierarchy

TPropListRoot = class (TPropertyItem);

File

ecDlList

Description

Provides access to property items; manages expanding of items and items updating.

Members

TPropertyItem Methods

TPropertyItem Methods Description

 Add (see page 62) Adds new property item.

 Changed (see page 62) Called when property item was changed.

 Clear (see page 62) Deletes all items from the node.

 Create (see page 62) Creates and initializes a TPropertyItem instance.

 Delete (see page 63) Deletes Item at index

 Destroy (see page 63) Destroys an instance of TPropertyItem.

 Expandable (see page 63) Specifies whether property item can be expanded.

 GetName (see page 63) Returns name of the item. May be overridden in derived class.

 HasValue (see page 63) Specifies whether property item has value. For example, category item does
not have value.

 IndexOf (see page 63) Returns index of child item. If Item is not a child returns -1.

 Insert (see page 63) Adds a property item to the Items (see page 64) array at the position
specified by Index.

 IsEqual (see page 63) Returns True if property items are equal.

 IsRoot (see page 63) Returns True if the item is root (see page 64) item.

 Move (see page 63) Changes the position of an item in the Items (see page 64) array.

1.10 ecDlList Namespace EControl Form Designer Pro Classes

65

1

 Root (see page 64) Specifies Root item.

TPropListRoot Class

TPropListRoot Class Description

 BeginUpdate (see page 67) Suspends updating of property list.

 Changed (see page 67) Called when property item was changed.

 Create (see page 67) Creates and initializes a TPropListRoot instance.

 Destroy (see page 68) Destroys an instance of TPropListRoot.

 EndUpdate (see page 68) Re-enables screen repainting.

 ExpandItem (see page 68) Called when item is to be expanded.

 ExpIndexOf (see page 68) Returns visible index (expanded) of specified property node.

 RestoreState (see page 68) Restores previously saved state.

 SaveState (see page 68) Saves state, i.e. expanded items and select item.

 UpdateList (see page 68) Updates property list.

TPropertyItem Properties

TPropertyItem Properties Description

 Count (see page 64) Determines count of child items.

 DisplayName (see page 64) Specifies name displayed on screen

 Expanded (see page 64) Specifies if node is expanded or not.

 Items (see page 64) Provides indexed access to the child items.

 Level (see page 64) Indicates the level of indentation of a item within the property list control..

 Name (see page 64) Specifies the name of the property node.

 Parent (see page 65) Indicates the parent property of the node.

 PathName (see page 65) Returns path of the item. Path is combined from the item name and all parent
names.

 Visible (see page 65) Specifies whether item is selected.

TPropListRoot Class

TPropListRoot Class Description

 ExpCount (see page 68) Returns count of child nodes and their nodes recursively

 ExpItems (see page 68) Provides indexed access to the list of visible items.

 Owner (see page 69) Specifies custom property list - owner of property items collection.

Legend

Method

protected

virtual

Property

read only

TPropertyItem Methods

TPropertyItem Methods Description

 Add (see page 62) Adds new property item.

 Changed (see page 62) Called when property item was changed.

 Clear (see page 62) Deletes all items from the node.

 Create (see page 62) Creates and initializes a TPropertyItem instance.

 Delete (see page 63) Deletes Item at index

 Destroy (see page 63) Destroys an instance of TPropertyItem.

 Expandable (see page 63) Specifies whether property item can be expanded.

 GetName (see page 63) Returns name of the item. May be overridden in derived class.

 HasValue (see page 63) Specifies whether property item has value. For example, category item does
not have value.

 IndexOf (see page 63) Returns index of child item. If Item is not a child returns -1.

 Insert (see page 63) Adds a property item to the Items (see page 64) array at the position
specified by Index.

 IsEqual (see page 63) Returns True if property items are equal.

 IsRoot (see page 63) Returns True if the item is root (see page 64) item.

 Move (see page 63) Changes the position of an item in the Items (see page 64) array.

 Root (see page 64) Specifies Root item.

1.10 ecDlList Namespace EControl Form Designer Pro Classes

66

1

TPropListRoot Class

TPropListRoot Class Description

 BeginUpdate (see page 67) Suspends updating of property list.

 Changed (see page 67) Called when property item was changed.

 Create (see page 67) Creates and initializes a TPropListRoot instance.

 Destroy (see page 68) Destroys an instance of TPropListRoot.

 EndUpdate (see page 68) Re-enables screen repainting.

 ExpandItem (see page 68) Called when item is to be expanded.

 ExpIndexOf (see page 68) Returns visible index (expanded) of specified property node.

 RestoreState (see page 68) Restores previously saved state.

 SaveState (see page 68) Saves state, i.e. expanded items and select item.

 UpdateList (see page 68) Updates property list.

TPropertyItem Properties

TPropertyItem Properties Description

 Count (see page 64) Determines count of child items.

 DisplayName (see page 64) Specifies name displayed on screen

 Expanded (see page 64) Specifies if node is expanded or not.

 Items (see page 64) Provides indexed access to the child items.

 Level (see page 64) Indicates the level of indentation of a item within the property list control..

 Name (see page 64) Specifies the name of the property node.

 Parent (see page 65) Indicates the parent property of the node.

 PathName (see page 65) Returns path of the item. Path is combined from the item name and all parent
names.

 Visible (see page 65) Specifies whether item is selected.

TPropListRoot Class

TPropListRoot Class Description

 ExpCount (see page 68) Returns count of child nodes and their nodes recursively

 ExpItems (see page 68) Provides indexed access to the list of visible items.

 Owner (see page 69) Specifies custom property list - owner of property items collection.

1.10.1.4.1 TPropListRoot Methods

1.10.1.4.1.1 TPropListRoot.BeginUpdate Method

Suspends updating of property list.

procedure BeginUpdate;

Description

The BeginUpdate method suspends screen repainting until the EndUpdate (see page 68) method is called. Use
BeginUpdate to speed processing and avoid flicker while items are added to or deleted from a property list.

1.10.1.4.1.2 TPropListRoot.Changed Method

Called when property item was changed.

procedure Changed; override ;

1.10.1.4.1.3 TPropListRoot.Create Constructor

Creates and initializes a TPropListRoot instance.

constructor Create(AOwner: TDualList);

Description

Use Create to programmatically instantiate a TPropListRoot object.

1.10 ecDlList Namespace EControl Form Designer Pro Classes

67

1

1.10.1.4.1.4 TPropListRoot.Destroy Destructor

Destroys an instance of TPropListRoot.

destructor Destroy; override ;

Description

Do not call Destroy directly. Call Free instead. Free verifies that the object reference is not nil before calling Destroy.

1.10.1.4.1.5 TPropListRoot.EndUpdate Method

Re-enables screen repainting.

procedure EndUpdate;

Description

Use EndUpdate to re-enable screen repainting that was turned off with the BeginUpdate (see page 67) method.

1.10.1.4.1.6 TPropListRoot.ExpandItem Method

Called when item is to be expanded.

procedure ExpandItem(Item: TPropertyItem); virtual ;

1.10.1.4.1.7 TPropListRoot.ExpIndexOf Method

Returns visible index (expanded) of specified property node.

function ExpIndexOf(Item: TPropertyItem): integer;

1.10.1.4.1.8 TPropListRoot.RestoreState Method

Restores previously saved state.

procedure RestoreState;

1.10.1.4.1.9 TPropListRoot.SaveState Method

Saves state, i.e. expanded items and select item.

procedure SaveState;

1.10.1.4.1.10 TPropListRoot.UpdateList Method

Updates property list.

procedure UpdateList;

1.10.1.4.2 TPropListRoot Properties

1.10.1.4.2.1 TPropListRoot.ExpCount Property

Returns count of child nodes and their nodes recursively

property ExpCount: integer;

Description

ExpCount recursively computes count of visible child nodes.

1.10.1.4.2.2 TPropListRoot.ExpItems Property

Provides indexed access to the list of visible items.

property ExpItems [Index : integer]: TPropertyItem ;

1.10 ecDlList Namespace EControl Form Designer Pro Classes

68

1

Description

ExpItems property provides indexed access not only to the children of the root (see page 64) item but to all visible
(expanded) items.

1.10.1.4.2.3 TPropListRoot.Owner Property

Specifies custom property list - owner of property items collection.

property Owner: TDualList ;

1.10.2 Structs, Records, Enums

The following table lists structs, records, enums in this documentation.

Enumerations

Enumeration Description

 TCellType (see page 69) Specifies type of the cell in property list control.

Legend

Enumeration

1.10.2.1 ecDlList.TCellType Enumeration
TCellType = (
 ctPropName,
 ctPropValue,
 ctCategory
);

File

ecDlList

Members

Members Description

ctPropName Cell is name cell, left cell in dual list.

ctPropValue Cell is value cell, i.e. right cell in dual list.

ctCategory Cell is category item, i.e. it occupies both name and value cells.

Description

Specifies type of the cell in property list control.

1.10.3 Types

The following table lists types in this documentation.

Types

Type Description

TCustomPropDrawEvent (see page 70) See TCustomPropList.OnDrawPropCell Event (see page 51)

TGetCellParamsEvent (see page 70) See TCustomPropList.OnGetCellParams Event (see page 52)

1.10 ecDlList Namespace EControl Form Designer Pro Types

69

1

1.10.3.1 ecDlList.TCustomPropDrawEvent Type
See TCustomPropList.OnDrawPropCell Event (see page 51)

TCustomPropDrawEvent = procedure (Sender: TObject; const R: TRect; CellType: TCellType ;
Node: TPropertyItem ; Alignment: TAlignment) of object ;

File

ecDlList

1.10.3.2 ecDlList.TGetCellParamsEvent Type
See TCustomPropList.OnGetCellParams Event (see page 52)

TGetCellParamsEvent = procedure (Sender: TObject; Node: TPropertyItem ; Canvas: TCanvas;
CellType: TCellType ; var Alignment: TAlignment) of object ;

File

ecDlList

1.11 ecExtEdit Namespace

1.11.1 Classes

The following table lists classes in this documentation.

Classes

Class Description

TBtnEdit (see page 70) TBtnEdit is the base class from which TCustomEditEx (see page 78) control
is derived.

TCustomEditEx (see page 78) TCustomEditEx is an extended editor with button.

TEditEx (see page 85) TExtEdit is an extended editor with button.

TPopupListbox (see page 105) TPopupListbox represents drop-down list in TExtEdit type.

TUnicodeEdit (see page 107) Mask edit control with Unicode support.

1.11.1.1 TBtnEdit Class
TBtnEdit is the base class from which TCustomEditEx (see page 78) control is derived.

Class Hierarchy

TBtnEdit = class (TUnicodeEdit);

File

ecExtEdit

Description

TBtnEdit is inherited from TUnicodeEdit (see page 107) class.

1.11 ecExtEdit Namespace EControl Form Designer Pro Classes

70

1

It introduces optional button at the right side and optional status area at the left side of edit control

Members

TUnicodeEdit Methods

TUnicodeEdit Methods Description

 Create (see page 108) Creates and initializes a TUnicodeEdit instance.

 Destroy (see page 108) Destroys an instance of TUnicodeEdit.

TBtnEdit Class

TBtnEdit Class Description

 AdjustClientRect (see page 73) Overrides the inherited method.

 ButtonClick (see page 73) Simulates a button click, as if the user had clicked the button.

 Create (see page 73) Creates and initializes a TBtnEdit instance.

 CreateParams (see page 73) Overrides the inherited method.

 CreateWnd (see page 73) Overrides the inherited method.

 Destroy (see page 74) Destroys an instance of TBtnEdit

 EndTracking (see page 74) Called after finishing the mouse tracking

 KeyDown (see page 74) Overrides the inherited method.

 KeyPress (see page 74) Overrides the inherited method.

 MouseMove (see page 74) Overrides the inherited method.

 MouseUp (see page 75) Overrides the inherited method.

 Paint (see page 75) Overrides the base rendering method.

 PaintBtnGlyph (see page 75) Renders the image of the button.

 PaintStatus (see page 75) Paints status area. This method is called only if StatusWidth (see page 77)
is greater 0.

 PaintWindow (see page 75) Overrides the inherited method.

 PtInButton (see page 75) Checks if specified point is over the button

 StartTracking (see page 76) Calls immediately after user pushes the button.

 StopTracking (see page 76) Calls immediately after user releases the button.

 TrackButton (see page 76) Controls tracking button process.

TUnicodeEdit Properties

TUnicodeEdit Properties Description

 IsUnicode (see page 108) Specifies whether control is Unicode edit.

 SelTextW (see page 109) Specifies the selected portion of the edit control’s text (Unicode version).

 Text (see page 109) Specifies the text string that is displayed in the edit box (Ansi version).

 TextW (see page 109) Specifies the text string that is displayed in the edit box (Ansi version).

TBtnEdit Class

TBtnEdit Class Description

 Alignment (see page 76) Determines how the text is aligned within the editor control.

 ButtonVisible (see page 76) Specifies if button-like rectangle at the right edge of the control is visible.

 ButtonWidth (see page 77) Specifies width in pixels of the button.

 Canvas (see page 77) Provides access to the drawing surface of the TBtnEdit.

 MultiLine (see page 77) Designates a multiline edit control. The default is single-line edit control.

 StatusWidth (see page 77) Specifies width of status area. If StatusWidth is equal to 0 - status area is not
processed.

 WantReturns (see page 77) Determines whether the user can insert return characters into the text.

 WantTabs (see page 78) Determines whether the user can insert tab characters into the text.

 WordWrap (see page 78) Determines whether the edit control inserts soft carriage returns so text wraps
at the right margin.

TBtnEdit Events

TBtnEdit Class

TBtnEdit Class Description

 OnButtonClick (see page 78) Occurs when the user clicks the button.

1.11 ecExtEdit Namespace EControl Form Designer Pro Classes

71

1

Legend

Constructor

virtual

protected

Property

read only

Event

TBtnEdit Events

TBtnEdit Class

TBtnEdit Class Description

 OnButtonClick (see page 78) Occurs when the user clicks the button.

TUnicodeEdit Methods

TUnicodeEdit Methods Description

 Create (see page 108) Creates and initializes a TUnicodeEdit instance.

 Destroy (see page 108) Destroys an instance of TUnicodeEdit.

TBtnEdit Class

TBtnEdit Class Description

 AdjustClientRect (see page 73) Overrides the inherited method.

 ButtonClick (see page 73) Simulates a button click, as if the user had clicked the button.

 Create (see page 73) Creates and initializes a TBtnEdit instance.

 CreateParams (see page 73) Overrides the inherited method.

 CreateWnd (see page 73) Overrides the inherited method.

 Destroy (see page 74) Destroys an instance of TBtnEdit

 EndTracking (see page 74) Called after finishing the mouse tracking

 KeyDown (see page 74) Overrides the inherited method.

 KeyPress (see page 74) Overrides the inherited method.

 MouseMove (see page 74) Overrides the inherited method.

 MouseUp (see page 75) Overrides the inherited method.

 Paint (see page 75) Overrides the base rendering method.

 PaintBtnGlyph (see page 75) Renders the image of the button.

 PaintStatus (see page 75) Paints status area. This method is called only if StatusWidth (see page 77)
is greater 0.

 PaintWindow (see page 75) Overrides the inherited method.

 PtInButton (see page 75) Checks if specified point is over the button

 StartTracking (see page 76) Calls immediately after user pushes the button.

 StopTracking (see page 76) Calls immediately after user releases the button.

 TrackButton (see page 76) Controls tracking button process.

TUnicodeEdit Properties

TUnicodeEdit Properties Description

 IsUnicode (see page 108) Specifies whether control is Unicode edit.

 SelTextW (see page 109) Specifies the selected portion of the edit control’s text (Unicode version).

 Text (see page 109) Specifies the text string that is displayed in the edit box (Ansi version).

 TextW (see page 109) Specifies the text string that is displayed in the edit box (Ansi version).

TBtnEdit Class

TBtnEdit Class Description

 Alignment (see page 76) Determines how the text is aligned within the editor control.

 ButtonVisible (see page 76) Specifies if button-like rectangle at the right edge of the control is visible.

 ButtonWidth (see page 77) Specifies width in pixels of the button.

 Canvas (see page 77) Provides access to the drawing surface of the TBtnEdit.

 MultiLine (see page 77) Designates a multiline edit control. The default is single-line edit control.

 StatusWidth (see page 77) Specifies width of status area. If StatusWidth is equal to 0 - status area is not
processed.

 WantReturns (see page 77) Determines whether the user can insert return characters into the text.

 WantTabs (see page 78) Determines whether the user can insert tab characters into the text.

1.11 ecExtEdit Namespace EControl Form Designer Pro Classes

72

1

 WordWrap (see page 78) Determines whether the edit control inserts soft carriage returns so text wraps
at the right margin.

1.11.1.1.1 TBtnEdit Methods

1.11.1.1.1.1 TBtnEdit.AdjustClientRect Method

Overrides the inherited method.

procedure AdjustClientRect(var Rect: TRect); override ;

Description

First TBtnEdit (see page 70) calls inherited method then subtracts width of button from the right side of Rect parameter.

1.11.1.1.1.2 TBtnEdit.ButtonClick Method

Simulates a button click, as if the user had clicked the button.

procedure ButtonClick; virtual ;

Description

Calling ButtonClick generates an OnButtonClick (see page 78) event.

1.11.1.1.1.3 TBtnEdit.Create Constructor

Creates and initializes a TBtnEdit (see page 70) instance.

constructor Create(Owner: TComponent); override ;

Description

Use Create to programmatically instantiate this type of a control.

Create

• Calls the inherited Create method

• Sets the width of the button calling GetSystemMetrics method with SM_CXVSCROLL parameter

• Sets ButtonVisible (see page 76) to false

• Sets Alignment (see page 76) to taLeftJustify

• Sets MultiLine (see page 77) to true

• Creates Canvas (see page 77) object and sets its Control property to the control itself.

1.11.1.1.1.4 TBtnEdit.CreateParams Method

Overrides the inherited method.

procedure CreateParams(var Params: TCreateParams); override ;

Description

It initializes a window-creation parameter record passed in the Params parameter.

CreateParams

• Calls inherited method

• Adds to Style property Alignment (see page 76) and Multiline value

1.11.1.1.1.5 TBtnEdit.CreateWnd Method

Overrides the inherited method.

procedure CreateWnd; override ;

1.11 ecExtEdit Namespace EControl Form Designer Pro Classes

73

1

Description

CreateWnd

• Calls inherited method

• Updates button position

1.11.1.1.1.6 TBtnEdit.Destroy Destructor

Destroys an instance of TBtnEdit (see page 70)

destructor Destroy; override ;

Description

As the control is destroyed, it:

• Destroys the TCanvas object in its Canvas (see page 77) property.

• Calls the inherited Destroy method

1.11.1.1.1.7 TBtnEdit.EndTracking Method

Called after finishing the mouse tracking

procedure EndTracking(Pressed: Boolean); virtual ;

Description

Calls in the MouseUp (see page 75) method. If Pressed property is True it calls ButtonClick (see page 73) method.

1.11.1.1.1.8 TBtnEdit.KeyDown Method

Overrides the inherited method.

procedure KeyDown(var Key: Word; Shift: TShiftState); override ;

Description

If Key parameter is VK_RETURN and Shift is equal to ssCtrl it emulates ButtonClick (see page 73). Otherwise it calls
inherited method.

1.11.1.1.1.9 TBtnEdit.KeyPress Method

Overrides the inherited method.

procedure KeyPress(var Key: Char); override ;

Description

If Key parameter is VK_ESCAPE or VK_RETURN it

• notify parent form

• if Key is equal to VK_RETURN then calls inherited method and cleanse Key

Else it just calls inherited method.

1.11.1.1.1.10 TBtnEdit.MouseMove Method

Overrides the inherited method.

procedure MouseMove(Shift: TShiftState; X: Integer; Y: Integer); override ;

Description

First it calls TrackButton (see page 76) method if in tracking mode.

Then it calls inherited method.

1.11 ecExtEdit Namespace EControl Form Designer Pro Classes

74

1

1.11.1.1.1.11 TBtnEdit.MouseUp Method

Overrides the inherited method.

procedure MouseUp(Button: TMouseButton; Shift: TShiftState; X: Integer; Y: Integer);
override ;

Description

First it stops tracking process (if any).

Then it calls inherited method.

1.11.1.1.1.12 TBtnEdit.Paint Method

Overrides the base rendering method.

procedure Paint; virtual ;

Description

Does nothing in the TBtnEdt.

It uses in PaintWindow (see page 75) as part of template method.

Introduced for overriding in the descendants.

1.11.1.1.1.13 TBtnEdit.PaintBtnGlyph Method

Renders the image of the button.

procedure PaintBtnGlyph(Canvas : TCanvas; Rect: TRect); virtual ;

Description

Does nothing in the TBtnEdt.

It uses in PaintWindow (see page 75) as part of template method.

Introduced for overriding in the descendants.

1.11.1.1.1.14 TBtnEdit.PaintStatus Method

Paints status area. This method is called only if StatusWidth (see page 77) is greater 0.

procedure PaintStatus(Canvas : TCanvas; Rect: TRect); virtual ;

1.11.1.1.1.15 TBtnEdit.PaintWindow Method

Overrides the inherited method.

procedure PaintWindow(DC: HDC); override ;

Description

First it renders button if button is visible.

• Draws edge

• Calls PaintBtnGlyph (see page 75)

Second it updates text flags and calls Paint (see page 75) method.

1.11.1.1.1.16 TBtnEdit.PtInButton Method

Checks if specified point is over the button

function PtInButton(p: TPoint): Boolean;

1.11 ecExtEdit Namespace EControl Form Designer Pro Classes

75

1

Description

It uses in WM_LBUTTONDOWN, WM_LBUTTONDBLCLK, WM_SETCURSOR messages and TrackButton (see page 76)
method to verify if specified point is over the button rectangle.

1.11.1.1.1.17 TBtnEdit.StartTracking Method

Calls immediately after user pushes the button.

procedure StartTracking; virtual ;

Description

Stops tracking button and sets MouseCapture property to False.

1.11.1.1.1.18 TBtnEdit.StopTracking Method

Calls immediately after user releases the button.

procedure StopTracking;

Description

Stops tracking button and sets MouseCapture property to False.

1.11.1.1.1.19 TBtnEdit.TrackButton Method

Controls tracking button process.

procedure TrackButton(X: Integer; Y: Integer);

Description

• Determines if point with such coordinates is over button.

• Repaints the button area

1.11.1.1.2 TBtnEdit Properties

1.11.1.1.2.1 TBtnEdit.Alignment Property

Determines how the text is aligned within the editor control.

property Alignment: TAlignment;

Description

Use Alignment to change the way the text is formatted by the in-place editor control. Alignment can take one of the following
values:

Value Meaning

taLeftJustify Align text to the left side of the control

taCenter Center text horizontally in the control

taRightJustify Align text to the right side of the control

1.11.1.1.2.2 TBtnEdit.ButtonVisible Property

Specifies if button-like rectangle at the right edge of the control is visible.

property ButtonVisible: Boolean;

Description

There are three variants of TBtnEdit (see page 70) control appearance

1.11 ecExtEdit Namespace EControl Form Designer Pro Classes

76

1

EditStyle Appearance

ieSimple No button at all

ieEllipsis Button has ellipsis

iePickList Button with drop-down list (has arrow)

There are two ways to change this property: direct setting to True or False or setting EditStyle property.

1.11.1.1.2.3 TBtnEdit.ButtonWidth Property

Specifies width in pixels of the button.

property ButtonWidth: integer;

Description

This property specifies width in pixels of the button if any.

Use this property to read or set width of the button.

1.11.1.1.2.4 TBtnEdit.Canvas Property

Provides access to the drawing surface of the TBtnEdit (see page 70).

property Canvas: TCanvas;

Description

Use Canvas as the drawing surface when customizing the way the control paints itself. For example, when using a TBtnEdt
descendant there is a way to use Canvas to make specific drawing action.

1.11.1.1.2.5 TBtnEdit.MultiLine Property

Designates a multiline edit control. The default is single-line edit control.

property MultiLine: Boolean;

Description

When MultiLine is True TBtnEdit (see page 70) is equivalent to TMemo control, otherwise it is equivalent to TEdit control.

1.11.1.1.2.6 TBtnEdit.StatusWidth Property

Specifies width of status area. If StatusWidth is equal to 0 - status area is not processed.

property StatusWidth: integer;

1.11.1.1.2.7 TBtnEdit.WantReturns Property

Determines whether the user can insert return characters into the text.

property WantReturns: Boolean;

Description

Set WantReturns to true to allow users to enter return characters into the text. Set WantReturns to false to allow the form to
handle return characters instead.

For example, in a form with a default button (such as an OK button) and a memo control, if WantReturns is false, pressing
Enter chooses the default button. If WantReturns is true, pressing Enter inserts a return character in the text.

Notes

If WantReturns is false, users can still enter return characters into the text by pressing Ctrl+Enter.

1.11 ecExtEdit Namespace EControl Form Designer Pro Classes

77

1

1.11.1.1.2.8 TBtnEdit.WantTabs Property

Determines whether the user can insert tab characters into the text.

property WantTabs: Boolean;

Description

Set WantTabs to true to allow users to enter tab characters into the text. Set WantTabs to false if you want the tab character
to select the next control on the form instead.

Notes

If WantTabs is true, users can tab into the edit control, but they can’t tab out.

1.11.1.1.2.9 TBtnEdit.WordWrap Property

Determines whether the edit control inserts soft carriage returns so text wraps at the right margin.

property WordWrap: Boolean;

Description

Set WordWrap to true to make the edit control wrap text at the right margin so it fits in the client area. The wrapping is
cosmetic only. The text does not include any return characters that were not explicitly entered. Set WordWrap to false to
have the edit control show a separate line only where return characters were explicitly entered into the text.

Notes

There should be no use for a horizontal scroll bar if WordWrap is true.

1.11.1.1.3 TBtnEdit Events

1.11.1.1.3.1 TBtnEdit.OnButtonClick Event

Occurs when the user clicks the button.

property OnButtonClick: TNotifyEvent;

Description

Use the OnButtonClick event handler to respond when the user clicks the button or do some equivalent action such as
pressing the assotiated short keys or some. This is very similar to standard OnClick event.

1.11.1.2 TCustomEditEx Class
TCustomEditEx is an extended editor with button.

Class Hierarchy

TCustomEditEx = class (TBtnEdit);

File

ecExtEdit

Description

TCustomEditEx is an extended editor with button that may have one of three styles:

• Button with ellipsis. Represents possibility to call some dialog when pressed.

• Button with a scrollable list. Identical to TComboBox type.

• Simple editor without button

1.11 ecExtEdit Namespace EControl Form Designer Pro Classes

78

1

This type is used as in-place editors representation in Object Inspector.

Members

TUnicodeEdit Methods

TUnicodeEdit Methods Description

 Create (see page 108) Creates and initializes a TUnicodeEdit instance.

 Destroy (see page 108) Destroys an instance of TUnicodeEdit.

TBtnEdit Class

TBtnEdit Class Description

 AdjustClientRect (see page 73) Overrides the inherited method.

 ButtonClick (see page 73) Simulates a button click, as if the user had clicked the button.

 Create (see page 73) Creates and initializes a TBtnEdit (see page 70) instance.

 CreateParams (see page 73) Overrides the inherited method.

 CreateWnd (see page 73) Overrides the inherited method.

 Destroy (see page 74) Destroys an instance of TBtnEdit (see page 70)

 EndTracking (see page 74) Called after finishing the mouse tracking

 KeyDown (see page 74) Overrides the inherited method.

 KeyPress (see page 74) Overrides the inherited method.

 MouseMove (see page 74) Overrides the inherited method.

 MouseUp (see page 75) Overrides the inherited method.

 Paint (see page 75) Overrides the base rendering method.

 PaintBtnGlyph (see page 75) Renders the image of the button.

 PaintStatus (see page 75) Paints status area. This method is called only if StatusWidth (see page 77)
is greater 0.

 PaintWindow (see page 75) Overrides the inherited method.

 PtInButton (see page 75) Checks if specified point is over the button

 StartTracking (see page 76) Calls immediately after user pushes the button.

 StopTracking (see page 76) Calls immediately after user releases the button.

 TrackButton (see page 76) Controls tracking button process.

TCustomEditEx Class

TCustomEditEx Class Description

 AcceptListValue (see page 82) Active pop-up window.

 ButtonClick (see page 82) Simulates a button click, as if the user had clicked the button.

 CloseUp (see page 82) Generates an OnCloseUp (see page 85) event and makes some other
actions.

 Create (see page 82) Creates and initializes a TBtnEdit instance.

 Destroy (see page 82) Destroys an instance of TBtnEdit

 DoDropDownKeys (see page 83) Works as a method dispatcher depending on parameter values.

 DropDown (see page 83) Generates an OnDropDown (see page 85) event.

 EndTracking (see page 83) Called after finishing the mouse tracking

 KeyPress (see page 83) Respond to keyboard input.

 MouseDown (see page 83) Overrides inherited method

 MouseMove (see page 83) Overrides the inherited method.

 PaintBtnGlyph (see page 84) Overrides inherited method

 StartTracking (see page 84) Overrides inherited property

TUnicodeEdit Properties

TUnicodeEdit Properties Description

 IsUnicode (see page 108) Specifies whether control is Unicode edit.

 SelTextW (see page 109) Specifies the selected portion of the edit control’s text (Unicode version).

 Text (see page 109) Specifies the text string that is displayed in the edit box (Ansi version).

 TextW (see page 109) Specifies the text string that is displayed in the edit box (Ansi version).

TBtnEdit Class

TBtnEdit Class Description

 Alignment (see page 76) Determines how the text is aligned within the editor control.

 ButtonVisible (see page 76) Specifies if button-like rectangle at the right edge of the control is visible.

1.11 ecExtEdit Namespace EControl Form Designer Pro Classes

79

1

 ButtonWidth (see page 77) Specifies width in pixels of the button.

 Canvas (see page 77) Provides access to the drawing surface of the TBtnEdit (see page 70).

 MultiLine (see page 77) Designates a multiline edit control. The default is single-line edit control.

 StatusWidth (see page 77) Specifies width of status area. If StatusWidth is equal to 0 - status area is not
processed.

 WantReturns (see page 77) Determines whether the user can insert return characters into the text.

 WantTabs (see page 78) Determines whether the user can insert tab characters into the text.

 WordWrap (see page 78) Determines whether the edit control inserts soft carriage returns so text wraps
at the right margin.

TCustomEditEx Class

TCustomEditEx Class Description

 ActiveList (see page 84) Specifies current popup control.

 EditStyle (see page 84) Specifies edit style of the button

 ListAlign (see page 84) Specifies relative align of popup control.

 PickList (see page 84) Determines the drop-down list.

TBtnEdit Events

TBtnEdit Class

TBtnEdit Class Description

 OnButtonClick (see page 78) Occurs when the user clicks the button.

TCustomEditEx Class

TCustomEditEx Class Description

 OnAcceptListValue (see page 85) Occurs when the user makes right choice in the drop-down list.

 OnCloseUp (see page 85) Occurs when the drop-down list closes up due to some user action.

 OnDropDown (see page 85) Occurs when the user opens the drop-down list.

 OnMeasureWidth (see page 85) Occurs when width of controls needs to be calculated.

Legend

Constructor

virtual

protected

Property

read only

Event

TBtnEdit Events

TBtnEdit Class

TBtnEdit Class Description

 OnButtonClick (see page 78) Occurs when the user clicks the button.

TCustomEditEx Class

TCustomEditEx Class Description

 OnAcceptListValue (see page 85) Occurs when the user makes right choice in the drop-down list.

 OnCloseUp (see page 85) Occurs when the drop-down list closes up due to some user action.

 OnDropDown (see page 85) Occurs when the user opens the drop-down list.

 OnMeasureWidth (see page 85) Occurs when width of controls needs to be calculated.

TUnicodeEdit Methods

TUnicodeEdit Methods Description

 Create (see page 108) Creates and initializes a TUnicodeEdit instance.

 Destroy (see page 108) Destroys an instance of TUnicodeEdit.

TBtnEdit Class

TBtnEdit Class Description

 AdjustClientRect (see page 73) Overrides the inherited method.

 ButtonClick (see page 73) Simulates a button click, as if the user had clicked the button.

 Create (see page 73) Creates and initializes a TBtnEdit (see page 70) instance.

1.11 ecExtEdit Namespace EControl Form Designer Pro Classes

80

1

 CreateParams (see page 73) Overrides the inherited method.

 CreateWnd (see page 73) Overrides the inherited method.

 Destroy (see page 74) Destroys an instance of TBtnEdit (see page 70)

 EndTracking (see page 74) Called after finishing the mouse tracking

 KeyDown (see page 74) Overrides the inherited method.

 KeyPress (see page 74) Overrides the inherited method.

 MouseMove (see page 74) Overrides the inherited method.

 MouseUp (see page 75) Overrides the inherited method.

 Paint (see page 75) Overrides the base rendering method.

 PaintBtnGlyph (see page 75) Renders the image of the button.

 PaintStatus (see page 75) Paints status area. This method is called only if StatusWidth (see page 77)
is greater 0.

 PaintWindow (see page 75) Overrides the inherited method.

 PtInButton (see page 75) Checks if specified point is over the button

 StartTracking (see page 76) Calls immediately after user pushes the button.

 StopTracking (see page 76) Calls immediately after user releases the button.

 TrackButton (see page 76) Controls tracking button process.

TCustomEditEx Class

TCustomEditEx Class Description

 AcceptListValue (see page 82) Active pop-up window.

 ButtonClick (see page 82) Simulates a button click, as if the user had clicked the button.

 CloseUp (see page 82) Generates an OnCloseUp (see page 85) event and makes some other
actions.

 Create (see page 82) Creates and initializes a TBtnEdit instance.

 Destroy (see page 82) Destroys an instance of TBtnEdit

 DoDropDownKeys (see page 83) Works as a method dispatcher depending on parameter values.

 DropDown (see page 83) Generates an OnDropDown (see page 85) event.

 EndTracking (see page 83) Called after finishing the mouse tracking

 KeyPress (see page 83) Respond to keyboard input.

 MouseDown (see page 83) Overrides inherited method

 MouseMove (see page 83) Overrides the inherited method.

 PaintBtnGlyph (see page 84) Overrides inherited method

 StartTracking (see page 84) Overrides inherited property

TUnicodeEdit Properties

TUnicodeEdit Properties Description

 IsUnicode (see page 108) Specifies whether control is Unicode edit.

 SelTextW (see page 109) Specifies the selected portion of the edit control’s text (Unicode version).

 Text (see page 109) Specifies the text string that is displayed in the edit box (Ansi version).

 TextW (see page 109) Specifies the text string that is displayed in the edit box (Ansi version).

TBtnEdit Class

TBtnEdit Class Description

 Alignment (see page 76) Determines how the text is aligned within the editor control.

 ButtonVisible (see page 76) Specifies if button-like rectangle at the right edge of the control is visible.

 ButtonWidth (see page 77) Specifies width in pixels of the button.

 Canvas (see page 77) Provides access to the drawing surface of the TBtnEdit (see page 70).

 MultiLine (see page 77) Designates a multiline edit control. The default is single-line edit control.

 StatusWidth (see page 77) Specifies width of status area. If StatusWidth is equal to 0 - status area is not
processed.

 WantReturns (see page 77) Determines whether the user can insert return characters into the text.

 WantTabs (see page 78) Determines whether the user can insert tab characters into the text.

 WordWrap (see page 78) Determines whether the edit control inserts soft carriage returns so text wraps
at the right margin.

TCustomEditEx Class

TCustomEditEx Class Description

 ActiveList (see page 84) Specifies current popup control.

 EditStyle (see page 84) Specifies edit style of the button

1.11 ecExtEdit Namespace EControl Form Designer Pro Classes

81

1

 ListAlign (see page 84) Specifies relative align of popup control.

 PickList (see page 84) Determines the drop-down list.

1.11.1.2.1 TCustomEditEx Methods

1.11.1.2.1.1 TCustomEditEx.AcceptListValue Method

Active pop-up window.

procedure AcceptListValue(var ListValue: string); virtual ;

Description

This is an active pop-up window.

It is used when EditStyle (see page 84) is iePickList and drop-down list is open.

1.11.1.2.1.2 TCustomEditEx.ButtonClick Method

Simulates a button click, as if the user had clicked the button.

procedure ButtonClick; override ;

Description

Calling ButtonClick generates an OnButtonClick event.

1.11.1.2.1.3 TCustomEditEx.CloseUp Method

Generates an OnCloseUp (see page 85) event and makes some other actions.

procedure CloseUp(Accept: Boolean);

Description

This method generates an OnCloseUp (see page 85) event and calls AcceptListValue (see page 82) if Accept and
EditCanModify are both true.

1.11.1.2.1.4 TCustomEditEx.Create Constructor

Creates and initializes a TBtnEdit instance.

constructor Create(Owner: TComponent); override ;

Description

Use Create to programmatically instantiate this type of a control.

Create

• Calls the inherited Create method

• Sets the width of the button calling GetSystemMetrics method with SM_CXVSCROLL parameter

• Sets ButtonVisible to false

• Sets Alignment to taLeftJustify

• Sets MultiLine to true

• Creates Canvas object and sets its Control property to the control itself.

1.11.1.2.1.5 TCustomEditEx.Destroy Destructor

Destroys an instance of TBtnEdit

destructor Destroy; override ;

1.11 ecExtEdit Namespace EControl Form Designer Pro Classes

82

1

Description

As the control is destroyed, it:

• Destroys the TCanvas object in its Canvas property.

• Calls the inherited Destroy method

1.11.1.2.1.6 TCustomEditEx.DoDropDownKeys Method

Works as a method dispatcher depending on parameter values.

procedure DoDropDownKeys(var Key: Word; Shift: TShiftState);

Description

This method calls another depending on some circumstances

• if Key is equal to VK_UP or VK_DOWN and Shift contains ssAlt it drops or closes the drop-down list up

• if Key is equal to VK_RETURN or VK_ESCAPE and Shift does not contain ssAlt it closes the drop-down list up

1.11.1.2.1.7 TCustomEditEx.DropDown Method

Generates an OnDropDown (see page 85) event.

procedure DropDown; dynamic ;

Description

This method prepares and drops the drop-down list (if any).

In addition it generates OnDropDown (see page 85) event.

1.11.1.2.1.8 TCustomEditEx.EndTracking Method

Called after finishing the mouse tracking

procedure EndTracking(Pressed: Boolean); override ;

Description

Calls in the MouseUp method. If Pressed property is True it calls ButtonClick method.

1.11.1.2.1.9 TCustomEditEx.KeyPress Method

Respond to keyboard input.

procedure KeyPress(var Key: Char); override ;

Description

Closing drop-down list up (if any and visible) when Key is equal to VK_RETURN and VK_ESCAPE then calls inherited
method.

1.11.1.2.1.10 TCustomEditEx.MouseDown Method

Overrides inherited method

procedure MouseDown(Button: TMouseButton; Shift: TShiftState; X: Integer; Y: Integer);
override ;

Description

Closes drop-down list up and calls inherited method.

1.11.1.2.1.11 TCustomEditEx.MouseMove Method

Overrides the inherited method.

1.11 ecExtEdit Namespace EControl Form Designer Pro Classes

83

1

procedure MouseMove(Shift: TShiftState; X: Integer; Y: Integer); override ;

Description

First it calls TrackButton method if in tracking mode.

Then it calls inherited method.

1.11.1.2.1.12 TCustomEditEx.PaintBtnGlyph Method

Overrides inherited method

procedure PaintBtnGlyph(Canvas : TCanvas; Rect: TRect); override ;

Description

Paints glyphs on the buton surface depending on EditStyle (see page 84) property.

1.11.1.2.1.13 TCustomEditEx.StartTracking Method

Overrides inherited property

procedure StartTracking; override ;

Description

Calls inherited method, then closes up or drops down drop-down list.

1.11.1.2.2 TCustomEditEx Properties

1.11.1.2.2.1 TCustomEditEx.ActiveList Property

Specifies current popup control.

property ActiveList: TWinControl;

Description

When popup is not shown ActiveList is nil otherwise it is equal to PickList (see page 84).

1.11.1.2.2.2 TCustomEditEx.EditStyle Property

Specifies edit style of the button

property EditStyle: TInplaceEditStyle ;

Description

Specifies of what visual representation the button will be.

There are three styles available

• ieSimple - without button

• ieEllipsis - button with ellipsis

• iePickList - button with drop-down list

1.11.1.2.2.3 TCustomEditEx.ListAlign Property

Specifies relative align of popup control.

property ListAlign: TAlignment;

1.11.1.2.2.4 TCustomEditEx.PickList Property

Determines the drop-down list.

property PickList: TPopupListbox ;

1.11 ecExtEdit Namespace EControl Form Designer Pro Classes

84

1

Description

Use this property to access drop-down list object for iePickList EditStyle (see page 84).

1.11.1.2.3 TCustomEditEx Events

1.11.1.2.3.1 TCustomEditEx.OnAcceptListValue Event

Occurs when the user makes right choice in the drop-down list.

property OnAcceptListValue: TOnAcceptListValueEvent ;

Description

Write an OnAcceptListValue event handler to implement special processing that needs to occur when the user makes a
choice in the drop-down list. For example, an OnAcceptListValue event handler can check whether the user can make or not
such choice.

1.11.1.2.3.2 TCustomEditEx.OnCloseUp Event

Occurs when the drop-down list closes up due to some user action.

property OnCloseUp: TCloseUpEvent ;

Description

Write an OnCloseUp event handler to implement special processing that needs to occur when the drop-down list closes up.
For example, an OnCloseUp event handler can check whether the user changed the selected item while the list was
dropped down and respond accordingly.

1.11.1.2.3.3 TCustomEditEx.OnDropDown Event

Occurs when the user opens the drop-down list.

property OnDropDown: TNotifyEvent;

Description

Write an OnDropDown event handler to implement special processing that needs to occur only when the drop-down list is
activated.

1.11.1.2.3.4 TCustomEditEx.OnMeasureWidth Event

Occurs when width of controls needs to be calculated.

property OnMeasureWidth: TMeasureWidthEvent ;

Description

Parameter AWidth represents calculated width, in pixels, of specified in Value text for specified Canvas (see page 77).

Write an OnMeasureWidth event handler to specify the new user width.

1.11.1.3 TEditEx Class
TExtEdit is an extended editor with button.

Class Hierarchy

TEditEx = class (TCustomEditEx);

1.11 ecExtEdit Namespace EControl Form Designer Pro Classes

85

1

File

ecExtEdit

Description

TExtEdit is an extended editor with button that may have one of three styles:

• Button with ellipsis. Represents possibility to call some dialog when pressed.

• Button with a scrollable list. Identical to TComboBox type.

• Simple editor without button

This type is used as in-place editors representation in Object Inspector.

Members

TUnicodeEdit Methods

TUnicodeEdit Methods Description

 Create (see page 108) Creates and initializes a TUnicodeEdit instance.

 Destroy (see page 108) Destroys an instance of TUnicodeEdit.

TBtnEdit Class

TBtnEdit Class Description

 AdjustClientRect (see page 73) Overrides the inherited method.

 ButtonClick (see page 73) Simulates a button click, as if the user had clicked the button.

 Create (see page 73) Creates and initializes a TBtnEdit (see page 70) instance.

 CreateParams (see page 73) Overrides the inherited method.

 CreateWnd (see page 73) Overrides the inherited method.

 Destroy (see page 74) Destroys an instance of TBtnEdit (see page 70)

 EndTracking (see page 74) Called after finishing the mouse tracking

 KeyDown (see page 74) Overrides the inherited method.

 KeyPress (see page 74) Overrides the inherited method.

 MouseMove (see page 74) Overrides the inherited method.

 MouseUp (see page 75) Overrides the inherited method.

 Paint (see page 75) Overrides the base rendering method.

 PaintBtnGlyph (see page 75) Renders the image of the button.

 PaintStatus (see page 75) Paints status area. This method is called only if StatusWidth (see page 77)
is greater 0.

 PaintWindow (see page 75) Overrides the inherited method.

 PtInButton (see page 75) Checks if specified point is over the button

 StartTracking (see page 76) Calls immediately after user pushes the button.

 StopTracking (see page 76) Calls immediately after user releases the button.

 TrackButton (see page 76) Controls tracking button process.

TCustomEditEx Class

TCustomEditEx Class Description

 AcceptListValue (see page 82) Active pop-up window.

 ButtonClick (see page 82) Simulates a button click, as if the user had clicked the button.

 CloseUp (see page 82) Generates an OnCloseUp (see page 85) event and makes some other
actions.

 Create (see page 82) Creates and initializes a TBtnEdit instance.

 Destroy (see page 82) Destroys an instance of TBtnEdit

 DoDropDownKeys (see page 83) Works as a method dispatcher depending on parameter values.

 DropDown (see page 83) Generates an OnDropDown (see page 85) event.

 EndTracking (see page 83) Called after finishing the mouse tracking

 KeyPress (see page 83) Respond to keyboard input.

 MouseDown (see page 83) Overrides inherited method

 MouseMove (see page 83) Overrides the inherited method.

 PaintBtnGlyph (see page 84) Overrides inherited method

 StartTracking (see page 84) Overrides inherited property

1.11 ecExtEdit Namespace EControl Form Designer Pro Classes

86

1

TUnicodeEdit Properties

TUnicodeEdit Properties Description

 IsUnicode (see page 108) Specifies whether control is Unicode edit.

 SelTextW (see page 109) Specifies the selected portion of the edit control’s text (Unicode version).

 Text (see page 109) Specifies the text string that is displayed in the edit box (Ansi version).

 TextW (see page 109) Specifies the text string that is displayed in the edit box (Ansi version).

TBtnEdit Class

TBtnEdit Class Description

 Alignment (see page 76) Determines how the text is aligned within the editor control.

 ButtonVisible (see page 76) Specifies if button-like rectangle at the right edge of the control is visible.

 ButtonWidth (see page 77) Specifies width in pixels of the button.

 Canvas (see page 77) Provides access to the drawing surface of the TBtnEdit (see page 70).

 MultiLine (see page 77) Designates a multiline edit control. The default is single-line edit control.

 StatusWidth (see page 77) Specifies width of status area. If StatusWidth is equal to 0 - status area is not
processed.

 WantReturns (see page 77) Determines whether the user can insert return characters into the text.

 WantTabs (see page 78) Determines whether the user can insert tab characters into the text.

 WordWrap (see page 78) Determines whether the edit control inserts soft carriage returns so text wraps
at the right margin.

TCustomEditEx Class

TCustomEditEx Class Description

 ActiveList (see page 84) Specifies current popup control.

 EditStyle (see page 84) Specifies edit style of the button

 ListAlign (see page 84) Specifies relative align of popup control.

 PickList (see page 84) Determines the drop-down list.

TEditEx Class

TEditEx Class Description

 Alignment (see page 92) Determines how the text is aligned within the editor control.

 Anchors (see page 92) Specifies how the control is anchored to its parent.

 AutoSelect (see page 92) Determines whether all the text in the edit control is automatically selected
when the control gets focus.

 AutoSize (see page 92) Determines whether the height of the edit control automatically resizes to
accommodate the text.

 BevelEdges (see page 93) Specifies which edges of the control are beveled.

 BevelInner (see page 93) Specifies the cut of the inner bevel.

 BevelKind (see page 93) Specifies the control’s bevel style.

 BevelOuter (see page 93) Specifies the cut of the outer bevel.

 BevelWidth (see page 93) Specifies the width of the inner and outer bevels.

 BiDiMode (see page 94) Specifies the bi-directional mode for the control.

 BorderStyle (see page 94) Determines the style of the line drawn around the perimeter of the control.

 ButtonWidth (see page 94) Specifies width in pixels of the button.

 CharCase (see page 94) Determines the case of the text within the edit control.

 Color (see page 95) Specifies the background color of the control.

 Constraints (see page 95) Specifies the size constraints for the control.

 Ctl3D (see page 95) Determines whether a control has a three-dimensional (3-D) or
two-dimensional look.

 DragCursor (see page 95) Indicates the image used to represent the mouse pointer when the control is
being dragged.

 DragKind (see page 95) Specifies whether the control is being dragged normally or for docking.

 DragMode (see page 95) Determines how the control initiates drag-and-drop or drag-and-dock
operations.

 EditMask (see page 96) Specifies the mask that represents what text is valid for the masked edit
control.

 EditStyle (see page 96) Specifies edit style of the button

 Enabled (see page 96) Controls whether the control responds to mouse, keyboard, and timer events.

 Font (see page 96) Controls the attributes of text written on or in the control.

 ImeMode (see page 96) Determines the behavior of the input method editor (IME).

1.11 ecExtEdit Namespace EControl Form Designer Pro Classes

87

1

 ImeName (see page 97) Specifies the input method editor (IME) to use for converting keyboard input to
Asian language characters.

 IsUnicode (see page 97) Specifies whether control is Unicode edit.

 ListAlign (see page 97) Specifies relative align of popup control.

 MaxLength (see page 97) Specifies the maximum number of characters that can appear in the edit
control.

 OnAcceptListValue (see page 98) Occurs when the user makes right choice in the drop-down list.

 OnButtonClick (see page 98) Occurs when the user clicks the button.

 OnChange (see page 98) Occurs when the text for the edit control may have changed.

 OnClick (see page 98) Occurs when the user clicks the control.

 OnCloseUp (see page 98) Occurs when the drop-down list closes up due to some user action.

 OnDblClick (see page 98) Occurs when the user double-clicks the left mouse button when the mouse
pointer is over the control.

 OnDragDrop (see page 98) Occurs when the user drops an object being dragged.

 OnDragOver (see page 99) Occurs when the user drags an object over a control.

 OnDropDown (see page 99) Occurs when the user opens the drop-down list.

 OnEndDrag (see page 99) Occurs when the dragging of an object ends, either by dropping the object or
by canceling the dragging.

 OnEnter (see page 99) Occurs when a control receives the input focus.

 OnExit (see page 100) Occurs when the input focus shifts away from one control to another.

 OnKeyDown (see page 100) Occurs when a user presses any key while the control has focus.

 OnKeyPress (see page 100) Occurs when key pressed.

 OnKeyUp (see page 100) Occurs when the user releases a key that has been pressed.

 OnMeasureWidth (see page 101) Occurs when width of controls needs to be calculated.

 OnMouseDown (see page 101) Occurs when the user presses a mouse button with the mouse pointer over a
control.

 OnMouseMove (see page 101) Occurs when the user moves the mouse pointer while the mouse pointer is
over a control.

 OnMouseUp (see page 101) Occurs when the user releases a mouse button that was pressed with the
mouse pointer over a component.

 OnStartDrag (see page 102) Occurs when the user begins to drag the control or an object it contains by
left-clicking on the control and holding the mouse button down.

 ParentBiDiMode (see page 102) Specifies whether the control uses its parent’s BiDiMode.

 ParentColor (see page 102) Determines where a control looks for its color information.

 ParentCtl3D (see page 102) Determines where a component looks to determine if it should appear three
dimensional.

 ParentFont (see page 102) Determines where a control looks for its font information.

 ParentShowHint (see page 102) Determines where a control looks to find out if its Help Hint should be shown.

 PasswordChar (see page 103) Indicates the character, if any, to display in place of the actual characters
typed in the control.

 PickList (see page 103) Determines the drop-down list.

 PopupMenu (see page 103) Identifies the pop-up menu associated with the control.

 ReadOnly (see page 103) Determines whether the user can change the text of the edit control.

 SelTextW (see page 103) Specifies the selected portion of the edit control’s text (Unicode version).

 ShowHint (see page 104) Determines whether the control displays a Help Hint when the mouse pointer
rests momentarily on the control.

 StatusWidth (see page 104) Specifies width of status area. If StatusWidth is equal to 0 - status area is not
processed.

 TabOrder (see page 104) Indicates the position of the control in its parent's tab order.

 TabStop (see page 104) Determines if the user can tab to a control.

 Text (see page 104) Specifies the text string that is displayed in the edit box (Ansi version).

 TextW (see page 104) Specifies the text string that is displayed in the edit box (Ansi version).

 Visible (see page 104) Determines whether the component appears on screen.

TBtnEdit Events

TBtnEdit Class

TBtnEdit Class Description

 OnButtonClick (see page 78) Occurs when the user clicks the button.

TCustomEditEx Class

TCustomEditEx Class Description

 OnAcceptListValue (see page 85) Occurs when the user makes right choice in the drop-down list.

1.11 ecExtEdit Namespace EControl Form Designer Pro Classes

88

1

 OnCloseUp (see page 85) Occurs when the drop-down list closes up due to some user action.

 OnDropDown (see page 85) Occurs when the user opens the drop-down list.

 OnMeasureWidth (see page 85) Occurs when width of controls needs to be calculated.

Legend

Constructor

virtual

protected

Property

read only

Event

TBtnEdit Events

TBtnEdit Class

TBtnEdit Class Description

 OnButtonClick (see page 78) Occurs when the user clicks the button.

TCustomEditEx Class

TCustomEditEx Class Description

 OnAcceptListValue (see page 85) Occurs when the user makes right choice in the drop-down list.

 OnCloseUp (see page 85) Occurs when the drop-down list closes up due to some user action.

 OnDropDown (see page 85) Occurs when the user opens the drop-down list.

 OnMeasureWidth (see page 85) Occurs when width of controls needs to be calculated.

TUnicodeEdit Methods

TUnicodeEdit Methods Description

 Create (see page 108) Creates and initializes a TUnicodeEdit instance.

 Destroy (see page 108) Destroys an instance of TUnicodeEdit.

TBtnEdit Class

TBtnEdit Class Description

 AdjustClientRect (see page 73) Overrides the inherited method.

 ButtonClick (see page 73) Simulates a button click, as if the user had clicked the button.

 Create (see page 73) Creates and initializes a TBtnEdit (see page 70) instance.

 CreateParams (see page 73) Overrides the inherited method.

 CreateWnd (see page 73) Overrides the inherited method.

 Destroy (see page 74) Destroys an instance of TBtnEdit (see page 70)

 EndTracking (see page 74) Called after finishing the mouse tracking

 KeyDown (see page 74) Overrides the inherited method.

 KeyPress (see page 74) Overrides the inherited method.

 MouseMove (see page 74) Overrides the inherited method.

 MouseUp (see page 75) Overrides the inherited method.

 Paint (see page 75) Overrides the base rendering method.

 PaintBtnGlyph (see page 75) Renders the image of the button.

 PaintStatus (see page 75) Paints status area. This method is called only if StatusWidth (see page 77)
is greater 0.

 PaintWindow (see page 75) Overrides the inherited method.

 PtInButton (see page 75) Checks if specified point is over the button

 StartTracking (see page 76) Calls immediately after user pushes the button.

 StopTracking (see page 76) Calls immediately after user releases the button.

 TrackButton (see page 76) Controls tracking button process.

TCustomEditEx Class

TCustomEditEx Class Description

 AcceptListValue (see page 82) Active pop-up window.

 ButtonClick (see page 82) Simulates a button click, as if the user had clicked the button.

 CloseUp (see page 82) Generates an OnCloseUp (see page 85) event and makes some other
actions.

 Create (see page 82) Creates and initializes a TBtnEdit instance.

1.11 ecExtEdit Namespace EControl Form Designer Pro Classes

89

1

 Destroy (see page 82) Destroys an instance of TBtnEdit

 DoDropDownKeys (see page 83) Works as a method dispatcher depending on parameter values.

 DropDown (see page 83) Generates an OnDropDown (see page 85) event.

 EndTracking (see page 83) Called after finishing the mouse tracking

 KeyPress (see page 83) Respond to keyboard input.

 MouseDown (see page 83) Overrides inherited method

 MouseMove (see page 83) Overrides the inherited method.

 PaintBtnGlyph (see page 84) Overrides inherited method

 StartTracking (see page 84) Overrides inherited property

TUnicodeEdit Properties

TUnicodeEdit Properties Description

 IsUnicode (see page 108) Specifies whether control is Unicode edit.

 SelTextW (see page 109) Specifies the selected portion of the edit control’s text (Unicode version).

 Text (see page 109) Specifies the text string that is displayed in the edit box (Ansi version).

 TextW (see page 109) Specifies the text string that is displayed in the edit box (Ansi version).

TBtnEdit Class

TBtnEdit Class Description

 Alignment (see page 76) Determines how the text is aligned within the editor control.

 ButtonVisible (see page 76) Specifies if button-like rectangle at the right edge of the control is visible.

 ButtonWidth (see page 77) Specifies width in pixels of the button.

 Canvas (see page 77) Provides access to the drawing surface of the TBtnEdit (see page 70).

 MultiLine (see page 77) Designates a multiline edit control. The default is single-line edit control.

 StatusWidth (see page 77) Specifies width of status area. If StatusWidth is equal to 0 - status area is not
processed.

 WantReturns (see page 77) Determines whether the user can insert return characters into the text.

 WantTabs (see page 78) Determines whether the user can insert tab characters into the text.

 WordWrap (see page 78) Determines whether the edit control inserts soft carriage returns so text wraps
at the right margin.

TCustomEditEx Class

TCustomEditEx Class Description

 ActiveList (see page 84) Specifies current popup control.

 EditStyle (see page 84) Specifies edit style of the button

 ListAlign (see page 84) Specifies relative align of popup control.

 PickList (see page 84) Determines the drop-down list.

TEditEx Class

TEditEx Class Description

 Alignment (see page 92) Determines how the text is aligned within the editor control.

 Anchors (see page 92) Specifies how the control is anchored to its parent.

 AutoSelect (see page 92) Determines whether all the text in the edit control is automatically selected
when the control gets focus.

 AutoSize (see page 92) Determines whether the height of the edit control automatically resizes to
accommodate the text.

 BevelEdges (see page 93) Specifies which edges of the control are beveled.

 BevelInner (see page 93) Specifies the cut of the inner bevel.

 BevelKind (see page 93) Specifies the control’s bevel style.

 BevelOuter (see page 93) Specifies the cut of the outer bevel.

 BevelWidth (see page 93) Specifies the width of the inner and outer bevels.

 BiDiMode (see page 94) Specifies the bi-directional mode for the control.

 BorderStyle (see page 94) Determines the style of the line drawn around the perimeter of the control.

 ButtonWidth (see page 94) Specifies width in pixels of the button.

 CharCase (see page 94) Determines the case of the text within the edit control.

 Color (see page 95) Specifies the background color of the control.

 Constraints (see page 95) Specifies the size constraints for the control.

 Ctl3D (see page 95) Determines whether a control has a three-dimensional (3-D) or
two-dimensional look.

 DragCursor (see page 95) Indicates the image used to represent the mouse pointer when the control is
being dragged.

1.11 ecExtEdit Namespace EControl Form Designer Pro Classes

90

1

 DragKind (see page 95) Specifies whether the control is being dragged normally or for docking.

 DragMode (see page 95) Determines how the control initiates drag-and-drop or drag-and-dock
operations.

 EditMask (see page 96) Specifies the mask that represents what text is valid for the masked edit
control.

 EditStyle (see page 96) Specifies edit style of the button

 Enabled (see page 96) Controls whether the control responds to mouse, keyboard, and timer events.

 Font (see page 96) Controls the attributes of text written on or in the control.

 ImeMode (see page 96) Determines the behavior of the input method editor (IME).

 ImeName (see page 97) Specifies the input method editor (IME) to use for converting keyboard input to
Asian language characters.

 IsUnicode (see page 97) Specifies whether control is Unicode edit.

 ListAlign (see page 97) Specifies relative align of popup control.

 MaxLength (see page 97) Specifies the maximum number of characters that can appear in the edit
control.

 OnAcceptListValue (see page 98) Occurs when the user makes right choice in the drop-down list.

 OnButtonClick (see page 98) Occurs when the user clicks the button.

 OnChange (see page 98) Occurs when the text for the edit control may have changed.

 OnClick (see page 98) Occurs when the user clicks the control.

 OnCloseUp (see page 98) Occurs when the drop-down list closes up due to some user action.

 OnDblClick (see page 98) Occurs when the user double-clicks the left mouse button when the mouse
pointer is over the control.

 OnDragDrop (see page 98) Occurs when the user drops an object being dragged.

 OnDragOver (see page 99) Occurs when the user drags an object over a control.

 OnDropDown (see page 99) Occurs when the user opens the drop-down list.

 OnEndDrag (see page 99) Occurs when the dragging of an object ends, either by dropping the object or
by canceling the dragging.

 OnEnter (see page 99) Occurs when a control receives the input focus.

 OnExit (see page 100) Occurs when the input focus shifts away from one control to another.

 OnKeyDown (see page 100) Occurs when a user presses any key while the control has focus.

 OnKeyPress (see page 100) Occurs when key pressed.

 OnKeyUp (see page 100) Occurs when the user releases a key that has been pressed.

 OnMeasureWidth (see page 101) Occurs when width of controls needs to be calculated.

 OnMouseDown (see page 101) Occurs when the user presses a mouse button with the mouse pointer over a
control.

 OnMouseMove (see page 101) Occurs when the user moves the mouse pointer while the mouse pointer is
over a control.

 OnMouseUp (see page 101) Occurs when the user releases a mouse button that was pressed with the
mouse pointer over a component.

 OnStartDrag (see page 102) Occurs when the user begins to drag the control or an object it contains by
left-clicking on the control and holding the mouse button down.

 ParentBiDiMode (see page 102) Specifies whether the control uses its parent’s BiDiMode.

 ParentColor (see page 102) Determines where a control looks for its color information.

 ParentCtl3D (see page 102) Determines where a component looks to determine if it should appear three
dimensional.

 ParentFont (see page 102) Determines where a control looks for its font information.

 ParentShowHint (see page 102) Determines where a control looks to find out if its Help Hint should be shown.

 PasswordChar (see page 103) Indicates the character, if any, to display in place of the actual characters
typed in the control.

 PickList (see page 103) Determines the drop-down list.

 PopupMenu (see page 103) Identifies the pop-up menu associated with the control.

 ReadOnly (see page 103) Determines whether the user can change the text of the edit control.

 SelTextW (see page 103) Specifies the selected portion of the edit control’s text (Unicode version).

 ShowHint (see page 104) Determines whether the control displays a Help Hint when the mouse pointer
rests momentarily on the control.

 StatusWidth (see page 104) Specifies width of status area. If StatusWidth is equal to 0 - status area is not
processed.

 TabOrder (see page 104) Indicates the position of the control in its parent's tab order.

 TabStop (see page 104) Determines if the user can tab to a control.

 Text (see page 104) Specifies the text string that is displayed in the edit box (Ansi version).

 TextW (see page 104) Specifies the text string that is displayed in the edit box (Ansi version).

 Visible (see page 104) Determines whether the component appears on screen.

1.11 ecExtEdit Namespace EControl Form Designer Pro Classes

91

1

1.11.1.3.1 TEditEx Properties

1.11.1.3.1.1 TEditEx.Alignment Property

Determines how the text is aligned within the editor control.

property Alignment: TAlignment;

Description

Use Alignment to change the way the text is formatted by the in-place editor control. Alignment can take one of the following
values:

Value Meaning

taLeftJustify Align text to the left side of the control

taCenter Center text horizontally in the control

taRightJustify Align text to the right side of the control

1.11.1.3.1.2 TEditEx.Anchors Property

Specifies how the control is anchored to its parent.

property Anchors;

Description

Use Anchors to ensure that a control maintains its current position relative to an edge of its parent, even if the parent is
resized. When its parent is resized, the control holds its position relative to the edges to which it is anchored.

If a control is anchored to opposite edges of its parent, the control stretches when its parent is resized. For example, if a
control has its Anchors property set to [akLeft, akRight], the control stretches when the width of its parent changes.

Anchors is enforced only when the parent is resized. Thus, for example, if a control is anchored to opposite edges of a form
at design time and the form is created in a maximized state, the control is not stretched because the form is not resized after
the control is created.

Note: If a control should maintain contact with three edges of its parent (hugging one side of the parent and stretching the
length of that side), use the Align property instead. Unlike Anchors, Align allows controls to adjust to changes in the size of
other aligned sibling controls as well as changes to the parent’s size.

1.11.1.3.1.3 TEditEx.AutoSelect Property

Determines whether all the text in the edit control is automatically selected when the control gets focus.

property AutoSelect;

Description

Set AutoSelect to select all the text when the edit control gets focus. AutoSelect only applies to single-line edit controls.

Use AutoSelect when the user is more likely to replace the text in the edit control than to append to it.

1.11.1.3.1.4 TEditEx.AutoSize Property

Determines whether the height of the edit control automatically resizes to accommodate the text.

1.11 ecExtEdit Namespace EControl Form Designer Pro Classes

92

1

property AutoSize;

Description

Use AutoSize to make the edit control adjust its size automatically so the client area accommodates the height of the text.
When AutoSize is false, the edit control has a fixed height. When AutoSize is true, the size of the control is readjusted
whenever a change occurs that could affect the height of the control, such as a change to the font or border style.

1.11.1.3.1.5 TEditEx.BevelEdges Property

Specifies which edges of the control are beveled.

property BevelEdges;

Description

Use BevelEdges to get or set which edges of the control are beveled. The BevelInner, BevelOuter, and BevelKind properties
determine the appearance of the specified edges.

1.11.1.3.1.6 TEditEx.BevelInner Property

Specifies the cut of the inner bevel.

property BevelInner;

Description

Use BevelInner to specify whether the inner bevel has a raised, lowered, or flat look.

The inner bevel appears immediately inside the outer bevel. If there is no outer bevel (BevelOuter is bvNone), the inner
bevel appears immediately inside the border.

1.11.1.3.1.7 TEditEx.BevelKind Property

Specifies the control’s bevel style.

property BevelKind;

Description

Use BevelKind to modify the appearance of a bevel. BevelKind influences how sharply the bevel stands out.

BevelKind, in combination with BevelWidth and the cut of the bevel specified by BevelInner or BevelOuter, can create a
variety of effects. Experiment with various combinations to get the look you want.

1.11.1.3.1.8 TEditEx.BevelOuter Property

Specifies the cut of the outer bevel.

property BevelOuter;

Description

Use BevelInner to specify whether the outer bevel has a raised, lowered, or flat look.

The outer bevel appears immediately inside the border and outside the inner bevel.

1.11.1.3.1.9 TEditEx.BevelWidth Property

Specifies the width of the inner and outer bevels.

property BevelWidth;

1.11 ecExtEdit Namespace EControl Form Designer Pro Classes

93

1

Description

Use BevelWidth to specify the width, in pixels, of the inner and outer bevels.

1.11.1.3.1.10 TEditEx.BiDiMode Property

Specifies the bi-directional mode for the control.

property BiDiMode;

Description

Use BiDiMode to enable the control to adjust its appearance and behavior automatically when the application runs in a
locale that reads from right to left instead of left to right. The bi-directional mode controls the reading order for the text, the
placement of the vertical scroll bar, and whether the alignment is changed.

Alignment does not change for controls that are known to contain number, date, time, or currency values. For example, with
data aware controls, the alignment does not change for the following field types: ftSmallint, ftInteger, ftWord, ftFloat,
ftCurrency, ftBCD, ftDate, ftTime, ftDateTime, ftAutoInc.

1.11.1.3.1.11 TEditEx.BorderStyle Property

Determines the style of the line drawn around the perimeter of the control.

property BorderStyle;

Description

Use BorderStyle to specify whether the control has a single line drawn around it. These are the possible values:

Value Meaning

bsNone No visible border

bsSingle Single-line border

1.11.1.3.1.12 TEditEx.ButtonWidth Property

Specifies width in pixels of the button.

property ButtonWidth: integer;

Description

This property specifies width in pixels of the button if any.

Use this property to read or set width of the button.

1.11.1.3.1.13 TEditEx.CharCase Property

Determines the case of the text within the edit control.

property CharCase;

Description

Use CharCase to force the contents of the edit control to assume a particular case.

When CharCase is set to ecLowerCase or ecUpperCase, the case of characters is converted as the user types them into the
edit control. Changing the CharCase property to ecLowerCase or ecUpperCase changes the actual contents of the text, not
just the appearance. Any case information is lost and can’t be recaptured by changing CharCase to ecNormal.

1.11 ecExtEdit Namespace EControl Form Designer Pro Classes

94

1

1.11.1.3.1.14 TEditEx.Color Property

Specifies the background color of the control.

property Color;

Description

Use Color to read or change the background color of the control.

If a control's ParentColor property is true, then changing the Color property of the control's parent automatically changes the
Color property of the control. When the value of the Color property is changed, the control's ParentColor property is
automatically set to false.

1.11.1.3.1.15 TEditEx.Constraints Property

Specifies the size constraints for the control.

property Constraints;

Description

Use Constraints to specify the minimum and maximum width and height of the control. When Constraints contains maximum
or minimum values, the control cannot be resized to violate those constraints.

Warning: Do not set up constraints that conflict with the value of the Align or Anchors property. When these properties
conflict, the response of the control to resize attempts is not well-defined.

1.11.1.3.1.16 TEditEx.Ctl3D Property

Determines whether a control has a three-dimensional (3-D) or two-dimensional look.

property Ctl3D;

Description

Ctl3D is provided for backward compatibility. It is not used by 32-bit versions of Windows or NT4.0 and later.

On earlier platforms, Ctl3D controlled whether the control had a flat or beveled appearance.

1.11.1.3.1.17 TEditEx.DragCursor Property

Indicates the image used to represent the mouse pointer when the control is being dragged.

property DragCursor;

Description

Use the DragCursor property to change the cursor image presented when the control is being dragged.

Note: To make a custom cursor available for the DragCursor property, see the Cursor property.

1.11.1.3.1.18 TEditEx.DragKind Property

Specifies whether the control is being dragged normally or for docking.

property DragKind;

Description

Use DragKind to get or set whether the control participates in drag-and-drop operations, or drag-and-dock operations.

1.11.1.3.1.19 TEditEx.DragMode Property

Determines how the control initiates drag-and-drop or drag-and-dock operations.

1.11 ecExtEdit Namespace EControl Form Designer Pro Classes

95

1

property DragMode;

Description

Use DragMode to control when the user can drag the control. Disable the drag-and-drop or drag-and-dock capability at
runtime by setting the DragMode property value to dmManual. Enable automatic dragging by setting DragMode to
dmAutomatic.

1.11.1.3.1.20 TEditEx.EditMask Property

Specifies the mask that represents what text is valid for the masked edit control.

property EditMask;

Description

Use EditMask to restrict the characters a user can enter into the masked edit control to valid characters and formats. If the
user attempts to enter an invalid character, the edit control does not accept the character. Validation is performed on a
character-by-character basis by the ValidateEdit method.

Setting EditMask to an empty string removes the mask.

1.11.1.3.1.21 TEditEx.EditStyle Property

Specifies edit style of the button

property EditStyle: TInplaceEditStyle ;

Description

Specifies of what visual representation the button will be.

There are three styles available

• ieSimple - without button

• ieEllipsis - button with ellipsis

• iePickList - button with drop-down list

1.11.1.3.1.22 TEditEx.Enabled Property

Controls whether the control responds to mouse, keyboard, and timer events.

property Enabled;

Description

Use Enabled to change the availability of the control to the user. To disable a control, set Enabled to false. Disabled controls
appear dimmed. If Enabled is false, the control ignores mouse, keyboard, and timer events.

To re-enable a control, set Enabled to true. The control is no longer dimmed, and the user can use the control.

1.11.1.3.1.23 TEditEx.Font Property

Controls the attributes of text written on or in the control.

property Font;

Description

To change to a new font, specify a new TFont object. To modify a font, change the value of the Charset, Color, Height,
Name, Pitch, Size, or Style of the TFont object.

1.11.1.3.1.24 TEditEx.ImeMode Property

Determines the behavior of the input method editor (IME).

1.11 ecExtEdit Namespace EControl Form Designer Pro Classes

96

1

property ImeMode;

Description

Set ImeMode to configure the way an IME processes user keystrokes. An IME is a front-end input processor for Asian
language characters. The IME hooks all keyboard input, converts it to Asian characters in a conversion window, and sends
the converted characters or strings on to the application.

ImeMode allows a control to influence the type of conversion performed by the IME so that it is appropriate for the input
expected by the control. For example, a control that only accepts numeric input might specify an ImeMode of imClose, as no
conversion is necessary for numeric input.

1.11.1.3.1.25 TEditEx.ImeName Property

Specifies the input method editor (IME) to use for converting keyboard input to Asian language characters.

property ImeName;

Description

Set ImeName to specify which IME to use for converting keystrokes. An IME is a front-end input processor for Asian
language characters. The IME hooks all keyboard input, converts it to Asian characters in a conversion window, and sends
the converted characters or strings on to the application.

ImeName must specify one of the IMEs that has been installed through the Windows control panel. The property inspector
provides a drop-down list of all currently installed IMEs on the system. At runtime, applications can obtain a list of currently
installed IMEs from the global Screen variable.

If ImeName specifies an unavailable IME, the IME that was active when the application started is used instead. No exception
is generated.

1.11.1.3.1.26 TEditEx.IsUnicode Property

Specifies whether control is Unicode edit.

property IsUnicode: Boolean;

Description

Set IsUnicode to True to make edit control Unicode window. When control is Unicode TextW (see page 109) and
SelTextW (see page 109) properties should be used instead of Text and SelText properties.

1.11.1.3.1.27 TEditEx.ListAlign Property

Specifies relative align of popup control.

property ListAlign: TAlignment;

1.11.1.3.1.28 TEditEx.MaxLength Property

Specifies the maximum number of characters that can appear in the edit control.

property MaxLength;

Description

MaxLength is the length of the EditText. Set MaxLength to limit the number of characters that can appear in the edit control
when there is no EditMask. If there is an EditMask, MaxLength is implied by the mask itself, and cannot be changed. The
EditText contains blank characters for each character that has not been entered, padding the end or beginning of every
optional section, so it remains constant in length.

1.11 ecExtEdit Namespace EControl Form Designer Pro Classes

97

1

1.11.1.3.1.29 TEditEx.OnAcceptListValue Property

Occurs when the user makes right choice in the drop-down list.

property OnAcceptListValue: TOnAcceptListValueEvent ;

Description

Write an OnAcceptListValue event handler to implement special processing that needs to occur when the user makes a
choice in the drop-down list. For example, an OnAcceptListValue event handler can check whether the user can make or not
such choice.

1.11.1.3.1.30 TEditEx.OnButtonClick Property

Occurs when the user clicks the button.

property OnButtonClick: TNotifyEvent;

Description

Use the OnButtonClick event handler to respond when the user clicks the button or do some equivalent action such as
pressing the assotiated short keys or some. This is very similar to standard OnClick event.

1.11.1.3.1.31 TEditEx.OnChange Property

Occurs when the text for the edit control may have changed.

property OnChange;

Description

Write an OnChange event handler to take specific action whenever the text for the edit control may have changed. Use the
Modified property to see if a change actually occurred. The Text property of the edit control will already be updated to reflect
any changes. This event provides the first opportunity to respond to modifications that the user types into the edit control.

1.11.1.3.1.32 TEditEx.OnClick Property

Occurs when the user clicks the control.

property OnClick;

1.11.1.3.1.33 TEditEx.OnCloseUp Property

Occurs when the drop-down list closes up due to some user action.

property OnCloseUp: TCloseUpEvent ;

Description

Write an OnCloseUp event handler to implement special processing that needs to occur when the drop-down list closes up.
For example, an OnCloseUp event handler can check whether the user changed the selected item while the list was
dropped down and respond accordingly.

1.11.1.3.1.34 TEditEx.OnDblClick Property

Occurs when the user double-clicks the left mouse button when the mouse pointer is over the control.

property OnDblClick;

Description

Use the OnDblClick event to respond to mouse double-clicks.

1.11.1.3.1.35 TEditEx.OnDragDrop Property

Occurs when the user drops an object being dragged.

1.11 ecExtEdit Namespace EControl Form Designer Pro Classes

98

1

property OnDragDrop;

Description

Use the OnDragDrop event handler to specify what happens when the user drops an object. The Source parameter of the
OnDragDrop event is the object being dropped, and the Sender is the control the object is being dropped on. The X and Y
parameters are the coordinates of the mouse positioned over the control.

1.11.1.3.1.36 TEditEx.OnDragOver Property

Occurs when the user drags an object over a control.

property OnDragOver;

Description

Use an OnDragOver event to signal that the control can accept a dragged object so the user can drop or dock it.

Within the OnDragOver event handler, change the Accept parameter to false to reject the dragged object. Leave Accept as
true to allow the user to drop or dock the dragged object on the control.

To change the shape of the cursor, indicating that the control can accept the dragged object, change the value of the
DragCursor property for the control before the OnDragOver event occurs.

The Source is the object being dragged, the Sender is the potential drop or dock site, and X and Y are screen coordinates in
pixels. The State parameter specifies how the dragged object is moving over the control.

Note: Within the OnDragOver event handler, the Accept parameter defaults to true. However, if an OnDragOver event
handler is not supplied, the control rejects the dragged object, as if the Accept parameter were changed to false.

1.11.1.3.1.37 TEditEx.OnDropDown Property

Occurs when the user opens the drop-down list.

property OnDropDown: TNotifyEvent;

Description

Write an OnDropDown event handler to implement special processing that needs to occur only when the drop-down list is
activated.

1.11.1.3.1.38 TEditEx.OnEndDrag Property

Occurs when the dragging of an object ends, either by dropping the object or by canceling the dragging.

property OnEndDrag;

Description

Use the OnEndDrag event handler to specify any special processing that occurs when dragging stops.

1.11.1.3.1.39 TEditEx.OnEnter Property

Occurs when a control receives the input focus.

property OnEnter;

Description

Use the OnEnter event handler to cause any special processing to occur when a control becomes active.

1.11 ecExtEdit Namespace EControl Form Designer Pro Classes

99

1

The OnEnter event does not occur when switching between forms or between another application and the application that
includes the control.

1.11.1.3.1.40 TEditEx.OnExit Property

Occurs when the input focus shifts away from one control to another.

property OnExit;

Description

Use the OnExit event handler to provide special processing when the control ceases to be active.

The OnExit event does not occur when switching between forms or between another application and your application.

1.11.1.3.1.41 TEditEx.OnKeyDown Property

Occurs when a user presses any key while the control has focus.

property OnKeyDown;

Description

Use the OnKeyDown event handler to specify special processing to occur when a key is pressed. The OnKeyDown handler
can respond to all keyboard keys, including function keys and keys combined with the Shift, Alt, and Ctrl keys, and pressed
mouse buttons.

The TKeyEvent type points to a method that handles keyboard events.

The Key parameter is the key on the keyboard. For non-alphanumeric keys, use virtual key codes to determine the key
pressed. For more information, see Virtual Key codes.

The Shift parameter indicates whether the Shift, Alt, or Ctrl keys are combined with the keystroke.

1.11.1.3.1.42 TEditEx.OnKeyPress Property

Occurs when key pressed.

property OnKeyPress;

Description

Use the OnKeyPress event handler to make something happen as a result of a single character key press.

The Key parameter in the OnKeyPress event handler is of type Char; therefore, the OnKeyPress event registers the ASCII
character of the key pressed. Keys that don't correspond to an ASCII Char value (Shift or F1, for example) don't generate an
OnKeyPress event. Key combinations (such as Shift+A), generate only one OnKeyPress event (for this example, Shift+A
results in a Key value of “A” if Caps Lock is off). To respond to non-ASCII keys or key combinations, use the OnKeyDown or
OnKeyUp event handlers.

1.11.1.3.1.43 TEditEx.OnKeyUp Property

Occurs when the user releases a key that has been pressed.

property OnKeyUp;

Description

Use the OnKeyUp event handler to provide special processing that occurs when a key is released. The OnKeyUp handler
can respond to all keyboard keys, including function keys and keys combined with the Shift, Alt, and Ctrl keys.

1.11 ecExtEdit Namespace EControl Form Designer Pro Classes

100

1

The TKeyEvent type points to a method that handles keyboard events. The Key parameter is the key on the keyboard. For
non-alphanumeric keys, you must use virtual key codes to determine the key pressed. For more information, see Virtual Key
codes.

The Shift parameter indicates whether the Shift, Alt, or Ctrl keys are combined with the keystroke.

1.11.1.3.1.44 TEditEx.OnMeasureWidth Property

Occurs when width of controls needs to be calculated.

property OnMeasureWidth: TMeasureWidthEvent ;

Description

Parameter AWidth represents calculated width, in pixels, of specified in Value text for specified Canvas.

Write an OnMeasureWidth event handler to specify the new user width.

1.11.1.3.1.45 TEditEx.OnMouseDown Property

Occurs when the user presses a mouse button with the mouse pointer over a control.

property OnMouseDown;

Description

Use the OnMouseDown event handler to implement any special processing that should occur as a result of pressing a
mouse button.

The OnMouseDown event handler can respond to left, right, or center mouse button presses and shift key plus
mouse-button combinations. Shift keys are the Shift, Ctrl, and Alt keys. X and Y are the pixel coordinates of the mouse
pointer in the client area of the Sender.

1.11.1.3.1.46 TEditEx.OnMouseMove Property

Occurs when the user moves the mouse pointer while the mouse pointer is over a control.

property OnMouseMove;

Description

Use the OnMouseMove event handler to respond when the mouse pointer moves after the control has captured the mouse.

Use the Shift parameter of the OnMouseDown event handler, to determine to the state of the shift keys and mouse buttons.
Shift keys are the Shift, Ctrl, and Alt keys or shift key-mouse button combinations. X and Y are pixel coordinates of the new
location of the mouse pointer in the client area of the Sender.

1.11.1.3.1.47 TEditEx.OnMouseUp Property

Occurs when the user releases a mouse button that was pressed with the mouse pointer over a component.

property OnMouseUp;

Description

Use an OnMouseUp event handler to implement special processing when the user releases a mouse button.

The OnMouseUp event handler can respond to left, right, or center mouse button presses and shift key plus mouse-button
combinations. Shift keys are the Shift, Ctrl, and Alt keys. X and Y are the pixel coordinates of the mouse pointer in the client
area of the Sender.

1.11 ecExtEdit Namespace EControl Form Designer Pro Classes

101

1

1.11.1.3.1.48 TEditEx.OnStartDrag Property

Occurs when the user begins to drag the control or an object it contains by left-clicking on the control and holding the mouse
button down.

property OnStartDrag;

Description

Use the OnStartDrag event handler to implement special processing when the user starts to drag the control or an object it
contains. OnStartDrag only occurs if DragKind is dkDrag.

Sender is the control that is about to be dragged, or that contains the object about to be dragged.

The OnStartDrag event handler can create a TDragControlObjectEx instance for the DragObject parameter to specify the
drag cursor, or, optionally, a drag image list. If you create a TDragControlObjectEx instance, there is no need to call the Free
method for the DragObject when dragging is over. If you create, instead, a TDragControlObject instance, your application is
responsible for freeing the drag object instance.

If the OnStartDrag event handler sets the DragObject parameter to nil (Delphi) or NULL (C++), a TDragControlObject object
is automatically created and dragging begins on the control itse

1.11.1.3.1.49 TEditEx.ParentBiDiMode Property

Specifies whether the control uses its parent’s BiDiMode.

property ParentBiDiMode;

1.11.1.3.1.50 TEditEx.ParentColor Property

Determines where a control looks for its color information.

property ParentColor;

1.11.1.3.1.51 TEditEx.ParentCtl3D Property

Determines where a component looks to determine if it should appear three dimensional.

property ParentCtl3D;

Description

ParentCtl3D is provided for backwards compatibility. It has no effect on 32-bit versions of Windows or NT 4.0 and later.

ParentCtl3D determines whether the control uses its parent’s Ctl3D property.

1.11.1.3.1.52 TEditEx.ParentFont Property

Determines where a control looks for its font information.

property ParentFont;

1.11.1.3.1.53 TEditEx.ParentShowHint Property

Determines where a control looks to find out if its Help Hint should be shown.

property ParentShowHint;

1.11 ecExtEdit Namespace EControl Form Designer Pro Classes

102

1

1.11.1.3.1.54 TEditEx.PasswordChar Property

Indicates the character, if any, to display in place of the actual characters typed in the control.

property PasswordChar;

Description

Use the PasswordChar property to create an edit control that displays a special character in place of any entered text. If
PasswordChar is set to the null character (ANSI character zero), the edit control displays its text normally. If PasswordChar
is any other character, the edit control displays PasswordChar in place of each character typed. PasswordChar affects the
appearance of the edit control only. The value of the Text property reflects the actual characters that are typed.

1.11.1.3.1.55 TEditEx.PickList Property

Determines the drop-down list.

property PickList: TPopupListbox ;

Description

Use this property to access drop-down list object for iePickList EditStyle.

1.11.1.3.1.56 TEditEx.PopupMenu Property

Identifies the pop-up menu associated with the control.

property PopupMenu;

Description

Assign a value to PopupMenu to make a pop-up menu appear when the user selects the control and clicks the right mouse
button. If the TPopupMenu’s AutoPopup property is true, the pop-up menu appears automatically. If the menu’s AutoPopup
property is false, display the menu with a call to its Popup method from the control’s OnContextPopup event handler.

1.11.1.3.1.57 TEditEx.ReadOnly Property

Determines whether the user can change the text of the edit control.

property ReadOnly ;

Description

To restrict the edit control to display only, set the ReadOnly property to true. Set ReadOnly to false to allow the contents of
the edit control to be edited.

Setting ReadOnly to true ensures that the text is not altered, while still allowing the user to select text. The selected text can
then be manipulated by the application, or copied to the Clipboard.

1.11.1.3.1.58 TEditEx.SelTextW Property

Specifies the selected portion of the edit control’s text (Unicode version).

property SelTextW: WideString;

Description

Read SelTextW to determine the value of the selected text. Set SelTextW to replace the selected text with a new string. If
there is no selection, but the edit control has focus, set SelTextW to insert a new string into the text at the cursor.

Use this property when IsUnicode is True. Otherwise this property may corrupt string due to Ansi to Unicode conversion.

1.11 ecExtEdit Namespace EControl Form Designer Pro Classes

103

1

1.11.1.3.1.59 TEditEx.ShowHint Property

Determines whether the control displays a Help Hint when the mouse pointer rests momentarily on the control.

property ShowHint;

1.11.1.3.1.60 TEditEx.StatusWidth Property

Specifies width of status area. If StatusWidth is equal to 0 - status area is not processed.

property StatusWidth: integer;

1.11.1.3.1.61 TEditEx.TabOrder Property

Indicates the position of the control in its parent's tab order.

property TabOrder;

1.11.1.3.1.62 TEditEx.TabStop Property

Determines if the user can tab to a control.

property TabStop;

Description

Use the TabStop to allow or disallow access to the control using the Tab key.

If TabStop is true, the control is in the tab order. If TabStop is false, the control is not in the tab order and the user can't
press the Tab key to move to the control.

1.11.1.3.1.63 TEditEx.Text Property

Specifies the text string that is displayed in the edit box (Ansi version).

property Text;

Description

Use the Text property to read the text of the edit box or specify a new string for the Text value. By default, Text is the string
specified in the Name property.

Use this property when IsUnicode is False. Otherwise this property may corrupt string due to Unicode to Ansi conversion.

1.11.1.3.1.64 TEditEx.TextW Property

Specifies the text string that is displayed in the edit box (Ansi version).

property TextW: WideString;

Description

Use the TextW property to read the text of the edit box or specify a new string for the TextW value. By default, TextW is the
string specified in the Name property.

Use this property when IsUnicode is True. Otherwise this property may corrupt string due to Ansi to Unicode conversion.

1.11.1.3.1.65 TEditEx.Visible Property

Determines whether the component appears on screen.

property Visible;

1.11 ecExtEdit Namespace EControl Form Designer Pro Classes

104

1

Description

Use the Visible property to control the visibility of the control at runtime. If Visible is true, the control appears. If Visible is
false, the control is not visible.

Calling the Show method sets the control's Visible property to true. Calling the Hide method sets it to false.

1.11.1.4 TPopupListbox Class
TPopupListbox represents drop-down list in TExtEdit type.

Class Hierarchy

TPopupListbox = class (TCustomListbox);

File

ecExtEdit

Description

Add a description here...

Members

TPopupListbox Methods

TPopupListbox Methods Description

 CreateParams (see page 106) Overrides inherited procedure.

 CreateWnd (see page 106) Overrides inherited procedure.

 KeyPress (see page 106) Overrides inherited procedure.

TPopupListbox Properties

TPopupListbox Properties Description

 ItemHeight (see page 106) This is inherited property from TCustomListBox.ItemHeight

 OnDrawItem (see page 106) This is inherited property from TCustomListBox.OnDrawItem

 OnMeasureItem (see page 107) This is inherited property from TCustomListBox.OnMeasureItem

 Sorted (see page 107) This is inherited property from TCustomListBox.Sorted

 Style (see page 107) This is inherited property from TCustomListBox.Style

Legend

Method

protected

virtual

Property

TPopupListbox Methods

TPopupListbox Methods Description

 CreateParams (see page 106) Overrides inherited procedure.

 CreateWnd (see page 106) Overrides inherited procedure.

 KeyPress (see page 106) Overrides inherited procedure.

TPopupListbox Properties

TPopupListbox Properties Description

 ItemHeight (see page 106) This is inherited property from TCustomListBox.ItemHeight

 OnDrawItem (see page 106) This is inherited property from TCustomListBox.OnDrawItem

 OnMeasureItem (see page 107) This is inherited property from TCustomListBox.OnMeasureItem

 Sorted (see page 107) This is inherited property from TCustomListBox.Sorted

 Style (see page 107) This is inherited property from TCustomListBox.Style

1.11 ecExtEdit Namespace EControl Form Designer Pro Classes

105

1

1.11.1.4.1 TPopupListbox Methods

1.11.1.4.1.1 TPopupListbox.CreateParams Method

Overrides inherited procedure.

procedure CreateParams(var Params: TCreateParams); override ;

Description

CreateParams

• Calls inherited CreateParams

• Adds WS_BORDER to Style (see page 107) property

• Adds WS_EX_TOOLWINDOW and WS_EX_TOPMOST to ExStyle property

• Sets control’s window style according to its bi-directional support (via AddBiDiModeExStyle(ExStyle))

• Adds CS_SAVEBITS flag to WindowClass.Style (see page 107) property

1.11.1.4.1.2 TPopupListbox.CreateWnd Method

Overrides inherited procedure.

procedure CreateWnd; override ;

Description

CreateWnd

• Calls inherited CreateWnd

• Correctly sets parent via Windows.SetParent

• Sets focus on a window

1.11.1.4.1.3 TPopupListbox.KeyPress Method

Overrides inherited procedure.

procedure KeyPress(var Key: Char); override ;

Description

KeyPress

• searching the items for the first item that matches the string entered so far

• calls inherited

1.11.1.4.2 TPopupListbox Properties

1.11.1.4.2.1 TPopupListbox.ItemHeight Property

This is inherited property from TCustomListBox.ItemHeight

property ItemHeight;

Description

Specifies the height in pixels of an item in an owner-draw list box.

See TCustomListBox.ItemHeight for more information

1.11.1.4.2.2 TPopupListbox.OnDrawItem Property

This is inherited property from TCustomListBox.OnDrawItem

1.11 ecExtEdit Namespace EControl Form Designer Pro Classes

106

1

property OnDrawItem;

Description

Occurs when an item in an owner-draw list box needs to be redisplayed.

See TCustomListBox.OnDrawItem for more information

1.11.1.4.2.3 TPopupListbox.OnMeasureItem Property

This is inherited property from TCustomListBox.OnMeasureItem

property OnMeasureItem;

Description

Occurs when the application needs to redisplay an item in a variable height owner-draw list box.

See TCustomListBox.OnMeasureItem for more information

1.11.1.4.2.4 TPopupListbox.Sorted Property

This is inherited property from TCustomListBox.Sorted

property Sorted;

Description

Specifies whether the items in a list box are arranged alphabetically.

See TCustomListBox.Sorted for more information

1.11.1.4.2.5 TPopupListbox.Style Property

This is inherited property from TCustomListBox.Style

property Style;

Description

Determines whether the list box is standard or owner-draw and whether it is virtual.

See TCustomListBox.Style for more information

1.11.1.5 TUnicodeEdit Class
Mask edit control with Unicode support.

Class Hierarchy

TUnicodeEdit = class (TCustomMaskEdit);

File

ecExtEdit

Description

TUnicodeEdit may be used as ANSI or Unicode edit control. Type of control is defined by the IsUnicode (see page 108)
property. When control is Unicode TextW (see page 109) and SelTextW (see page 109) properties should be used
instead of Text (see page 109) and SelText properties.

Members

TUnicodeEdit Methods

TUnicodeEdit Methods Description

 Create (see page 108) Creates and initializes a TUnicodeEdit instance.

1.11 ecExtEdit Namespace EControl Form Designer Pro Classes

107

1

 Destroy (see page 108) Destroys an instance of TUnicodeEdit.

TUnicodeEdit Properties

TUnicodeEdit Properties Description

 IsUnicode (see page 108) Specifies whether control is Unicode edit.

 SelTextW (see page 109) Specifies the selected portion of the edit control’s text (Unicode version).

 Text (see page 109) Specifies the text string that is displayed in the edit box (Ansi version).

 TextW (see page 109) Specifies the text string that is displayed in the edit box (Ansi version).

Legend

Constructor

virtual

Property

protected

TUnicodeEdit Methods

TUnicodeEdit Methods Description

 Create (see page 108) Creates and initializes a TUnicodeEdit instance.

 Destroy (see page 108) Destroys an instance of TUnicodeEdit.

TUnicodeEdit Properties

TUnicodeEdit Properties Description

 IsUnicode (see page 108) Specifies whether control is Unicode edit.

 SelTextW (see page 109) Specifies the selected portion of the edit control’s text (Unicode version).

 Text (see page 109) Specifies the text string that is displayed in the edit box (Ansi version).

 TextW (see page 109) Specifies the text string that is displayed in the edit box (Ansi version).

1.11.1.5.1 TUnicodeEdit Methods

1.11.1.5.1.1 TUnicodeEdit.Create Constructor

Creates and initializes a TUnicodeEdit instance.

constructor Create(AOwner: TComponent); override ;

Description

Use Create to programmatically instantiate a TUnicodeEdit component. Components added in the form designer are created
automatically.

AOwner is the component that is responsible for freeing the component instance. It becomes the value of the Owner
property.

1.11.1.5.1.2 TUnicodeEdit.Destroy Destructor

Destroys an instance of TUnicodeEdit.

destructor Destroy; override ;

Description

Do not call Destroy directly. Call Free instead. Free verifies that the object reference is not nil before calling Destroy.

1.11.1.5.2 TUnicodeEdit Properties

1.11.1.5.2.1 TUnicodeEdit.IsUnicode Property

Specifies whether control is Unicode edit.

property IsUnicode: Boolean;

1.11 ecExtEdit Namespace EControl Form Designer Pro Classes

108

1

Description

Set IsUnicode to True to make edit control Unicode window. When control is Unicode TextW (see page 109) and
SelTextW (see page 109) properties should be used instead of Text (see page 109) and SelText properties.

1.11.1.5.2.2 TUnicodeEdit.SelTextW Property

Specifies the selected portion of the edit control’s text (Unicode version).

property SelTextW: WideString;

Description

Read SelTextW to determine the value of the selected text. Set SelTextW to replace the selected text with a new string. If
there is no selection, but the edit control has focus, set SelTextW to insert a new string into the text at the cursor.

Use this property when IsUnicode (see page 108) is True. Otherwise this property may corrupt string due to Ansi to
Unicode conversion.

1.11.1.5.2.3 TUnicodeEdit.Text Property

Specifies the text string that is displayed in the edit box (Ansi version).

property Text;

Description

Use the Text property to read the text of the edit box or specify a new string for the Text value. By default, Text is the string
specified in the Name property.

Use this property when IsUnicode (see page 108) is False. Otherwise this property may corrupt string due to Unicode to
Ansi conversion.

1.11.1.5.2.4 TUnicodeEdit.TextW Property

Specifies the text string that is displayed in the edit box (Ansi version).

property TextW: WideString;

Description

Use the TextW property to read the text of the edit box or specify a new string for the TextW value. By default, TextW is the
string specified in the Name property.

Use this property when IsUnicode (see page 108) is True. Otherwise this property may corrupt string due to Ansi to
Unicode conversion.

1.11.2 Structs, Records, Enums

The following table lists structs, records, enums in this documentation.

Enumerations

Enumeration Description

 TInplaceEditStyle (see page 110) Style of the editor

Legend

Enumeration

1.11 ecExtEdit Namespace EControl Form Designer Pro Structs, Records, Enums

109

1

1.11.2.1 ecExtEdit.TInplaceEditStyle Enumeration
TInplaceEditStyle = (
 ieSimple,
 ieEllipsis,
 iePickList
);

File

ecExtEdit

Members

Members Description

ieSimple Editor without button.

ieEllipsis Editor with button

iePickList Editor with drop-down button.

Description

Style of the editor

1.11.3 Types

The following table lists types in this documentation.

Types

Type Description

TCloseUpEvent (see page 110) See TExtEdit.OnCloseUp Event (see page 98)

TMeasureWidthEvent (see page 110) See TExtEdit.OnMeasureWidth Event (see page 101)

TOnAcceptListValueEvent (see page 111) See TExtEdit.OnAcceptListValue Event (see page 98)

1.11.3.1 ecExtEdit.TCloseUpEvent Type
TCloseUpEvent = procedure (Sender: TObject; var Accept: Boolean) of object ;

File

ecExtEdit

Description

See TExtEdit.OnCloseUp Event (see page 98)

1.11.3.2 ecExtEdit.TMeasureWidthEvent Type
TMeasureWidthEvent = procedure (Sender: TObject; const Value: string ; Canvas: TCanvas; var
AWidth: Integer) of object ;

File

ecExtEdit

Description

See TExtEdit.OnMeasureWidth Event (see page 101)

1.11 ecExtEdit Namespace EControl Form Designer Pro Types

110

1

1.11.3.3 ecExtEdit.TOnAcceptListValueEvent Type
TOnAcceptListValueEvent = procedure (Sender: TObject; var ListValue: string) of object ;

File

ecExtEdit

Description

See TExtEdit.OnAcceptListValue Event (see page 98)

1.12 ecHintHelper Namespace

1.12.1 Classes

The following table lists classes in this documentation.

Classes

Class Description

TecHintHelper (see page 111) Automates hints processing and provides properties to adjust it.

1.12.1.1 TecHintHelper Class
Automates hints processing and provides properties to adjust it.

Class Hierarchy

TecHintHelper = class (TPersistent);

File

ecHintHelper

Description

Provides properties for hints processing. Supports Unicode hints associated with regions of the control.

To use hint helper you need to call ControlWndProc (see page 112) from window procedure of control and process
CM_GETHINTDATA (see page 116) message.

Members

TecHintHelper Methods

TecHintHelper Methods Description

 CancelHint (see page 112) Cancels the display of a hint for a control.

 ControlWndProc (see page 112) Owner control passes window messages to this procedure.

 Create (see page 112) Creates and initializes a TecHintHelper instance.

 Destroy (see page 113) Destroys an instance of TecHintHelper.

 ResetHint (see page 113) Hides the current hint.

 ShowHint (see page 113) Shows hint window if mouse over region of control which has hint information.
Immediately parameter forces to show hint immediately.

1.12 ecHintHelper Namespace EControl Form Designer Pro Classes

111

1

TecHintHelper Properties

TecHintHelper Properties Description

 CanMoveLeft (see page 113) Specifies whether hint may be moved left if it's right side out of screen.

 Color (see page 113) Determines the color of the hint boxes for the Help Hints.

 Enabled (see page 113) Specifies whether hints should be shown.

 Font (see page 113) Specifies font of the hint window.

 HidePause (see page 114) Specifies the time interval to wait before hiding the Hint if the mouse has not
moved from the control region.

 Pause (see page 114) Specifies the time interval that passes before the control's Hint appears when
the user places the mouse pointer on a control.

 ShortPause (see page 114) Specifies the time period to wait before bringing up a hint if another hint has
already been shown for this control.

Legend

Method

virtual

Property

TecHintHelper Methods

TecHintHelper Methods Description

 CancelHint (see page 112) Cancels the display of a hint for a control.

 ControlWndProc (see page 112) Owner control passes window messages to this procedure.

 Create (see page 112) Creates and initializes a TecHintHelper instance.

 Destroy (see page 113) Destroys an instance of TecHintHelper.

 ResetHint (see page 113) Hides the current hint.

 ShowHint (see page 113) Shows hint window if mouse over region of control which has hint information.
Immediately parameter forces to show hint immediately.

TecHintHelper Properties

TecHintHelper Properties Description

 CanMoveLeft (see page 113) Specifies whether hint may be moved left if it's right side out of screen.

 Color (see page 113) Determines the color of the hint boxes for the Help Hints.

 Enabled (see page 113) Specifies whether hints should be shown.

 Font (see page 113) Specifies font of the hint window.

 HidePause (see page 114) Specifies the time interval to wait before hiding the Hint if the mouse has not
moved from the control region.

 Pause (see page 114) Specifies the time interval that passes before the control's Hint appears when
the user places the mouse pointer on a control.

 ShortPause (see page 114) Specifies the time period to wait before bringing up a hint if another hint has
already been shown for this control.

1.12.1.1.1 TecHintHelper Methods

1.12.1.1.1.1 TecHintHelper.CancelHint Method

Cancels the display of a hint for a control.

procedure CancelHint;

1.12.1.1.1.2 TecHintHelper.ControlWndProc Method

Owner control passes window messages to this procedure.

procedure ControlWndProc(var Message : TMessage); virtual ;

1.12.1.1.1.3 TecHintHelper.Create Constructor

Creates and initializes a TecHintHelper instance.

constructor Create(AOwner: TControl);

1.12 ecHintHelper Namespace EControl Form Designer Pro Classes

112

1

Description

Use Create to programmatically instantiate a TecHintHelper object.

AOwner specifies control which owns hint helper.

1.12.1.1.1.4 TecHintHelper.Destroy Destructor

Destroys an instance of TecHintHelper.

destructor Destroy; override ;

Description

Do not call Destroy directly. Call Free instead. Free verifies that the object reference is not nil before calling Destroy.

1.12.1.1.1.5 TecHintHelper.ResetHint Method

Hides the current hint.

procedure ResetHint;

1.12.1.1.1.6 TecHintHelper.ShowHint Method

Shows hint window if mouse over region of control which has hint information. Immediately parameter forces to show hint
immediately.

procedure ShowHint(Immediately: Boolean);

1.12.1.1.2 TecHintHelper Properties

1.12.1.1.2.1 TecHintHelper.CanMoveLeft Property

Specifies whether hint may be moved left if it's right side out of screen.

property CanMoveLeft: Boolean;

1.12.1.1.2.2 TecHintHelper.Color Property

Determines the color of the hint boxes for the Help Hints.

property Color: TColor;

Description

Use Color to specify the hint box color. A default color value of clInfoBk is set for the Color property in the constructor when
the hint helper is created.

1.12.1.1.2.3 TecHintHelper.Enabled Property

Specifies whether hints should be shown.

property Enabled: Boolean;

Description

Hint processing provided by the TecHintHelper (see page 111) differs from standard hint processing. ShowHint (see
page 113) property of control is used only for standard hint processing and is not used in TecHintHelper (see page 111).
To enable/ disable hints for control use TecHintHelper.Enabled property.

1.12.1.1.2.4 TecHintHelper.Font Property

Specifies font of the hint window.

property Font: TFont;

1.12 ecHintHelper Namespace EControl Form Designer Pro Classes

113

1

1.12.1.1.2.5 TecHintHelper.HidePause Property

Specifies the time interval to wait before hiding the Hint if the mouse has not moved from the control region.

property HidePause: Integer;

Description

Use HidePause to specify a wait time in milliseconds, which is different from the default value of 2500 ms or 2 1/2 seconds
that is set in the constructor.

1.12.1.1.2.6 TecHintHelper.Pause Property

Specifies the time interval that passes before the control's Hint appears when the user places the mouse pointer on a control.

property Pause: Integer;

Description

Use Pause to change the default pause time of 500 ms or 1/2 second that is set in the constructor. When assigning a value
to Pause, specify the interval in milliseconds.

1.12.1.1.2.7 TecHintHelper.ShortPause Property

Specifies the time period to wait before bringing up a hint if another hint has already been shown for this control.

property ShortPause: Integer;

Description

Use ShortPause to reduce the flicker when moving the mouse quickly over, for example, a set of buttons that all have help
hints on. Specify a value in milliseconds that is different from the default value of 50 ms that is set in the constructor.

1.12.2 Structs, Records, Enums

The following table lists structs, records, enums in this documentation.

Records

Record Description

 TCMGetHintData (see page 114) Message record passed to control as CM_GETHINTDATA (see page 116)
message.

 TecHintData (see page 115) Hint information structure filled by the control.

Legend

Record

1.12.2.1 ecHintHelper.TCMGetHintData Record
Message record passed to control as CM_GETHINTDATA (see page 116) message.

TCMGetHintData = packed record
 Msg: Cardinal;
 Pt: TSmallPoint;
 pHintData: PecHintData ;
 Result: Longint;
end ;

File

ecHintHelper

1.12 ecHintHelper Namespace EControl Form Designer Pro Structs, Records, Enums

114

1

Members

Members Description

Msg: Cardinal; Message code which is equal to CM_GETHINTDATA (see page 116).

Pt: TSmallPoint; Mouse position in client coordinates.

pHintData: PecHintData; Pointer to hint information structure to be filled by the control.

Result: Longint; Result value - not used.

1.12.2.2 ecHintHelper.TecHintData Record
Hint information structure filled by the control.

TecHintData = record
 Text: WideString;
 HintSense: TRect;
 BaseRect: TRect;
end ;

File

ecHintHelper

Members

Members Description

Text: WideString; Unicode hint text.

HintSense: TRect; Rectangle in which caret movements does not effect hint showing, for
example, item rectangle.

BaseRect: TRect; Rectangle around which hint window will be displayed.

1.12.3 Types

The following table lists types in this documentation.

Types

Type Description

PecHintData (see page 115) Pointer to TecHintData (see page 115).

1.12.3.1 ecHintHelper.PecHintData Type
Pointer to TecHintData (see page 115).

PecHintData = ^ TecHintData ;

File

ecHintHelper

1.12.4 Constants

The following table lists constants in this documentation.

Constants

Constant Description

CM_GETHINTDATA (see page 116) Message which should be processed by control to define hint information.

1.12 ecHintHelper Namespace EControl Form Designer Pro Constants

115

1

1.12.4.1 ecHintHelper.CM_GETHINTDATA Constant
Message which should be processed by control to define hint information.

CM_GETHINTDATA = $7B00;

File

ecHintHelper

1.13 ecToolList Namespace

1.13.1 Classes

The following table lists classes in this documentation.

Classes

Class Description

TCustomToolList (see page 116) Tool list represents item list organized in categories.

TToolItemStyle (see page 123) Holds visual properties of tool item.

TToolList (see page 125) Tool list represents item list organized in categories.

TToolListItem (see page 141) Represents tool item used in tool lists (see page 116).

TToolListItems (see page 143) Collection of tool list items.

1.13.1.1 TCustomToolList Class
Tool list represents item list organized in categories.

Class Hierarchy

TCustomToolList = class (TCustomControl);

File

ecToolList

Description

Items (see page 121) in tool list has caption, image and hint. Categories may be collapsed. Items (see page 121) may
be filtered.

Members

TCustomToolList Methods

TCustomToolList Methods Description

 CollapseAll (see page 118) Collapses all categories.

 Create (see page 119) Creates and initializes a TCustomToolList instance.

 Destroy (see page 119) Destroys an instance of TCustomToolList.

 DrawItemImage (see page 119) Draws item image.

 ExpandAll (see page 119) Expands all categories.

 GetCategoryItem (see page 119) Returns index of category item at the given position or above.

 ItemAtPos (see page 119) Returns items at the given position. If there are no item at the specified
position function returns -1.

1.13 ecToolList Namespace EControl Form Designer Pro Classes

116

1

 ItemIndexChanged (see page 119) Called when selected item was changed.

 ItemRect (see page 119) Returns rectangle occupied by the item.

 ItemsArranged (see page 120) Called after items were rearranged by the drag&drop operations.

 ItemsChanged (see page 120) Called when items were changed (any changes).

 ItemsHeight (see page 120) Calculates total height of items.

 MakeTopItem (see page 120) Scrolls list to make specified item topmost item.

 MakeVisible (see page 120) Scrolls list to make specified item visible.

 PaintItem (see page 120) Calls TToolListItem.Paint and allows to customize item rendering in derived
classes.

 SelectFirstVisible (see page 120) Selects first visible, i.e. not hidden, item.

TCustomToolList Properties

TCustomToolList Properties Description

 AllowArrange (see page 120) Specifies whether items can be arranged by the drag&drop operations.

 AutoCollapse (see page 120) Specifies whether all categories should be collapsed when one category is
expanded or collapsed.

 CategoryHeight (see page 120) Specifies height of category item.

 Filtered (see page 120) Specifies whether items are filtered.

 FilterString (see page 121) Specifies filter string which is used to test item Caption.

 FoldingIcon (see page 121) Holds folding icon images.

 HintProps (see page 121) Provide properties to adjust hints processing.

 Images (see page 121) Determines which image list is associated with the tool list.

 InsertAtItem (see page 121) Specifies item index at which dragged object can be dropped.

 ItemHeight (see page 121) Specifies height of the normal item.

 ItemIndex (see page 121) Indicates which item is selected. If no item is selected ItemIndex is equal to -1.

 Items (see page 121) Provides access to items displayed in tool list.

 MouseOverItem (see page 122) Indicates item over which mouse cursor is located.

 RightClickSelect (see page 122) Specifies whether item can be selected by mouse right click.

 RowSpace (see page 122) Specifies space between two sequential items.

 Selected (see page 122) Currently selected item in tool list.

 StyleCategory (see page 122) Specifies style of category items.

 StyleCategoryMouseOver (see page 122) Specifies style of category item when mouse is over it.

 StyleCategorySelected (see page 122) Specifies style of selected category item.

 StyleItem (see page 122) Specifies style of tool items.

 StyleItemMouseOver (see page 122) Specifies style of tool item when mouse is over it.

 StyleItemSelected (see page 122) Specifies style of selected tool item.

 VerticalGroups (see page 122) Specifies whether category item should be displayed vertically along owned
items.

 ViewOrigin (see page 123) Specifies scrolling position of the tool list control.

TCustomToolList Events

TCustomToolList Events Description

 OnItemArranged (see page 123) Occurs when items order was changed.

 OnItemChanged (see page 123) Occurs when selected item is changes.

Legend

Method

virtual

protected

Property

read only

Event

TCustomToolList Events

TCustomToolList Events Description

 OnItemArranged (see page 123) Occurs when items order was changed.

 OnItemChanged (see page 123) Occurs when selected item is changes.

1.13 ecToolList Namespace EControl Form Designer Pro Classes

117

1

TCustomToolList Methods

TCustomToolList Methods Description

 CollapseAll (see page 118) Collapses all categories.

 Create (see page 119) Creates and initializes a TCustomToolList instance.

 Destroy (see page 119) Destroys an instance of TCustomToolList.

 DrawItemImage (see page 119) Draws item image.

 ExpandAll (see page 119) Expands all categories.

 GetCategoryItem (see page 119) Returns index of category item at the given position or above.

 ItemAtPos (see page 119) Returns items at the given position. If there are no item at the specified
position function returns -1.

 ItemIndexChanged (see page 119) Called when selected item was changed.

 ItemRect (see page 119) Returns rectangle occupied by the item.

 ItemsArranged (see page 120) Called after items were rearranged by the drag&drop operations.

 ItemsChanged (see page 120) Called when items were changed (any changes).

 ItemsHeight (see page 120) Calculates total height of items.

 MakeTopItem (see page 120) Scrolls list to make specified item topmost item.

 MakeVisible (see page 120) Scrolls list to make specified item visible.

 PaintItem (see page 120) Calls TToolListItem.Paint and allows to customize item rendering in derived
classes.

 SelectFirstVisible (see page 120) Selects first visible, i.e. not hidden, item.

TCustomToolList Properties

TCustomToolList Properties Description

 AllowArrange (see page 120) Specifies whether items can be arranged by the drag&drop operations.

 AutoCollapse (see page 120) Specifies whether all categories should be collapsed when one category is
expanded or collapsed.

 CategoryHeight (see page 120) Specifies height of category item.

 Filtered (see page 120) Specifies whether items are filtered.

 FilterString (see page 121) Specifies filter string which is used to test item Caption.

 FoldingIcon (see page 121) Holds folding icon images.

 HintProps (see page 121) Provide properties to adjust hints processing.

 Images (see page 121) Determines which image list is associated with the tool list.

 InsertAtItem (see page 121) Specifies item index at which dragged object can be dropped.

 ItemHeight (see page 121) Specifies height of the normal item.

 ItemIndex (see page 121) Indicates which item is selected. If no item is selected ItemIndex is equal to -1.

 Items (see page 121) Provides access to items displayed in tool list.

 MouseOverItem (see page 122) Indicates item over which mouse cursor is located.

 RightClickSelect (see page 122) Specifies whether item can be selected by mouse right click.

 RowSpace (see page 122) Specifies space between two sequential items.

 Selected (see page 122) Currently selected item in tool list.

 StyleCategory (see page 122) Specifies style of category items.

 StyleCategoryMouseOver (see page 122) Specifies style of category item when mouse is over it.

 StyleCategorySelected (see page 122) Specifies style of selected category item.

 StyleItem (see page 122) Specifies style of tool items.

 StyleItemMouseOver (see page 122) Specifies style of tool item when mouse is over it.

 StyleItemSelected (see page 122) Specifies style of selected tool item.

 VerticalGroups (see page 122) Specifies whether category item should be displayed vertically along owned
items.

 ViewOrigin (see page 123) Specifies scrolling position of the tool list control.

1.13.1.1.1 TCustomToolList Methods

1.13.1.1.1.1 TCustomToolList.CollapseAll Method

Collapses all categories.

procedure CollapseAll;

1.13 ecToolList Namespace EControl Form Designer Pro Classes

118

1

1.13.1.1.1.2 TCustomToolList.Create Constructor

Creates and initializes a TCustomToolList instance.

constructor Create(AOwner: TComponent); override ;

Description

Use Create to programmatically instantiate a TCustomToolList component. Components added in the form designer are
created automatically.

AOwner is the component that is responsible for freeing the component instance. It becomes the value of the Owner
property.

1.13.1.1.1.3 TCustomToolList.Destroy Destructor

Destroys an instance of TCustomToolList.

destructor Destroy; override ;

Description

Do not call Destroy directly. Call Free instead. Free verifies that the object reference is not nil before calling Destroy.

1.13.1.1.1.4 TCustomToolList.DrawItemImage Method

Draws item image.

procedure DrawItemImage(Item: TToolListItem ; Canvas: TCanvas; var R: TRect; State:
TToolItemState); virtual ;

Description

By default, it draws image from image list of the tool list, but in derived classes it maybe redefined to get images from
another source.

1.13.1.1.1.5 TCustomToolList.ExpandAll Method

Expands all categories.

procedure ExpandAll;

1.13.1.1.1.6 TCustomToolList.GetCategoryItem Method

Returns index of category item at the given position or above.

function GetCategoryItem(Index : integer): integer;

1.13.1.1.1.7 TCustomToolList.ItemAtPos Method

Returns items at the given position. If there are no item at the specified position function returns -1.

function ItemAtPos(const p: TPoint): integer;

1.13.1.1.1.8 TCustomToolList.ItemIndexChanged Method

Called when selected item was changed.

procedure ItemIndexChanged; virtual ;

1.13.1.1.1.9 TCustomToolList.ItemRect Method

Returns rectangle occupied by the item.

function ItemRect(Index : integer): TRect;

1.13 ecToolList Namespace EControl Form Designer Pro Classes

119

1

1.13.1.1.1.10 TCustomToolList.ItemsArranged Method

Called after items were rearranged by the drag&drop operations.

procedure ItemsArranged; virtual ;

1.13.1.1.1.11 TCustomToolList.ItemsChanged Method

Called when items were changed (any changes).

procedure ItemsChanged; virtual ;

1.13.1.1.1.12 TCustomToolList.ItemsHeight Method

Calculates total height of items.

function ItemsHeight: integer;

1.13.1.1.1.13 TCustomToolList.MakeTopItem Method

Scrolls list to make specified item topmost item.

function MakeTopItem(Item: integer): Boolean;

1.13.1.1.1.14 TCustomToolList.MakeVisible Method

Scrolls list to make specified item visible.

function MakeVisible(Item: integer): Boolean;

1.13.1.1.1.15 TCustomToolList.PaintItem Method

Calls TToolListItem.Paint and allows to customize item rendering in derived classes.

procedure PaintItem(Item: integer; const R: TRect; State: TToolItemState); virtual ;

1.13.1.1.1.16 TCustomToolList.SelectFirstVisible Method

Selects first visible, i.e. not hidden, item.

function SelectFirstVisible(OnlyItem: Boolean = True): Boolean;

1.13.1.1.2 TCustomToolList Properties

1.13.1.1.2.1 TCustomToolList.AllowArrange Property

Specifies whether items can be arranged by the drag&drop operations.

property AllowArrange: Boolean;

1.13.1.1.2.2 TCustomToolList.AutoCollapse Property

Specifies whether all categories should be collapsed when one category is expanded or collapsed.

property AutoCollapse: Boolean;

1.13.1.1.2.3 TCustomToolList.CategoryHeight Property

Specifies height of category item.

property CategoryHeight: integer;

1.13.1.1.2.4 TCustomToolList.Filtered Property

Specifies whether items are filtered.

property Filtered: Boolean;

1.13 ecToolList Namespace EControl Form Designer Pro Classes

120

1

Description

Use Filtered property to toggle items filtration. Items (see page 121) are filtered using FilterString (see page 121)
property.

1.13.1.1.2.5 TCustomToolList.FilterString Property

Specifies filter string which is used to test item Caption.

property FilterString: string ;

1.13.1.1.2.6 TCustomToolList.FoldingIcon Property

Holds folding icon images.

property FoldingIcon: TBitmap;

Description

FoldingIcon should contain two images in a row, first - collapse icon (-), second - expand icon (+).

Color of bottom-left pixel is used as mask color.

Folding icon is initialized from resource when control is created at design time.

1.13.1.1.2.7 TCustomToolList.HintProps Property

Provide properties to adjust hints processing.

property HintProps: TecHintHelper ;

1.13.1.1.2.8 TCustomToolList.Images Property

Determines which image list is associated with the tool list.

property Images: TCustomImageList;

Description

Use Images to provide a customized list of bitmaps that can be displayed to the left of a item’s label. Individual items specify
the image from this list that should appear by setting their ImageIndex property.

1.13.1.1.2.9 TCustomToolList.InsertAtItem Property

Specifies item index at which dragged object can be dropped.

property InsertAtItem: integer;

1.13.1.1.2.10 TCustomToolList.ItemHeight Property

Specifies height of the normal item.

property ItemHeight: integer;

1.13.1.1.2.11 TCustomToolList.ItemIndex Property

Indicates which item is selected. If no item is selected ItemIndex is equal to -1.

property ItemIndex: integer;

1.13.1.1.2.12 TCustomToolList.Items Property

Provides access to items displayed in tool list.

property Items: TToolListItems ;

Description

Read Items to access the list of items that appears in the tool list. Use the methods of Items to add, insert, delete and move

1.13 ecToolList Namespace EControl Form Designer Pro Classes

121

1

items.

1.13.1.1.2.13 TCustomToolList.MouseOverItem Property

Indicates item over which mouse cursor is located.

property MouseOverItem: integer;

1.13.1.1.2.14 TCustomToolList.RightClickSelect Property

Specifies whether item can be selected by mouse right click.

property RightClickSelect: Boolean;

1.13.1.1.2.15 TCustomToolList.RowSpace Property

Specifies space between two sequential items.

property RowSpace: integer;

1.13.1.1.2.16 TCustomToolList.Selected Property

Currently selected item in tool list.

property Selected: TToolListItem ;

1.13.1.1.2.17 TCustomToolList.StyleCategory Property

Specifies style of category items.

property StyleCategory: TToolItemStyle ;

1.13.1.1.2.18 TCustomToolList.StyleCategoryMouseOver Property

Specifies style of category item when mouse is over it.

property StyleCategoryMouseOver: TToolItemStyle ;

1.13.1.1.2.19 TCustomToolList.StyleCategorySelected Property

Specifies style of selected category item.

property StyleCategorySelected: TToolItemStyle ;

1.13.1.1.2.20 TCustomToolList.StyleItem Property

Specifies style of tool items.

property StyleItem: TToolItemStyle ;

1.13.1.1.2.21 TCustomToolList.StyleItemMouseOver Property

Specifies style of tool item when mouse is over it.

property StyleItemMouseOver: TToolItemStyle ;

1.13.1.1.2.22 TCustomToolList.StyleItemSelected Property

Specifies style of selected tool item.

property StyleItemSelected: TToolItemStyle ;

1.13.1.1.2.23 TCustomToolList.VerticalGroups Property

Specifies whether category item should be displayed vertically along owned items.

property VerticalGroups: Boolean;

1.13 ecToolList Namespace EControl Form Designer Pro Classes

122

1

1.13.1.1.2.24 TCustomToolList.ViewOrigin Property

Specifies scrolling position of the tool list control.

property ViewOrigin: integer;

1.13.1.1.3 TCustomToolList Events

1.13.1.1.3.1 TCustomToolList.OnItemArranged Event

Occurs when items order was changed.

property OnItemArranged: TNotifyEvent;

1.13.1.1.3.2 TCustomToolList.OnItemChanged Event

Occurs when selected item is changes.

property OnItemChanged: TNotifyEvent;

1.13.1.2 TToolItemStyle Class
Holds visual properties of tool item.

Class Hierarchy

TToolItemStyle = class (TPersistent);

File

ecToolList

Members

TToolItemStyle Methods

TToolItemStyle Methods Description

 Create (see page 124) Creates and initializes a TToolItemStyle instance.

 Destroy (see page 124) Destroys an instance of TToolItemStyle.

 DrawItemRect (see page 124) Draws item frame and background.

TToolItemStyle Properties

TToolItemStyle Properties Description

 Alignment (see page 124) Specifies the manner in which text is aligned within an item.

 BoundPen (see page 125) Specifies pen which is used to draw item border.

 Brush (see page 125) Specifies Brush which is used to render item background.

 Font (see page 125) Specifies font used to render item Caption.

 Shape (see page 125) Specifies shape of item frame.

TToolItemStyle Events

TToolItemStyle Events Description

 OnChange (see page 125) Occurs when any properties of style are changed.

Legend

Constructor

virtual

Property

Event

1.13 ecToolList Namespace EControl Form Designer Pro Classes

123

1

TToolItemStyle Events

TToolItemStyle Events Description

 OnChange (see page 125) Occurs when any properties of style are changed.

TToolItemStyle Methods

TToolItemStyle Methods Description

 Create (see page 124) Creates and initializes a TToolItemStyle instance.

 Destroy (see page 124) Destroys an instance of TToolItemStyle.

 DrawItemRect (see page 124) Draws item frame and background.

TToolItemStyle Properties

TToolItemStyle Properties Description

 Alignment (see page 124) Specifies the manner in which text is aligned within an item.

 BoundPen (see page 125) Specifies pen which is used to draw item border.

 Brush (see page 125) Specifies Brush which is used to render item background.

 Font (see page 125) Specifies font used to render item Caption.

 Shape (see page 125) Specifies shape of item frame.

1.13.1.2.1 TToolItemStyle Methods

1.13.1.2.1.1 TToolItemStyle.Create Constructor

Creates and initializes a TToolItemStyle instance.

constructor Create;

Description

Use Create to programmatically instantiate a TToolItemStyle object.

1.13.1.2.1.2 TToolItemStyle.Destroy Destructor

Destroys an instance of TToolItemStyle.

destructor Destroy; override ;

Description

Do not call Destroy directly. Call Free instead. Free verifies that the object reference is not nil before calling Destroy.

1.13.1.2.1.3 TToolItemStyle.DrawItemRect Method

Draws item frame and background.

procedure DrawItemRect(Canvas: TCanvas; const R: TRect);

1.13.1.2.2 TToolItemStyle Properties

1.13.1.2.2.1 TToolItemStyle.Alignment Property

Specifies the manner in which text is aligned within an item.

property Alignment: TAlignment;

Description

Use the Alignment property to specify the horizontal placement of a text string within an item. Text can be aligned either to
the right, left or centered.

Value Description

taLeftJustify Text is left justified: text line begins at the left edge of a control.

1.13 ecToolList Namespace EControl Form Designer Pro Classes

124

1

taCenter Text is centered within a control.

taRightJustify Text is right justified: text line ends at the right edge of a control.

1.13.1.2.2.2 TToolItemStyle.BoundPen Property

Specifies pen which is used to draw item border.

property BoundPen: TPen;

1.13.1.2.2.3 TToolItemStyle.Brush Property

Specifies Brush which is used to render item background.

property Brush: TBrush;

1.13.1.2.2.4 TToolItemStyle.Font Property

Specifies font used to render item Caption.

property Font: TFont;

1.13.1.2.2.5 TToolItemStyle.Shape Property

Specifies shape of item frame.

property Shape: TItemShape ;

1.13.1.2.3 TToolItemStyle Events

1.13.1.2.3.1 TToolItemStyle.OnChange Event

Occurs when any properties of style are changed.

property OnChange: TNotifyEvent;

1.13.1.3 TToolList Class
Tool list represents item list organized in categories.

Class Hierarchy

TToolList = class (TCustomToolList);

File

ecToolList

Description

Items (see page 135) in tool list has caption, image and hint. Categories may be collapsed. Items (see page 135) may
be filtered.

Members

TCustomToolList Methods

TCustomToolList Methods Description

 CollapseAll (see page 118) Collapses all categories.

 Create (see page 119) Creates and initializes a TCustomToolList instance.

 Destroy (see page 119) Destroys an instance of TCustomToolList.

 DrawItemImage (see page 119) Draws item image.

 ExpandAll (see page 119) Expands all categories.

1.13 ecToolList Namespace EControl Form Designer Pro Classes

125

1

 GetCategoryItem (see page 119) Returns index of category item at the given position or above.

 ItemAtPos (see page 119) Returns items at the given position. If there are no item at the specified
position function returns -1.

 ItemIndexChanged (see page 119) Called when selected item was changed.

 ItemRect (see page 119) Returns rectangle occupied by the item.

 ItemsArranged (see page 120) Called after items were rearranged by the drag&drop operations.

 ItemsChanged (see page 120) Called when items were changed (any changes).

 ItemsHeight (see page 120) Calculates total height of items.

 MakeTopItem (see page 120) Scrolls list to make specified item topmost item.

 MakeVisible (see page 120) Scrolls list to make specified item visible.

 PaintItem (see page 120) Calls TToolListItem.Paint and allows to customize item rendering in derived
classes.

 SelectFirstVisible (see page 120) Selects first visible, i.e. not hidden, item.

TCustomToolList Properties

TCustomToolList Properties Description

 AllowArrange (see page 120) Specifies whether items can be arranged by the drag&drop operations.

 AutoCollapse (see page 120) Specifies whether all categories should be collapsed when one category is
expanded or collapsed.

 CategoryHeight (see page 120) Specifies height of category item.

 Filtered (see page 120) Specifies whether items are filtered.

 FilterString (see page 121) Specifies filter string which is used to test item Caption.

 FoldingIcon (see page 121) Holds folding icon images.

 HintProps (see page 121) Provide properties to adjust hints processing.

 Images (see page 121) Determines which image list is associated with the tool list.

 InsertAtItem (see page 121) Specifies item index at which dragged object can be dropped.

 ItemHeight (see page 121) Specifies height of the normal item.

 ItemIndex (see page 121) Indicates which item is selected. If no item is selected ItemIndex is equal to -1.

 Items (see page 121) Provides access to items displayed in tool list.

 MouseOverItem (see page 122) Indicates item over which mouse cursor is located.

 RightClickSelect (see page 122) Specifies whether item can be selected by mouse right click.

 RowSpace (see page 122) Specifies space between two sequential items.

 Selected (see page 122) Currently selected item in tool list.

 StyleCategory (see page 122) Specifies style of category items.

 StyleCategoryMouseOver (see page 122) Specifies style of category item when mouse is over it.

 StyleCategorySelected (see page 122) Specifies style of selected category item.

 StyleItem (see page 122) Specifies style of tool items.

 StyleItemMouseOver (see page 122) Specifies style of tool item when mouse is over it.

 StyleItemSelected (see page 122) Specifies style of selected tool item.

 VerticalGroups (see page 122) Specifies whether category item should be displayed vertically along owned
items.

 ViewOrigin (see page 123) Specifies scrolling position of the tool list control.

TToolList Class

TToolList Class Description

 Align (see page 130) Determines how the control aligns within its container (parent control).

 AllowArrange (see page 131) Specifies whether items can be arranged by the drag&drop operations.

 Anchors (see page 131) Specifies how the control is anchored to its parent.

 AutoCollapse (see page 131) Specifies whether all categories should be collapsed when one category is
expanded or collapsed.

 BevelEdges (see page 131) Specifies which edges of the control are beveled.

 BevelInner (see page 131) Specifies the cut of the inner bevel.

 BevelKind (see page 132) Specifies the control’s bevel style.

 BevelOuter (see page 132) Specifies the cut of the outer bevel.

 BiDiMode (see page 132) Specifies the bi-directional mode for the control.

 CategoryHeight (see page 132) Specifies height of category item.

 Color (see page 132) Specifies the background color of the control.

 Constraints (see page 133) Specifies the size constraints for the control.

 Ctl3D (see page 133) Determines whether a control has a three-dimensional (3-D) or
two-dimensional look.

1.13 ecToolList Namespace EControl Form Designer Pro Classes

126

1

 DragCursor (see page 133) Indicates the image used to represent the mouse pointer when the control is
being dragged.

 DragKind (see page 133) Specifies whether the control is being dragged normally or for docking.

 DragMode (see page 133) Determines how the control initiates drag-and-drop or drag-and-dock
operations.

 Enabled (see page 133) Controls whether the control responds to mouse, keyboard, and timer events.

 Filtered (see page 134) Specifies whether items are filtered.

 FilterString (see page 134) Specifies filter string which is used to test item Caption.

 FoldingIcon (see page 134) Holds folding icon images.

 Font (see page 134) Controls the attributes of text written on or in the control.

 HintProps (see page 134) Provide properties to adjust hints processing.

 Images (see page 134) Determines which image list is associated with the tool list.

 ItemHeight (see page 134) Specifies height of the normal item.

 ItemIndex (see page 135) Indicates which item is selected. If no item is selected ItemIndex is equal to -1.

 Items (see page 135) Provides access to items displayed in tool list.

 OnCanResize (see page 135) Occurs when an attempt is made to resize the control.

 OnClick (see page 135) Occurs when the user clicks the control.

 OnConstrainedResize (see page 135) Adjust resize constraints.

 OnContextPopup (see page 136) Occurs when the user right-clicks the control or otherwise invokes the popup
menu (such as using the keyboard).

 OnDblClick (see page 136) Occurs when the user double-clicks the left mouse button when the mouse
pointer is over the control.

 OnDragDrop (see page 136) Occurs when the user drops an object being dragged.

 OnDragOver (see page 136) Occurs when the user drags an object over a control.

 OnEndDrag (see page 137) Occurs when the dragging of an object ends, either by dropping the object or
by canceling the dragging.

 OnEnter (see page 137) Occurs when a control receives the input focus.

 OnExit (see page 137) Occurs when the input focus shifts away from one control to another.

 OnItemArranged (see page 137) Occurs when items order was changed.

 OnItemChanged (see page 137) Occurs when selected item is changes.

 OnMouseDown (see page 137) Occurs when the user presses a mouse button with the mouse pointer over a
control.

 OnMouseMove (see page 138) Occurs when the user moves the mouse pointer while the mouse pointer is
over a control.

 OnMouseUp (see page 138) Occurs when the user releases a mouse button that was pressed with the
mouse pointer over a component.

 OnResize (see page 138) Occurs immediately after the control is resized.

 OnStartDrag (see page 138) Occurs when the user begins to drag the control or an object it contains by
left-clicking on the control and holding the mouse button down.

 ParentBiDiMode (see page 139) Specifies whether the control uses its parent’s BiDiMode.

 ParentColor (see page 139) Determines where a control looks for its color information.

 ParentCtl3D (see page 139) Determines where a component looks to determine if it should appear three
dimensional.

 ParentFont (see page 139) Determines where a control looks for its font information.

 ParentShowHint (see page 139) Determines where a control looks to find out if its Help Hint should be shown.

 PopupMenu (see page 139) Identifies the pop-up menu associated with the control.

 RightClickSelect (see page 139) Specifies whether item can be selected by mouse right click.

 RowSpace (see page 140) Specifies space between two sequential items.

 Selected (see page 140) Currently selected item in tool list.

 ShowHint (see page 140) Determines whether the control displays a Help Hint when the mouse pointer
rests momentarily on the control.

 StyleCategory (see page 140) Specifies style of category items.

 StyleCategoryMouseOver (see page 140) Specifies style of category item when mouse is over it.

 StyleCategorySelected (see page 140) Specifies style of selected category item.

 StyleItem (see page 140) Specifies style of tool items.

 StyleItemMouseOver (see page 140) Specifies style of tool item when mouse is over it.

 StyleItemSelected (see page 140) Specifies style of selected tool item.

 TabOrder (see page 140) Indicates the position of the control in its parent's tab order.

 TabStop (see page 140) Determines if the user can tab to a control.

 VerticalGroups (see page 141) Specifies whether category item should be displayed vertically along owned
items.

 Visible (see page 141) Determines whether the component appears on screen.

1.13 ecToolList Namespace EControl Form Designer Pro Classes

127

1

TCustomToolList Events

TCustomToolList Events Description

 OnItemArranged (see page 123) Occurs when items order was changed.

 OnItemChanged (see page 123) Occurs when selected item is changes.

Legend

Method

virtual

protected

Property

read only

Event

TCustomToolList Events

TCustomToolList Events Description

 OnItemArranged (see page 123) Occurs when items order was changed.

 OnItemChanged (see page 123) Occurs when selected item is changes.

TCustomToolList Methods

TCustomToolList Methods Description

 CollapseAll (see page 118) Collapses all categories.

 Create (see page 119) Creates and initializes a TCustomToolList instance.

 Destroy (see page 119) Destroys an instance of TCustomToolList.

 DrawItemImage (see page 119) Draws item image.

 ExpandAll (see page 119) Expands all categories.

 GetCategoryItem (see page 119) Returns index of category item at the given position or above.

 ItemAtPos (see page 119) Returns items at the given position. If there are no item at the specified
position function returns -1.

 ItemIndexChanged (see page 119) Called when selected item was changed.

 ItemRect (see page 119) Returns rectangle occupied by the item.

 ItemsArranged (see page 120) Called after items were rearranged by the drag&drop operations.

 ItemsChanged (see page 120) Called when items were changed (any changes).

 ItemsHeight (see page 120) Calculates total height of items.

 MakeTopItem (see page 120) Scrolls list to make specified item topmost item.

 MakeVisible (see page 120) Scrolls list to make specified item visible.

 PaintItem (see page 120) Calls TToolListItem.Paint and allows to customize item rendering in derived
classes.

 SelectFirstVisible (see page 120) Selects first visible, i.e. not hidden, item.

TCustomToolList Properties

TCustomToolList Properties Description

 AllowArrange (see page 120) Specifies whether items can be arranged by the drag&drop operations.

 AutoCollapse (see page 120) Specifies whether all categories should be collapsed when one category is
expanded or collapsed.

 CategoryHeight (see page 120) Specifies height of category item.

 Filtered (see page 120) Specifies whether items are filtered.

 FilterString (see page 121) Specifies filter string which is used to test item Caption.

 FoldingIcon (see page 121) Holds folding icon images.

 HintProps (see page 121) Provide properties to adjust hints processing.

 Images (see page 121) Determines which image list is associated with the tool list.

 InsertAtItem (see page 121) Specifies item index at which dragged object can be dropped.

 ItemHeight (see page 121) Specifies height of the normal item.

 ItemIndex (see page 121) Indicates which item is selected. If no item is selected ItemIndex is equal to -1.

 Items (see page 121) Provides access to items displayed in tool list.

 MouseOverItem (see page 122) Indicates item over which mouse cursor is located.

 RightClickSelect (see page 122) Specifies whether item can be selected by mouse right click.

 RowSpace (see page 122) Specifies space between two sequential items.

 Selected (see page 122) Currently selected item in tool list.

 StyleCategory (see page 122) Specifies style of category items.

1.13 ecToolList Namespace EControl Form Designer Pro Classes

128

1

 StyleCategoryMouseOver (see page 122) Specifies style of category item when mouse is over it.

 StyleCategorySelected (see page 122) Specifies style of selected category item.

 StyleItem (see page 122) Specifies style of tool items.

 StyleItemMouseOver (see page 122) Specifies style of tool item when mouse is over it.

 StyleItemSelected (see page 122) Specifies style of selected tool item.

 VerticalGroups (see page 122) Specifies whether category item should be displayed vertically along owned
items.

 ViewOrigin (see page 123) Specifies scrolling position of the tool list control.

TToolList Class

TToolList Class Description

 Align (see page 130) Determines how the control aligns within its container (parent control).

 AllowArrange (see page 131) Specifies whether items can be arranged by the drag&drop operations.

 Anchors (see page 131) Specifies how the control is anchored to its parent.

 AutoCollapse (see page 131) Specifies whether all categories should be collapsed when one category is
expanded or collapsed.

 BevelEdges (see page 131) Specifies which edges of the control are beveled.

 BevelInner (see page 131) Specifies the cut of the inner bevel.

 BevelKind (see page 132) Specifies the control’s bevel style.

 BevelOuter (see page 132) Specifies the cut of the outer bevel.

 BiDiMode (see page 132) Specifies the bi-directional mode for the control.

 CategoryHeight (see page 132) Specifies height of category item.

 Color (see page 132) Specifies the background color of the control.

 Constraints (see page 133) Specifies the size constraints for the control.

 Ctl3D (see page 133) Determines whether a control has a three-dimensional (3-D) or
two-dimensional look.

 DragCursor (see page 133) Indicates the image used to represent the mouse pointer when the control is
being dragged.

 DragKind (see page 133) Specifies whether the control is being dragged normally or for docking.

 DragMode (see page 133) Determines how the control initiates drag-and-drop or drag-and-dock
operations.

 Enabled (see page 133) Controls whether the control responds to mouse, keyboard, and timer events.

 Filtered (see page 134) Specifies whether items are filtered.

 FilterString (see page 134) Specifies filter string which is used to test item Caption.

 FoldingIcon (see page 134) Holds folding icon images.

 Font (see page 134) Controls the attributes of text written on or in the control.

 HintProps (see page 134) Provide properties to adjust hints processing.

 Images (see page 134) Determines which image list is associated with the tool list.

 ItemHeight (see page 134) Specifies height of the normal item.

 ItemIndex (see page 135) Indicates which item is selected. If no item is selected ItemIndex is equal to -1.

 Items (see page 135) Provides access to items displayed in tool list.

 OnCanResize (see page 135) Occurs when an attempt is made to resize the control.

 OnClick (see page 135) Occurs when the user clicks the control.

 OnConstrainedResize (see page 135) Adjust resize constraints.

 OnContextPopup (see page 136) Occurs when the user right-clicks the control or otherwise invokes the popup
menu (such as using the keyboard).

 OnDblClick (see page 136) Occurs when the user double-clicks the left mouse button when the mouse
pointer is over the control.

 OnDragDrop (see page 136) Occurs when the user drops an object being dragged.

 OnDragOver (see page 136) Occurs when the user drags an object over a control.

 OnEndDrag (see page 137) Occurs when the dragging of an object ends, either by dropping the object or
by canceling the dragging.

 OnEnter (see page 137) Occurs when a control receives the input focus.

 OnExit (see page 137) Occurs when the input focus shifts away from one control to another.

 OnItemArranged (see page 137) Occurs when items order was changed.

 OnItemChanged (see page 137) Occurs when selected item is changes.

 OnMouseDown (see page 137) Occurs when the user presses a mouse button with the mouse pointer over a
control.

 OnMouseMove (see page 138) Occurs when the user moves the mouse pointer while the mouse pointer is
over a control.

 OnMouseUp (see page 138) Occurs when the user releases a mouse button that was pressed with the
mouse pointer over a component.

1.13 ecToolList Namespace EControl Form Designer Pro Classes

129

1

 OnResize (see page 138) Occurs immediately after the control is resized.

 OnStartDrag (see page 138) Occurs when the user begins to drag the control or an object it contains by
left-clicking on the control and holding the mouse button down.

 ParentBiDiMode (see page 139) Specifies whether the control uses its parent’s BiDiMode.

 ParentColor (see page 139) Determines where a control looks for its color information.

 ParentCtl3D (see page 139) Determines where a component looks to determine if it should appear three
dimensional.

 ParentFont (see page 139) Determines where a control looks for its font information.

 ParentShowHint (see page 139) Determines where a control looks to find out if its Help Hint should be shown.

 PopupMenu (see page 139) Identifies the pop-up menu associated with the control.

 RightClickSelect (see page 139) Specifies whether item can be selected by mouse right click.

 RowSpace (see page 140) Specifies space between two sequential items.

 Selected (see page 140) Currently selected item in tool list.

 ShowHint (see page 140) Determines whether the control displays a Help Hint when the mouse pointer
rests momentarily on the control.

 StyleCategory (see page 140) Specifies style of category items.

 StyleCategoryMouseOver (see page 140) Specifies style of category item when mouse is over it.

 StyleCategorySelected (see page 140) Specifies style of selected category item.

 StyleItem (see page 140) Specifies style of tool items.

 StyleItemMouseOver (see page 140) Specifies style of tool item when mouse is over it.

 StyleItemSelected (see page 140) Specifies style of selected tool item.

 TabOrder (see page 140) Indicates the position of the control in its parent's tab order.

 TabStop (see page 140) Determines if the user can tab to a control.

 VerticalGroups (see page 141) Specifies whether category item should be displayed vertically along owned
items.

 Visible (see page 141) Determines whether the component appears on screen.

1.13.1.3.1 TToolList Properties

1.13.1.3.1.1 TToolList.Align Property

Determines how the control aligns within its container (parent control).

property Align;

Description

Use Align to align a control to the top, bottom, left, or right of a form or panel and have it remain there even if the size of the
form, panel, or component that contains the control changes. When the parent is resized, an aligned control also resizes so
that it continues to span the top, bottom, left, or right edge of the parent.

For example, to use a panel component with various controls on it as a tool palette, change the panel’s Align value to alLeft.
The value of alLeft for the Align property of the panel guarantees that the tool palette remains on the left side of the form and
always equals the client height of the form.

The default value of Align is alNone, which means a control remains where it is positioned on a form or panel.

Tip: If Align is set to alClient, the control fills the entire client area so that it is impossible to select the parent form by clicking
on it. In this case, select the parent by selecting the control on the form and pressing Esc, or by using the Object Inspector.

Any number of child components within a single parent can have the same Align value, in which case they stack up along
the edge of the parent. The child controls stack up in z-order. To adjust the order in which the controls stack up, drag the
controls into their desired positions.

Note: To cause a control to maintain a specified relationship with an edge of its parent, but not necessarily lie along one
edge of the parent, use the Anchors property instead.

1.13 ecToolList Namespace EControl Form Designer Pro Classes

130

1

1.13.1.3.1.2 TToolList.AllowArrange Property

Specifies whether items can be arranged by the drag&drop operations.

property AllowArrange: Boolean;

1.13.1.3.1.3 TToolList.Anchors Property

Specifies how the control is anchored to its parent.

property Anchors;

Description

Use Anchors to ensure that a control maintains its current position relative to an edge of its parent, even if the parent is
resized. When its parent is resized, the control holds its position relative to the edges to which it is anchored.

If a control is anchored to opposite edges of its parent, the control stretches when its parent is resized. For example, if a
control has its Anchors property set to [akLeft, akRight], the control stretches when the width of its parent changes.

Anchors is enforced only when the parent is resized. Thus, for example, if a control is anchored to opposite edges of a form
at design time and the form is created in a maximized state, the control is not stretched because the form is not resized after
the control is created.

Note: If a control should maintain contact with three edges of its parent (hugging one side of the parent and stretching the
length of that side), use the Align property instead. Unlike Anchors, Align allows controls to adjust to changes in the size of
other aligned sibling controls as well as changes to the parent’s size.

1.13.1.3.1.4 TToolList.AutoCollapse Property

Specifies whether all categories should be collapsed when one category is expanded or collapsed.

property AutoCollapse: Boolean;

1.13.1.3.1.5 TToolList.BevelEdges Property

Specifies which edges of the control are beveled.

property BevelEdges;

Description

Use BevelEdges to get or set which edges of the control are beveled. The BevelInner, BevelOuter, and BevelKind properties
determine the appearance of the specified edges.

1.13.1.3.1.6 TToolList.BevelInner Property

Specifies the cut of the inner bevel.

property BevelInner;

Description

Use BevelInner to specify whether the inner bevel has a raised, lowered, or flat look.

The inner bevel appears immediately inside the outer bevel. If there is no outer bevel (BevelOuter is bvNone), the inner
bevel appears immediately inside the border.

1.13 ecToolList Namespace EControl Form Designer Pro Classes

131

1

1.13.1.3.1.7 TToolList.BevelKind Property

Specifies the control’s bevel style.

property BevelKind;

Description

Use BevelKind to modify the appearance of a bevel. BevelKind influences how sharply the bevel stands out.

BevelKind, in combination with BevelWidth and the cut of the bevel specified by BevelInner or BevelOuter, can create a
variety of effects. Experiment with various combinations to get the look you want.

1.13.1.3.1.8 TToolList.BevelOuter Property

Specifies the cut of the outer bevel.

property BevelOuter;

Description

Use BevelInner to specify whether the outer bevel has a raised, lowered, or flat look.

The outer bevel appears immediately inside the border and outside the inner bevel.

1.13.1.3.1.9 TToolList.BiDiMode Property

Specifies the bi-directional mode for the control.

property BiDiMode;

Description

Use BiDiMode to enable the control to adjust its appearance and behavior automatically when the application runs in a
locale that reads from right to left instead of left to right. The bi-directional mode controls the reading order for the text, the
placement of the vertical scroll bar, and whether the alignment is changed.

Alignment does not change for controls that are known to contain number, date, time, or currency values. For example, with
data aware controls, the alignment does not change for the following field types: ftSmallint, ftInteger, ftWord, ftFloat,
ftCurrency, ftBCD, ftDate, ftTime, ftDateTime, ftAutoInc.

1.13.1.3.1.10 TToolList.CategoryHeight Property

Specifies height of category item.

property CategoryHeight: integer;

1.13.1.3.1.11 TToolList.Color Property

Specifies the background color of the control.

property Color;

Description

Use Color to read or change the background color of the control.

If a control's ParentColor property is true, then changing the Color property of the control's parent automatically changes the
Color property of the control. When the value of the Color property is changed, the control's ParentColor property is
automatically set to false.

1.13 ecToolList Namespace EControl Form Designer Pro Classes

132

1

1.13.1.3.1.12 TToolList.Constraints Property

Specifies the size constraints for the control.

property Constraints;

Description

Use Constraints to specify the minimum and maximum width and height of the control. When Constraints contains maximum
or minimum values, the control cannot be resized to violate those constraints.

Warning: Do not set up constraints that conflict with the value of the Align or Anchors property. When these properties
conflict, the response of the control to resize attempts is not well-defined.

1.13.1.3.1.13 TToolList.Ctl3D Property

Determines whether a control has a three-dimensional (3-D) or two-dimensional look.

property Ctl3D;

Description

Ctl3D is provided for backward compatibility. It is not used by 32-bit versions of Windows or NT4.0 and later.

On earlier platforms, Ctl3D controlled whether the control had a flat or beveled appearance.

1.13.1.3.1.14 TToolList.DragCursor Property

Indicates the image used to represent the mouse pointer when the control is being dragged.

property DragCursor;

Description

Use the DragCursor property to change the cursor image presented when the control is being dragged.

Note: To make a custom cursor available for the DragCursor property, see the Cursor property.

1.13.1.3.1.15 TToolList.DragKind Property

Specifies whether the control is being dragged normally or for docking.

property DragKind;

Description

Use DragKind to get or set whether the control participates in drag-and-drop operations, or drag-and-dock operations.

1.13.1.3.1.16 TToolList.DragMode Property

Determines how the control initiates drag-and-drop or drag-and-dock operations.

property DragMode;

Description

Use DragMode to control when the user can drag the control. Disable the drag-and-drop or drag-and-dock capability at
runtime by setting the DragMode property value to dmManual. Enable automatic dragging by setting DragMode to
dmAutomatic.

1.13.1.3.1.17 TToolList.Enabled Property

Controls whether the control responds to mouse, keyboard, and timer events.

property Enabled;

1.13 ecToolList Namespace EControl Form Designer Pro Classes

133

1

Description

Use Enabled to change the availability of the control to the user. To disable a control, set Enabled to false. Disabled controls
appear dimmed. If Enabled is false, the control ignores mouse, keyboard, and timer events.

To re-enable a control, set Enabled to true. The control is no longer dimmed, and the user can use the control.

1.13.1.3.1.18 TToolList.Filtered Property

Specifies whether items are filtered.

property Filtered: Boolean;

Description

Use Filtered property to toggle items filtration. Items are filtered using FilterString property.

1.13.1.3.1.19 TToolList.FilterString Property

Specifies filter string which is used to test item Caption.

property FilterString: string ;

1.13.1.3.1.20 TToolList.FoldingIcon Property

Holds folding icon images.

property FoldingIcon: TBitmap;

Description

FoldingIcon should contain two images in a row, first - collapse icon (-), second - expand icon (+).

Color of bottom-left pixel is used as mask color.

Folding icon is initialized from resource when control is created at design time.

1.13.1.3.1.21 TToolList.Font Property

Controls the attributes of text written on or in the control.

property Font;

Description

To change to a new font, specify a new TFont object. To modify a font, change the value of the Charset, Color, Height,
Name, Pitch, Size, or Style of the TFont object.

1.13.1.3.1.22 TToolList.HintProps Property

Provide properties to adjust hints processing.

property HintProps: TecHintHelper ;

1.13.1.3.1.23 TToolList.Images Property

Determines which image list is associated with the tool list.

property Images: TCustomImageList;

Description

Use Images to provide a customized list of bitmaps that can be displayed to the left of a item’s label. Individual items specify
the image from this list that should appear by setting their ImageIndex property.

1.13.1.3.1.24 TToolList.ItemHeight Property

Specifies height of the normal item.

1.13 ecToolList Namespace EControl Form Designer Pro Classes

134

1

property ItemHeight: integer;

1.13.1.3.1.25 TToolList.ItemIndex Property

Indicates which item is selected. If no item is selected ItemIndex is equal to -1.

property ItemIndex: integer;

1.13.1.3.1.26 TToolList.Items Property

Provides access to items displayed in tool list.

property Items: TToolListItems ;

Description

Read Items to access the list of items that appears in the tool list. Use the methods of Items to add, insert, delete and move
items.

1.13.1.3.1.27 TToolList.OnCanResize Property

Occurs when an attempt is made to resize the control.

property OnCanResize;

Description

Use OnCanResize to adjust the way a control is resized. If necessary, change the new width and height of the control in the
OnCanResize event handler. The OnCanResize event handler also allows applications to indicate that the entire resize
should be aborted.

If there is no OnCanResize event handler, or if the OnCanResize event handler indicates that the resize attempt can
proceed, the OnCanResize event is followed immediately by an OnConstrainedResize event.

1.13.1.3.1.28 TToolList.OnClick Property

Occurs when the user clicks the control.

property OnClick;

1.13.1.3.1.29 TToolList.OnConstrainedResize Property

Adjust resize constraints.

property OnConstrainedResize;

Description

Use OnConstrainedResize to adjust a control’s constraints when an attempt is made to resize it. Upon entry to the
OnConstrainedResize event handler, the parameters of the event handler are set to the corresponding properties of the
control’s Constraints object. The event handler can adjust those values before they are applied to the new height and width
that is being applied to the control. (The CanAutoSize method or an OnCanResize event handler may already have adjusted
this new height and width).

On exit from the OnConstrainedResize event handler, the constraints are applied to the attempted new height and width.
Once the constraints are applied, the control’s height and width are changed. After the control’s height and width change, an
OnResize event occurs to allow any final adjustments or responses.

Notes

The OnConstrainedResize handler is called immediately after the OnCanResize handler.

1.13 ecToolList Namespace EControl Form Designer Pro Classes

135

1

1.13.1.3.1.30 TToolList.OnContextPopup Property

Occurs when the user right-clicks the control or otherwise invokes the popup menu (such as using the keyboard).

property OnContextPopup;

Description

The OnContextPopup handler is called when the user uses the mouse or keyboard to request a popup menu. The
OnContextPopup event is generated by a WM_CONTEXTMENU message, which is itself generated by the user clicking the
right mouse button or by pressing SHIFT+F10 or the Applications key.

This event is especially useful when the control does not have an associated popup menu (the PopupMenu property is not
set) or if the AutoPopup property of the control’s associated popup menu is false. However, the OnContextPopup can also
be used to override the automatic context menu that appears when the control has an associated popup menu with an
AutoPopup property of true. In this last case, if the event handler displays its own menu, it should set the Handled parameter
to true to suppress the default context menu.

The handler’s MousePos parameter indicates the position of the mouse, in client coordinates.. If the event was not
generated by a mouse click, MousePos is (-1,-1).

Note: Parent controls receive an OnContextPopup event before their child controls. In addition, for many child controls, the
default window procedure causes the parent control to receive an OnContextPopup event after the child control. As a result,
when parent controls do not set Handled to true in an OnContextPopup event handler, the event handler may be called
multiple times for each context menu invocation.

1.13.1.3.1.31 TToolList.OnDblClick Property

Occurs when the user double-clicks the left mouse button when the mouse pointer is over the control.

property OnDblClick;

Description

Use the OnDblClick event to respond to mouse double-clicks.

1.13.1.3.1.32 TToolList.OnDragDrop Property

Occurs when the user drops an object being dragged.

property OnDragDrop;

Description

Use the OnDragDrop event handler to specify what happens when the user drops an object. The Source parameter of the
OnDragDrop event is the object being dropped, and the Sender is the control the object is being dropped on. The X and Y
parameters are the coordinates of the mouse positioned over the control.

1.13.1.3.1.33 TToolList.OnDragOver Property

Occurs when the user drags an object over a control.

property OnDragOver;

Description

Use an OnDragOver event to signal that the control can accept a dragged object so the user can drop or dock it.

Within the OnDragOver event handler, change the Accept parameter to false to reject the dragged object. Leave Accept as

1.13 ecToolList Namespace EControl Form Designer Pro Classes

136

1

true to allow the user to drop or dock the dragged object on the control.

To change the shape of the cursor, indicating that the control can accept the dragged object, change the value of the
DragCursor property for the control before the OnDragOver event occurs.

The Source is the object being dragged, the Sender is the potential drop or dock site, and X and Y are screen coordinates in
pixels. The State parameter specifies how the dragged object is moving over the control.

Note: Within the OnDragOver event handler, the Accept parameter defaults to true. However, if an OnDragOver event
handler is not supplied, the control rejects the dragged object, as if the Accept parameter were changed to false.

1.13.1.3.1.34 TToolList.OnEndDrag Property

Occurs when the dragging of an object ends, either by dropping the object or by canceling the dragging.

property OnEndDrag;

Description

Use the OnEndDrag event handler to specify any special processing that occurs when dragging stops.

1.13.1.3.1.35 TToolList.OnEnter Property

Occurs when a control receives the input focus.

property OnEnter;

Description

Use the OnEnter event handler to cause any special processing to occur when a control becomes active.

The OnEnter event does not occur when switching between forms or between another application and the application that
includes the control.

1.13.1.3.1.36 TToolList.OnExit Property

Occurs when the input focus shifts away from one control to another.

property OnExit;

Description

Use the OnExit event handler to provide special processing when the control ceases to be active.

The OnExit event does not occur when switching between forms or between another application and your application.

1.13.1.3.1.37 TToolList.OnItemArranged Property

Occurs when items order was changed.

property OnItemArranged: TNotifyEvent;

1.13.1.3.1.38 TToolList.OnItemChanged Property

Occurs when selected item is changes.

property OnItemChanged: TNotifyEvent;

1.13.1.3.1.39 TToolList.OnMouseDown Property

Occurs when the user presses a mouse button with the mouse pointer over a control.

property OnMouseDown;

1.13 ecToolList Namespace EControl Form Designer Pro Classes

137

1

Description

Use the OnMouseDown event handler to implement any special processing that should occur as a result of pressing a
mouse button.

The OnMouseDown event handler can respond to left, right, or center mouse button presses and shift key plus
mouse-button combinations. Shift keys are the Shift, Ctrl, and Alt keys. X and Y are the pixel coordinates of the mouse
pointer in the client area of the Sender.

1.13.1.3.1.40 TToolList.OnMouseMove Property

Occurs when the user moves the mouse pointer while the mouse pointer is over a control.

property OnMouseMove;

Description

Use the OnMouseMove event handler to respond when the mouse pointer moves after the control has captured the mouse.

Use the Shift parameter of the OnMouseDown event handler, to determine to the state of the shift keys and mouse buttons.
Shift keys are the Shift, Ctrl, and Alt keys or shift key-mouse button combinations. X and Y are pixel coordinates of the new
location of the mouse pointer in the client area of the Sender.

1.13.1.3.1.41 TToolList.OnMouseUp Property

Occurs when the user releases a mouse button that was pressed with the mouse pointer over a component.

property OnMouseUp;

Description

Use an OnMouseUp event handler to implement special processing when the user releases a mouse button.

The OnMouseUp event handler can respond to left, right, or center mouse button presses and shift key plus mouse-button
combinations. Shift keys are the Shift, Ctrl, and Alt keys. X and Y are the pixel coordinates of the mouse pointer in the client
area of the Sender.

1.13.1.3.1.42 TToolList.OnResize Property

Occurs immediately after the control is resized.

property OnResize;

Description

Use OnResize to make any final adjustments after a control is resized.

To modify the way a control responds when an attempt is made to resize it, use OnCanResize or OnConstrainedResize.

1.13.1.3.1.43 TToolList.OnStartDrag Property

Occurs when the user begins to drag the control or an object it contains by left-clicking on the control and holding the mouse
button down.

property OnStartDrag;

Description

Use the OnStartDrag event handler to implement special processing when the user starts to drag the control or an object it
contains. OnStartDrag only occurs if DragKind is dkDrag.

Sender is the control that is about to be dragged, or that contains the object about to be dragged.

1.13 ecToolList Namespace EControl Form Designer Pro Classes

138

1

The OnStartDrag event handler can create a TDragControlObjectEx instance for the DragObject parameter to specify the
drag cursor, or, optionally, a drag image list. If you create a TDragControlObjectEx instance, there is no need to call the Free
method for the DragObject when dragging is over. If you create, instead, a TDragControlObject instance, your application is
responsible for freeing the drag object instance.

If the OnStartDrag event handler sets the DragObject parameter to nil (Delphi) or NULL (C++), a TDragControlObject object
is automatically created and dragging begins on the control itse

1.13.1.3.1.44 TToolList.ParentBiDiMode Property

Specifies whether the control uses its parent’s BiDiMode.

property ParentBiDiMode;

1.13.1.3.1.45 TToolList.ParentColor Property

Determines where a control looks for its color information.

property ParentColor;

1.13.1.3.1.46 TToolList.ParentCtl3D Property

Determines where a component looks to determine if it should appear three dimensional.

property ParentCtl3D;

Description

ParentCtl3D is provided for backwards compatibility. It has no effect on 32-bit versions of Windows or NT 4.0 and later.

ParentCtl3D determines whether the control uses its parent’s Ctl3D property.

1.13.1.3.1.47 TToolList.ParentFont Property

Determines where a control looks for its font information.

property ParentFont;

1.13.1.3.1.48 TToolList.ParentShowHint Property

Determines where a control looks to find out if its Help Hint should be shown.

property ParentShowHint;

1.13.1.3.1.49 TToolList.PopupMenu Property

Identifies the pop-up menu associated with the control.

property PopupMenu;

Description

Assign a value to PopupMenu to make a pop-up menu appear when the user selects the control and clicks the right mouse
button. If the TPopupMenu’s AutoPopup property is true, the pop-up menu appears automatically. If the menu’s AutoPopup
property is false, display the menu with a call to its Popup method from the control’s OnContextPopup event handler.

1.13.1.3.1.50 TToolList.RightClickSelect Property

Specifies whether item can be selected by mouse right click.

property RightClickSelect: Boolean;

1.13 ecToolList Namespace EControl Form Designer Pro Classes

139

1

1.13.1.3.1.51 TToolList.RowSpace Property

Specifies space between two sequential items.

property RowSpace: integer;

1.13.1.3.1.52 TToolList.Selected Property

Currently selected item in tool list.

property Selected: TToolListItem ;

1.13.1.3.1.53 TToolList.ShowHint Property

Determines whether the control displays a Help Hint when the mouse pointer rests momentarily on the control.

property ShowHint;

1.13.1.3.1.54 TToolList.StyleCategory Property

Specifies style of category items.

property StyleCategory: TToolItemStyle ;

1.13.1.3.1.55 TToolList.StyleCategoryMouseOver Property

Specifies style of category item when mouse is over it.

property StyleCategoryMouseOver: TToolItemStyle ;

1.13.1.3.1.56 TToolList.StyleCategorySelected Property

Specifies style of selected category item.

property StyleCategorySelected: TToolItemStyle ;

1.13.1.3.1.57 TToolList.StyleItem Property

Specifies style of tool items.

property StyleItem: TToolItemStyle ;

1.13.1.3.1.58 TToolList.StyleItemMouseOver Property

Specifies style of tool item when mouse is over it.

property StyleItemMouseOver: TToolItemStyle ;

1.13.1.3.1.59 TToolList.StyleItemSelected Property

Specifies style of selected tool item.

property StyleItemSelected: TToolItemStyle ;

1.13.1.3.1.60 TToolList.TabOrder Property

Indicates the position of the control in its parent's tab order.

property TabOrder;

1.13.1.3.1.61 TToolList.TabStop Property

Determines if the user can tab to a control.

property TabStop;

Description

Use the TabStop to allow or disallow access to the control using the Tab key.

1.13 ecToolList Namespace EControl Form Designer Pro Classes

140

1

If TabStop is true, the control is in the tab order. If TabStop is false, the control is not in the tab order and the user can't
press the Tab key to move to the control.

1.13.1.3.1.62 TToolList.VerticalGroups Property

Specifies whether category item should be displayed vertically along owned items.

property VerticalGroups: Boolean;

1.13.1.3.1.63 TToolList.Visible Property

Determines whether the component appears on screen.

property Visible;

Description

Use the Visible property to control the visibility of the control at runtime. If Visible is true, the control appears. If Visible is
false, the control is not visible.

Calling the Show method sets the control's Visible property to true. Calling the Hide method sets it to false.

1.13.1.4 TToolListItem Class
Represents tool item used in tool lists (see page 116).

Class Hierarchy

TToolListItem = class (TCollectionItem);

File

ecToolList

Description

Item class is common for normal and category items. They are differ from each other by the IsCategory (see page 142)
property.

Members

TToolListItem Properties

TToolListItem Properties Description

 Caption (see page 142) Specifies Caption of the tool item.

 Expanded (see page 142) Specifies whether category item is expanded.

 Hint (see page 142) Contains the text string that can appear when the user moves the mouse over
the item.

 ImageIndex (see page 142) Determines index in an image list.

 IsCategory (see page 142) Specifies whether tool item is category item. If this property is False - item is
normal.

 Tag (see page 142) Stores an integer value as part of an item.

 ToolList (see page 143) Provides reference to owner tool list.

 Visible (see page 143) Indicates whether item is visible, i.e. not hidden by the filter.

Legend

Property

protected

read only

1.13 ecToolList Namespace EControl Form Designer Pro Classes

141

1

TToolListItem Properties

TToolListItem Properties Description

 Caption (see page 142) Specifies Caption of the tool item.

 Expanded (see page 142) Specifies whether category item is expanded.

 Hint (see page 142) Contains the text string that can appear when the user moves the mouse over
the item.

 ImageIndex (see page 142) Determines index in an image list.

 IsCategory (see page 142) Specifies whether tool item is category item. If this property is False - item is
normal.

 Tag (see page 142) Stores an integer value as part of an item.

 ToolList (see page 143) Provides reference to owner tool list.

 Visible (see page 143) Indicates whether item is visible, i.e. not hidden by the filter.

1.13.1.4.1 TToolListItem Properties

1.13.1.4.1.1 TToolListItem.Caption Property

Specifies Caption of the tool item.

property Caption: WideString;

1.13.1.4.1.2 TToolListItem.Expanded Property

Specifies whether category item is expanded.

property Expanded: Boolean;

Description

Expanded property only takes effect for category items, i.e. when IsCategory (see page 142) is True.

1.13.1.4.1.3 TToolListItem.Hint Property

Contains the text string that can appear when the user moves the mouse over the item.

property Hint: WideString;

1.13.1.4.1.4 TToolListItem.ImageIndex Property

Determines index in an image list.

property ImageIndex: TImageIndex;

Description

Set ImageIndex to associate an item with an image in the Images property of TCustomToolList (see page 116).

1.13.1.4.1.5 TToolListItem.IsCategory Property

Specifies whether tool item is category item. If this property is False - item is normal.

property IsCategory: Boolean;

1.13.1.4.1.6 TToolListItem.Tag Property

Stores an integer value as part of an item.

property Tag: integer;

Description

Tag has no predefined meaning. The Tag property is provided for the convenience of developers. It can be used for storing
an additional integer value or it can be typecast to any 32-bit value.

1.13 ecToolList Namespace EControl Form Designer Pro Classes

142

1

1.13.1.4.1.7 TToolListItem.ToolList Property

Provides reference to owner tool list.

property ToolList: TCustomToolList ;

1.13.1.4.1.8 TToolListItem.Visible Property

Indicates whether item is visible, i.e. not hidden by the filter.

property Visible: Boolean;

1.13.1.5 TToolListItems Class
Collection of tool list items.

Class Hierarchy

TToolListItems = class (TOwnedCollection);

File

ecToolList

Members

TToolListItems Properties

TToolListItems Properties Description

 Items (see page 143) Lists the items in the collection.

Legend

Property

read only

TToolListItems Properties

TToolListItems Properties Description

 Items (see page 143) Lists the items in the collection.

1.13.1.5.1 TToolListItems Properties

1.13.1.5.1.1 TToolListItems.Items Property

Lists the items in the collection.

property Items [Index : integer]: TToolListItem ;

1.13.2 Structs, Records, Enums

The following table lists structs, records, enums in this documentation.

Enumerations

Enumeration Description

 TItemShape (see page 144) Specifies items shape.

Legend

Enumeration

1.13 ecToolList Namespace EControl Form Designer Pro Structs, Records, Enums

143

1

1.13.2.1 ecToolList.TItemShape Enumeration
Specifies items shape.

TItemShape = (
 isRectangle,
 isRoundRect
);

File

ecToolList

Members

Members Description

isRectangle Rectangle item shape.

isRoundRect Rectangle shape with rounded corners.

1.13.3 Types

The following table lists types in this documentation.

Types

Type Description

TToolItemState (see page 144) Specifies tool item state which is used for item rendering.

1.13.3.1 ecToolList.TToolItemState Type
Specifies tool item state which is used for item rendering.

TToolItemState = set of (tisSelected, tisPressed, tisMouseOver);

File

ecToolList

1.14 ed_DsnBase Namespace

1.14.1 Classes

The following table lists classes in this documentation.

Classes

Class Description

TBaseDesigner (see page 144) Base designer component.

1.14.1.1 TBaseDesigner Class
Base designer component.

1.14 ed_DsnBase Namespace EControl Form Designer Pro Classes

144

1

Class Hierarchy

TBaseDesigner = class (TComponent);

File

ed_DsnBase

Description

TBaseDesigner dispatches messages and controls designer hints.

Members

TBaseDesigner Methods

TBaseDesigner Methods Description

 CanProcessNCMessages (see page 146) Called to check processing of non client mouse messages.

 Client2Screen (see page 147) Corrected version of ClientToScreen function to support RTL.

 ClientOrg (see page 147) Corrected version of ClientOrigin function to support RTL.

 Create (see page 147) Creates and initializes a TBaseDesigner instance.

 DesignState (see page 147) Indicates whether component in design or loading state. At design time (in
Delphi IDE) and during loading no activation occurs.

 Destroy (see page 147) Destroys an instance of TBaseDesigner.

 DoObjectHint (see page 147) Called to show hint for current design state.

 DragDrop (see page 147) OnDragDrop (see page 152) event dispatcher.

 DragOver (see page 148) OnDragOver (see page 152) event dispatcher.

 IsRTL (see page 148) Returns true when control is right-to-left.

 KeyDown (see page 148) Respond to key press events.

 KeyPress (see page 149) Respond to keyboard input.

 KeyUp (see page 149) Respond to released key.

 Loaded (see page 149) Initializes the component after the form file has been read into memory.

 MouseDown (see page 150) OnMouseDown (see page 154) event dispatcher.

 MouseMove (see page 150) OnMouseMove (see page 154) event dispatcher.

 MouseUp (see page 150) OnMouseUp (see page 154) event dispatcher.

 ProcessMessage (see page 151) Translates messages of all managed by designer controls.

 ResetHint (see page 151) Resets hint for another component

 Screen2Client (see page 151) Corrected version of ScreenToClient function to support RTL.

 SetActive (see page 151) Set method for Active (see page 151) property.

 ShowHint (see page 151) Indicates whether hints should be shown for controls in the Designer.

TBaseDesigner Properties

TBaseDesigner Properties Description

 Active (see page 151) Switches target component between design and run-time modes

 HintObject (see page 152) Specifies object for which hint was activated.

 ShowHints (see page 152) Specifies showing of design hints.

TBaseDesigner Events

TBaseDesigner Events Description

 OnActiveChanged (see page 152) Occurs when the Active (see page 151) property of the
TzCustomFormDesigner changes

 OnDragDrop (see page 152) Occurs when the user drops an object being dragged.

 OnDragOver (see page 152) Occurs when the user drags an object over a control.

 OnHandleControlMessage (see page 153) Occurs on any message sent to managed controls.

 OnKeyDown (see page 153) Occurs only at design mode when user presses down any key.

 OnKeyPress (see page 153) Occurs only at design mode when key pressed.

 OnKeyUp (see page 154) Occurs only at design mode when user releases key that has been pressed.

 OnMouseDown (see page 154) Occurs only at design mode when user presses mouse button.

 OnMouseMove (see page 154) Occurs only at design mode when user moves mouse.

 OnMouseUp (see page 154) Occurs only at design mode when user releases mouse button.

1.14 ed_DsnBase Namespace EControl Form Designer Pro Classes

145

1

Legend

Method

protected

virtual

Property

Event

TBaseDesigner Events

TBaseDesigner Events Description

 OnActiveChanged (see page 152) Occurs when the Active (see page 151) property of the
TzCustomFormDesigner changes

 OnDragDrop (see page 152) Occurs when the user drops an object being dragged.

 OnDragOver (see page 152) Occurs when the user drags an object over a control.

 OnHandleControlMessage (see page 153) Occurs on any message sent to managed controls.

 OnKeyDown (see page 153) Occurs only at design mode when user presses down any key.

 OnKeyPress (see page 153) Occurs only at design mode when key pressed.

 OnKeyUp (see page 154) Occurs only at design mode when user releases key that has been pressed.

 OnMouseDown (see page 154) Occurs only at design mode when user presses mouse button.

 OnMouseMove (see page 154) Occurs only at design mode when user moves mouse.

 OnMouseUp (see page 154) Occurs only at design mode when user releases mouse button.

TBaseDesigner Methods

TBaseDesigner Methods Description

 CanProcessNCMessages (see page 146) Called to check processing of non client mouse messages.

 Client2Screen (see page 147) Corrected version of ClientToScreen function to support RTL.

 ClientOrg (see page 147) Corrected version of ClientOrigin function to support RTL.

 Create (see page 147) Creates and initializes a TBaseDesigner instance.

 DesignState (see page 147) Indicates whether component in design or loading state. At design time (in
Delphi IDE) and during loading no activation occurs.

 Destroy (see page 147) Destroys an instance of TBaseDesigner.

 DoObjectHint (see page 147) Called to show hint for current design state.

 DragDrop (see page 147) OnDragDrop (see page 152) event dispatcher.

 DragOver (see page 148) OnDragOver (see page 152) event dispatcher.

 IsRTL (see page 148) Returns true when control is right-to-left.

 KeyDown (see page 148) Respond to key press events.

 KeyPress (see page 149) Respond to keyboard input.

 KeyUp (see page 149) Respond to released key.

 Loaded (see page 149) Initializes the component after the form file has been read into memory.

 MouseDown (see page 150) OnMouseDown (see page 154) event dispatcher.

 MouseMove (see page 150) OnMouseMove (see page 154) event dispatcher.

 MouseUp (see page 150) OnMouseUp (see page 154) event dispatcher.

 ProcessMessage (see page 151) Translates messages of all managed by designer controls.

 ResetHint (see page 151) Resets hint for another component

 Screen2Client (see page 151) Corrected version of ScreenToClient function to support RTL.

 SetActive (see page 151) Set method for Active (see page 151) property.

 ShowHint (see page 151) Indicates whether hints should be shown for controls in the Designer.

TBaseDesigner Properties

TBaseDesigner Properties Description

 Active (see page 151) Switches target component between design and run-time modes

 HintObject (see page 152) Specifies object for which hint was activated.

 ShowHints (see page 152) Specifies showing of design hints.

1.14.1.1.1 TBaseDesigner Methods

1.14.1.1.1.1 TBaseDesigner.CanProcessNCMessages Method

Called to check processing of non client mouse messages.

1.14 ed_DsnBase Namespace EControl Form Designer Pro Classes

146

1

function CanProcessNCMessages(Sender: TControl): Boolean; virtual ;

Description

Called to check whether mouse messages to not client area should be processed as normal mouse messages. By default,
WM_NCXXX messages processed for all controls except forms.

1.14.1.1.1.2 TBaseDesigner.Client2Screen Method

Corrected version of ClientToScreen function to support RTL.

function Client2Screen(Ctl: TControl; Point: TPoint): TPoint;

1.14.1.1.1.3 TBaseDesigner.ClientOrg Method

Corrected version of ClientOrigin function to support RTL.

function ClientOrg(Ctl: TControl): TPoint;

1.14.1.1.1.4 TBaseDesigner.Create Constructor

Creates and initializes a TBaseDesigner instance.

constructor Create(AOWner: TComponent); override ;

Description

Use Create to programmatically instantiate a TBaseDesigner component. Components added in the form designer are
created automatically.

AOwner is the component that is responsible for freeing the component instance. It becomes the value of the Owner
property.

1.14.1.1.1.5 TBaseDesigner.DesignState Method
function DesignState: Boolean;

Description

Indicates whether component in design or loading state. At design time (in Delphi IDE) and during loading no activation
occurs.

1.14.1.1.1.6 TBaseDesigner.Destroy Destructor

Destroys an instance of TBaseDesigner.

destructor Destroy; override ;

Description

Do not call Destroy directly. Call Free instead. Free verifies that the object reference is not nil before calling Destroy.

1.14.1.1.1.7 TBaseDesigner.DoObjectHint Method

Called to show hint for current design state.

procedure DoObjectHint; virtual ;

Description

DoObjectHint method updates hint window content and position.

1.14.1.1.1.8 TBaseDesigner.DragDrop Method

OnDragDrop (see page 152) event dispatcher.

procedure DragDrop(Sender: TObject; Source: TObject; X: Integer; Y: Integer); virtual ;

1.14 ed_DsnBase Namespace EControl Form Designer Pro Classes

147

1

Description

Override DragDrop to add additional code that executes before the OnDragDrop (see page 152) event handler is called.

The Source parameter is the object that was dropped onto the control Sender. The X and Y parameters are the mouse
coordinates where the object was dropped.

1.14.1.1.1.9 TBaseDesigner.DragOver Method

OnDragOver (see page 152) event dispatcher.

function DragOver(Sender: TObject; Source: TObject; X: Integer; Y: Integer; State:
TDragState): Boolean; virtual ;

Description

Override DragOver to add additional code that executes before the OnDragOver (see page 152) event handler is called.

DragOver sets the Accept parameter to true to indicate that the user can drop the dragged object on the control. It sets
Accept to false to indicate that the user cannot drop the dragged object on the control.

The Source parameter is the object being dragged. The State parameter indicates how the dragged object is moving in
relation to the control. X and Y indicate the current position of the mouse.

1.14.1.1.1.10 TBaseDesigner.IsRTL Method

Returns true when control is right-to-left.

function IsRTL(Ctl: TControl): Boolean;

1.14.1.1.1.11 TBaseDesigner.KeyDown Method

Respond to key press events.

procedure KeyDown(var Key: Word; Shift: TShiftState); virtual ;

Description

When a windowed control or design surface receives a key-down message (WM_KEYDOWN) from Windows, its message
handler calls KeyDown, passing the key code and shift-key state in the Key and Shift parameters, respectively.

KeyDown calls any event handler attached to the OnKeyDown (see page 153) event. Override KeyDown to provide other
responses in addition to the event-handler call.

The Key parameter is the key on the keyboard. For non-alphanumeric keys, you must use WinAPI virtual key codes to
determine the key pressed. For more information, search for virtual key codes in the Win32 Developer's Reference
(WIN32.HLP).

The Shift parameter indicates whether the Shift, Alt, or Ctrl keys are combined with the keystroke.

Either KeyDown or the OnKeyDown (see page 153) event handler it calls can suppress further processing of a key by
setting the Key parameter to zero.

1.14 ed_DsnBase Namespace EControl Form Designer Pro Classes

148

1

1.14.1.1.1.12 TBaseDesigner.KeyPress Method

Respond to keyboard input.

procedure KeyPress(var Key: Char); virtual ;

Description

When a windowed control or design surface receives a key-press message (WM_CHAR) from Windows, its message
handler calls KeyPress, passing the key code in the Key parameter.

KeyPress calls any event handler attached to the OnKeyPress (see page 153) event. Override KeyPress to provide other
responses in addition to the event-handler call.

Either KeyPress or the OnKeyPress (see page 153) event handler it calls can suppress further processing of a character
by setting the Key parameter to zero.

Note: The Key parameter is the character represented by the key that is pressed, not a Windows virtual key code.

1.14.1.1.1.13 TBaseDesigner.KeyUp Method

Respond to released key.

procedure KeyUp(var Key: Word; Shift: TShiftState); virtual ;

Description

When a windowed control receives a key-up message (WM_KEYUP) from Windows, its message handler calls KeyUp,
passing the key code and shift-key state to KeyUp in the Key and Shift parameters, respectively.

KeyUp calls any event handler attached to the OnKeyUp (see page 154) event. Override KeyUp to provide other
responses in addition to the event-handler call.

Either KeyUp or the OnKeyUp (see page 154) event handler it calls can suppress further processing of a key by setting
the Key parameter to zero.

The Key parameter is the key on the keyboard. For non-alphanumeric keys, use WinAPI virtual key codes to determine the
key pressed. For more information, search virtual key codes in the Win32 Developer's Reference (WIN32.HLP).

The Shift parameter indicates whether the Shift, Alt, or Ctrl keys are combined with the keystroke.

1.14.1.1.1.14 TBaseDesigner.Loaded Method

Initializes the component after the form file has been read into memory.

procedure Loaded; override ;

Description

It is overridden procedure from TComponent.Loaded

First it calls inherited then set Active (see page 151) to reading state.

1.14 ed_DsnBase Namespace EControl Form Designer Pro Classes

149

1

1.14.1.1.1.15 TBaseDesigner.MouseDown Method

OnMouseDown (see page 154) event dispatcher.

procedure MouseDown(Button: TMouseButton; Shift: TShiftState; X: Integer; Y: Integer);
virtual ;

Description

Override the protected MouseDown method to provide other responses in addition to calling the OnMouseDown (see page
154) event handler when the user presses mouse button while the cursor's hotspot is over the managed control.

A designer calls MouseDown in response to any of the Windows mouse-down messages (WM_LBUTTONDOWN,
WM_MBUTTONDOWN, WM_RBUTTONDOWN) sent to managed controls, decoding the message parameters into the
shift-key state and position, which it passes in the Shift, X, and Y parameters, respectively. The value of the Button
parameter indicates which mouse button was released: left, right, or middle

X,Y coordinates are relative to client origin of the root pane FRootPane.

1.14.1.1.1.16 TBaseDesigner.MouseMove Method

OnMouseMove (see page 154) event dispatcher.

procedure MouseMove(Shift: TShiftState; X: Integer; Y: Integer); virtual ;

Description

Override the protected MouseMove method to provide other responses in addition to calling the OnMouseMove (see page
154) event handler when the user moves the mouse.

A control calls MouseMove in response to any of the Windows mouse-move messages (WM_MOUSEMOVE), decoding the
message parameters into the shift-key state and position, which it passes in the Shift, X, and Y parameters, respectively.

As the mouse cursor moves across a control, this method is called repeatedly. Each time it is called, it is with the new
coordinates that reflect the continuous path of the mouse cursor across the screen real estate covered by the control's visual
representation

X,Y coordinates are relative to client origin of the root pane FRootPane.

1.14.1.1.1.17 TBaseDesigner.MouseUp Method

OnMouseUp (see page 154) event dispatcher.

procedure MouseUp(Button: TMouseButton; Shift: TShiftState; X: Integer; Y: Integer);
virtual ;

Description

Override the protected MouseUp method to provide other responses in addition to calling the OnMouseUp (see page 154)
event handler when the user releases a previously pressed mouse button while the cursor's hotspot is over the control.

A designer calls MouseUp in response to any of the Windows mouse-up messages (WM_LBUTTONUP,
WM_MBUTTONUP, WM_RBUTTONUP) sent to managed controls, decoding the message parameters into the shift-key
state and position, which it passes in the Shift, X, and Y parameters, respectively. The value of the Button parameter
indicates which mouse button was released: left, right, or middle

1.14 ed_DsnBase Namespace EControl Form Designer Pro Classes

150

1

X,Y coordinates are relative to client origin of the root pane FRootPane.

1.14.1.1.1.18 TBaseDesigner.ProcessMessage Method

Translates messages of all managed by designer controls.

function ProcessMessage(Sender: TControl; var Message : TMessage): Boolean;

Description

1.14.1.1.1.19 TBaseDesigner.ResetHint Method

Resets hint for another component

procedure ResetHint;

Description

1.14.1.1.1.20 TBaseDesigner.Screen2Client Method

Corrected version of ScreenToClient function to support RTL.

function Screen2Client(Ctl: TControl; Point: TPoint): TPoint;

1.14.1.1.1.21 TBaseDesigner.SetActive Method

Set method for Active (see page 151) property.

procedure SetActive(const Value: Boolean); virtual ;

Description

Write overridden method to process actions for designer activation/deactivation.

1.14.1.1.1.22 TBaseDesigner.ShowHint Method

Indicates whether hints should be shown for controls in the Designer.

procedure ShowHint(const AHint: string);

Description

Set ShowHints (see page 152) to False if you don't want hints shown for controls on the designed form.

1.14.1.1.2 TBaseDesigner Properties

1.14.1.1.2.1 TBaseDesigner.Active Property

Switches target component between design and run-time modes

property Active: Boolean;

Description

Active is one of main properties of TzCustomFormDesigner.

It switches target component (it must be TWinControl descendant) between design and run-time mode.

When in design mode all of parents controls are in design mode too so user can manipulate all of this properties.

Manipulating with nonvilual components depends on AllowComponents property.

1.14 ed_DsnBase Namespace EControl Form Designer Pro Classes

151

1

1.14.1.1.2.2 TBaseDesigner.HintObject Property

Specifies object for which hint was activated.

property HintObject: TObject;

Description

1.14.1.1.2.3 TBaseDesigner.ShowHints Property

Specifies showing of design hints.

property ShowHints: Boolean;

Description

Use this property to enable/disable designer's hints.

1.14.1.1.3 TBaseDesigner Events

1.14.1.1.3.1 TBaseDesigner.OnActiveChanged Event

Occurs when the Active (see page 151) property of the TzCustomFormDesigner changes

property OnActiveChanged: TNotifyEvent;

Description

Write an OnActiveChange event handler to take specific action immediately after the TzCustomFormDesigner changes its
Active (see page 151) property. For example user can prohibit saving or loading form being designed while Active (see
page 151) = True.

The Sender parameter is the object whose event handler is called.

1.14.1.1.3.2 TBaseDesigner.OnDragDrop Event

Occurs when the user drops an object being dragged.

property OnDragDrop: TDragDropEvent;

Description

Use the OnDragDrop event handler to specify what happens when the user drops an object. The Source parameter of the
OnDragDrop event is the object being dropped, and the Sender is the control the object is being dropped on. The X and Y
parameters are the coordinates of the mouse positioned over the control

1.14.1.1.3.3 TBaseDesigner.OnDragOver Event

Occurs when the user drags an object over a control.

property OnDragOver: TDragOverEvent;

Description

Use an OnDragOver event to signal that the control can accept a dragged object so the user can drop or dock it.

Within the OnDragOver event handler, change the Accept parameter to false to reject the dragged object. Leave Accept as
true to allow the user to drop or dock the dragged object on the control.

1.14 ed_DsnBase Namespace EControl Form Designer Pro Classes

152

1

To change the shape of the cursor, indicating that the control can accept the dragged object, change the value of the
DragCursor property for the control before the OnDragOver event occurs.

The Source is the object being dragged, the Sender is the potential drop target, and X and Y are screen coordinates in
pixels. The State parameter specifies how the dragged object is moving over the control.

Note: Within the OnDragOver event handler, the Accept parameter defaults to true. However, if an OnDragOver event
handler is not supplied, the control rejects the dragged object, as if the Accept parameter were changed to false.

1.14.1.1.3.4 TBaseDesigner.OnHandleControlMessage Event

Occurs on any message sent to managed controls.

property OnHandleControlMessage: THandleControlMessage ;

Description

Write this event handler to process messages.

Sender - designer component;

Control - control to which message was sent;

Message - message;

Handled - handling flag. Set this flag to True to abort following message processing.

1.14.1.1.3.5 TBaseDesigner.OnKeyDown Event

Occurs only at design mode when user presses down any key.

property OnKeyDown: TKeyEvent;

Description

It is the same as standard TWinControl.OnKeyDown event.

Use the OnKeyDown event handler to specify special processing to occur when a key is pressed. The OnKeyDown handler
can respond to all keyboard keys, including function keys and keys combined with the Shift, Alt, and Ctrl keys, and pressed
mouse buttons.

See TWinControl.OnKeyDown for details

1.14.1.1.3.6 TBaseDesigner.OnKeyPress Event

Occurs only at design mode when key pressed.

property OnKeyPress: TKeyPressEvent;

Description

It is the same as standard TWinControl.OnKeyPress event.

Use the OnKeyPress event handler to make something happen as a result of a single character key press.

See TWinControl.OnKeyPress for details

1.14 ed_DsnBase Namespace EControl Form Designer Pro Classes

153

1

1.14.1.1.3.7 TBaseDesigner.OnKeyUp Event

Occurs only at design mode when user releases key that has been pressed.

property OnKeyUp: TKeyEvent;

Description

It is the same as standard TWinControl.OnKeyUp event.

Use the OnKeyUp event handler to provide special processing that occurs when a key is released. The OnKeyUp handler
can respond to all keyboard keys, including function keys and keys combined with the Shift, Alt, and Ctrl keys.

See TWinControl.OnKeyUp for details

1.14.1.1.3.8 TBaseDesigner.OnMouseDown Event

Occurs only at design mode when user presses mouse button.

property OnMouseDown: TMouseEvent;

Description

It is the same as standard TControl.OnMouseDown event.

Use the OnMouseDown event handler to implement any special processing that should occur as a result of pressing a
mouse button.

See TControl.OnMouseDown for details.

1.14.1.1.3.9 TBaseDesigner.OnMouseMove Event

Occurs only at design mode when user moves mouse.

property OnMouseMove: TMouseMoveEvent;

Description

It is the same as standard TControl.OnMouseMove event.

Use the OnMouseMove event handler to respond when the mouse pointer moves after the control has captured the mouse.

See TControl.OnMouseMove for details.

1.14.1.1.3.10 TBaseDesigner.OnMouseUp Event

Occurs only at design mode when user releases mouse button.

property OnMouseUp: TMouseEvent;

Description

It is the same as standard TControl.OnMouseUp event.

Use an OnMouseUp event handler to implement special processing when the user releases a mouse button.

1.14 ed_DsnBase Namespace EControl Form Designer Pro Classes

154

1

See TControl.OnMouseUp for details.

1.14.2 Structs, Records, Enums

1.14.2.1 ed_DsnBase.TDesignOperation Enumeration
TDesignOperation = (
 doSize,
 doMove,
 doSelect,
 doDelete,
 doInsert
);

File

ed_DsnBase

Members

Members Description

doSize Resize of selected control

doMove Move selection

doSelect Select controls within rectangle

doDelete Delete selected components.

doInsert Insert new component

Description

Design operations.

1.14.2.2 ed_DsnBase.TDsnDragState Enumeration
TDsnDragState = (
 dsNone,
 dsRect,
 dsSelMove,
 dsResize,
 dsInsert
);

File

ed_DsnBase

Members

Members Description

dsNone No drag operation

dsRect Dragging selection rectangle

dsSelMove Selecting and moving controls

dsResize Resizing selected control

dsInsert Inserting new component.

Description

State of drag operation in Designer

1.14 ed_DsnBase Namespace EControl Form Designer Pro Types

155

1

1.14.3 Types

The following table lists types in this documentation.

Types

Type Description

TDesignOperations (see page 156) A set of design operations.

THandleControlMessage (see page 156) See TBaseDesigner.OnHandleControlMessage (see page 153).

1.14.3.1 ed_DsnBase.TDesignOperations Type
TDesignOperations = set of TDesignOperation ;

File

ed_DsnBase

Description

A set of design operations.

1.14.3.2 ed_DsnBase.THandleControlMessage Type
THandleControlMessage = procedure (Sender: TObject; Control: TControl; var Message :
TMessage; var Handled: Boolean) of object ;

File

ed_DsnBase

Description

See TBaseDesigner.OnHandleControlMessage (see page 153).

1.15 ed_Designer Namespace

1.15.1 Classes

The following table lists classes in this documentation.

Classes

Class Description

TControlGroups (see page 156) Manages designer's groups of controls.

TPasteInfo (see page 159) TPasteInfo is used in paste operation from the buffer

TzCustomFormDesigner (see page 161) TzCustomFormDesigner is main library component.

TzFormDesigner (see page 201) TzFormDesigner is main library component.

1.15.1.1 TControlGroups Class
Manages designer's groups of controls.

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

156

1

Class Hierarchy

TControlGroups = class (TPersistent);

File

ed_Designer

Description

Grouping of controls effects on control selection. When one control of group is selected - all other control in this group are
selected too.

Members

TControlGroups Methods

TControlGroups Methods Description

 Clear (see page 158) Removes all group information.

 Create (see page 158) Creates and initializes a TControlGroups instance.

 Destroy (see page 158) Destroys an instance of TControlGroups.

 GroupControls (see page 158) Moves controls from list in single group. List object is deleted or saved in this
method and must not be deleted outside.

 GroupForControl (see page 158) Returns list of objects to which control Ctl belongs.

 GroupSelected (see page 158) Groups (see page 158) selected controls.

 UnGroup (see page 158) Removes group with index GroupIndex.

 UnGroupSelected (see page 158) Removes all groups which contain selected controls.

TControlGroups Properties

TControlGroups Properties Description

 Count (see page 158) Specifies number of groups.

 Groups (see page 158) Provides index access to groups. Each group is list of TControl references.
Note: do not destroy (see page 158) these lists. They are managed by the
TControlGroups object.

Legend

Method

virtual

Property

read only

TControlGroups Methods

TControlGroups Methods Description

 Clear (see page 158) Removes all group information.

 Create (see page 158) Creates and initializes a TControlGroups instance.

 Destroy (see page 158) Destroys an instance of TControlGroups.

 GroupControls (see page 158) Moves controls from list in single group. List object is deleted or saved in this
method and must not be deleted outside.

 GroupForControl (see page 158) Returns list of objects to which control Ctl belongs.

 GroupSelected (see page 158) Groups (see page 158) selected controls.

 UnGroup (see page 158) Removes group with index GroupIndex.

 UnGroupSelected (see page 158) Removes all groups which contain selected controls.

TControlGroups Properties

TControlGroups Properties Description

 Count (see page 158) Specifies number of groups.

 Groups (see page 158) Provides index access to groups. Each group is list of TControl references.
Note: do not destroy (see page 158) these lists. They are managed by the
TControlGroups object.

1.15.1.1.1 TControlGroups Methods

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

157

1

1.15.1.1.1.1 TControlGroups.Clear Method

Removes all group information.

procedure Clear;

1.15.1.1.1.2 TControlGroups.Create Constructor

Creates and initializes a TControlGroups instance.

constructor Create(AOwner: TzCustomFormDesigner);

Description

Use Create to programmatically instantiate a TControlGroups object.

1.15.1.1.1.3 TControlGroups.Destroy Destructor

Destroys an instance of TControlGroups.

destructor Destroy; override ;

Description

Do not call Destroy directly. Call Free instead. Free verifies that the object reference is not nil before calling Destroy.

1.15.1.1.1.4 TControlGroups.GroupControls Method

Moves controls from list in single group. List object is deleted or saved in this method and must not be deleted outside.

procedure GroupControls(List: TList);

1.15.1.1.1.5 TControlGroups.GroupForControl Method

Returns list of objects to which control Ctl belongs.

function GroupForControl(Ctl: TObject): TList;

1.15.1.1.1.6 TControlGroups.GroupSelected Method

Groups (see page 158) selected controls.

procedure GroupSelected;

1.15.1.1.1.7 TControlGroups.UnGroup Method

Removes group with index GroupIndex.

procedure UnGroup(GroupIndex: integer);

1.15.1.1.1.8 TControlGroups.UnGroupSelected Method

Removes all groups which contain selected controls.

procedure UnGroupSelected;

1.15.1.1.2 TControlGroups Properties

1.15.1.1.2.1 TControlGroups.Count Property

Specifies number of groups.

property Count: integer;

1.15.1.1.2.2 TControlGroups.Groups Property

Provides index access to groups. Each group is list of TControl references.

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

158

1

Note: do not destroy (see page 158) these lists. They are managed by the TControlGroups (see page 156) object.

property Groups [Index : integer]: TList;

1.15.1.2 TPasteInfo Class
TPasteInfo is used in paste operation from the buffer

Class Hierarchy

TPasteInfo = class ;

File

ed_Designer

Description

TPasteInfo store information about array of controls placed in the buffer so that this controls are pasted onto parent with
correct offset.

With object of this class pasting procedure are very similar to standard Borland IDE pasting one.

Members

TPasteInfo Methods

TPasteInfo Methods Description

 Create (see page 159) Creates and initializes a TPasteInfo instance.

 Destroy (see page 160) Destroys object and releases all the resources

 IncForParent (see page 160) Calculates and returns actual offset for this Parent

 Init (see page 160) Initialization of TPasteInfo object.

TPasteInfo Properties

TPasteInfo Properties Description

 CurrOffset (see page 160) CurrOffset keeps offset, in pixels, for next pasting procedure.

Legend

Constructor

virtual

Property

read only

TPasteInfo Methods

TPasteInfo Methods Description

 Create (see page 159) Creates and initializes a TPasteInfo instance.

 Destroy (see page 160) Destroys object and releases all the resources

 IncForParent (see page 160) Calculates and returns actual offset for this Parent

 Init (see page 160) Initialization of TPasteInfo object.

TPasteInfo Properties

TPasteInfo Properties Description

 CurrOffset (see page 160) CurrOffset keeps offset, in pixels, for next pasting procedure.

1.15.1.2.1 TPasteInfo Methods

1.15.1.2.1.1 TPasteInfo.Create Constructor

Creates and initializes a TPasteInfo (see page 159) instance.

constructor Create;

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

159

1

Description

Create initializes inner fields for the TPasteInfo (see page 159) object.

1.15.1.2.1.2 TPasteInfo.Destroy Destructor

Destroys object and releases all the resources

destructor Destroy; override ;

Description

1.15.1.2.1.3 TPasteInfo.IncForParent Method

Calculates and returns actual offset for this Parent

function IncForParent(Parent: TWinControl; Offset: Integer): Integer;

Description

IncForParent calculates and returns offset for current Parent.

It stores offset for each parent it has applied so that offset increment is smart.

Parent is pointer to wincontrol components are placed onto.

Offset is number of pixels, for what user intends to place component off as it would be single one.

This method calculates offset depending on count of buffer's components and parent so that pasted components do not
overlap existing ones.

1.15.1.2.1.4 TPasteInfo.Init Method

Initialization of TPasteInfo (see page 159) object.

procedure Init(SelCount: Integer; InitParent: TWinControl; BufType: TBufferizedType ;
Offset: Integer);

Description

User must initialize object TPasteInfo (see page 159) at point of copying/cutting components in buffer with correct
parameters.

SelCount is number of selected (and correspondingly copied or cut into the buffer) components.

InitParent is a pointer to WinControl those components are taken from.

BufType determines whether components are cut or copied.

Offset is a number of pixels fro initial offset (it may be grid step).

1.15.1.2.2 TPasteInfo Properties

1.15.1.2.2.1 TPasteInfo.CurrOffset Property

CurrOffset keeps offset, in pixels, for next pasting procedure.

property CurrOffset: Integer;

Description

This property stores current offset, in pixels, for next pasting procedure.

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

160

1

Read-only property.

It depends on count of components in buffer and parent control used for pasting.

1.15.1.3 TzCustomFormDesigner Class
TzCustomFormDesigner is main library component.

Class Hierarchy

TzCustomFormDesigner = class (TBaseDesigner , IUnknown, IDesigner, IDesignerNotify,
IFormDesigner, IEditHandler, IDesignerHook, IClassSelector , IImplementation);

File

ed_Designer

Description

TzCustomFormDesigner provides full-sized functionality to manipulate with controls at run-time as if it was to be in
design-time IDE.

TzCustomFormDesigner implements all the required design-time interfaces for this purpose and propose a set of properties,
methods and events to create (see page 174) design-like environment at runtime.

With TzCustomFormDesigner user may design forms, data-modules, report sheets and so on.

It uses all the standard Borland property and component editors.

Members

TBaseDesigner Methods

TBaseDesigner Methods Description

 CanProcessNCMessages (see page 146) Called to check processing of non client mouse messages.

 Client2Screen (see page 147) Corrected version of ClientToScreen function to support RTL.

 ClientOrg (see page 147) Corrected version of ClientOrigin function to support RTL.

 Create (see page 147) Creates and initializes a TBaseDesigner instance.

 DesignState (see page 147) Indicates whether component in design or loading state. At design time (in
Delphi IDE) and during loading no activation occurs.

 Destroy (see page 147) Destroys an instance of TBaseDesigner.

 DoObjectHint (see page 147) Called to show hint for current design state.

 DragDrop (see page 147) OnDragDrop (see page 152) event dispatcher.

 DragOver (see page 148) OnDragOver (see page 152) event dispatcher.

 IsRTL (see page 148) Returns true when control is right-to-left.

 KeyDown (see page 148) Respond to key press events.

 KeyPress (see page 149) Respond to keyboard input.

 KeyUp (see page 149) Respond to released key.

 Loaded (see page 149) Initializes the component after the form file has been read into memory.

 MouseDown (see page 150) OnMouseDown (see page 154) event dispatcher.

 MouseMove (see page 150) OnMouseMove (see page 154) event dispatcher.

 MouseUp (see page 150) OnMouseUp (see page 154) event dispatcher.

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

161

1

 ProcessMessage (see page 151) Translates messages of all managed by designer controls.

 ResetHint (see page 151) Resets hint for another component

 Screen2Client (see page 151) Corrected version of ScreenToClient function to support RTL.

 SetActive (see page 151) Set method for Active (see page 151) property.

 ShowHint (see page 151) Indicates whether hints should be shown for controls in the Designer.

IClassSelector Interface

IClassSelector Interface Description

 ClsChanged (see page 511) Called when selected in component palette component class was changed.

 ClsPalChanged (see page 512) Called when component palette was changed.

TzCustomFormDesigner Class

TzCustomFormDesigner Class Description

 AddCompEditorMenu (see page 170) Adds menu items to the popup Menu associated with the component editor of
selected in designer component.
To remove previously added component editor's menu items use
ClearCompEditorMenu (see page 171) method.

 CanRedo (see page 170) Indicates whether the designer contains undone changes that can be repeated.

 CanUndo (see page 171) Indicates whether the designer contains changes that can be backed out.

 CheckAction (see page 171) Determines whether design operation specified by the Action parameter can
be executed.

 ClearCompEditorMenu (see page 171) Removes component editor's menu items added by the AddCompEditorMenu
(see page 170) method.

 ClearUndo (see page 171) Clears the undo (see page 183) buffer so that no changes to the Target (
see page 193) can be backed out.

 CloseTextEditor (see page 171) Closes in-place editor.

 DragDrop (see page 171) OnDragDrop event dispatcher.

 DragOver (see page 171) OnDragOver event dispatcher.

 EditAction (see page 172) Executes designer operation specified by the Action parameter.

 AlignSelected (see page 172) Performs alignment operation on selected components.

 AlignToGrid (see page 172) Aligns selected components to the closest grid point.

 BringToFront (see page 172) Moves a selected component in front of all other components on the form. This
is called changing the component's z-order.

 BuildLocalMenu (see page 172) Creates default popup menu.

 CancelDrag (see page 173) Cancels current drag&drop design operation.

 CanDelete (see page 173) Check if component can be deleted.

 GetEditState (see page 173) Returns set of possible designer operations.

 CanInsert (see page 173) Check if component can be inserted.

 CanMove (see page 173) Check if component can be moved.

 CanPaste (see page 173) Checks clipboard for components saved to it.

 CanRename (see page 173) Check if component can be renamed.

 CanResize (see page 174) Check if component can be resized.

 CanSelect (see page 174) Check if component can be selected.

 ClearSelection (see page 174) Resets selection.

 CopySelection (see page 174)

 Create (see page 174) Creates and initializes a TzCustomFormDesigner instance.

 CutSelection (see page 174) Cuts selected components to clipboard.

 DeleteSelection (see page 175) Deletes the selected component or components

 Destroy (see page 175) Destroys an instance of TzCustomFormDesigner.

 DoObjectHint (see page 175) Shows hint current design state.

 ExecuteAction (see page 175) Invokes an action with the component as its target.

 DragDraw (see page 175) Provides drag-and-draw graphic operation.

 Edit (see page 175) Displays the component editor for the specified component.

 EndDrag (see page 176) Provides drag-and-draw graphic operation.

 FlipChildren (see page 176) Allows to reverse the layout of components in the current form to a right-to-left
mirror image.

 GetCompObj (see page 176) Returns component

 GetComponent (see page 176) Returns the component with the name passed as a parameter.

 GetComponentName (see page 176) Returns the name of the component passed as its parameter.

 GetComponentNames (see page 177) Executes a callback for every component that can be assigned a property of a
specified type.

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

162

1

 GetControlAt (see page 177) Looks for control at specified point on the window prn.

 GetMethodName (see page 177) Returns the name of a specified event handler.

 GetNewName (see page 177) Returns new generated name for particular class of the component.

 GetObjectName (see page 177) Returns object name.

 LoadFromFile (see page 177) Load Root (see page 192) component from file. Inline events from resource
file are stored in Events (see page 189) property if property StoreEvents (
see page 191) is True. If IgnoreReadErrors (see page 191) is True - all read
errors are ignored.

 LoadFromStream (see page 178) Load Root (see page 192) component from stream. Inline events from
resource file are stored in Events (see page 189) property if property
StoreEvents (see page 191) is True. If IgnoreReadErrors (see page 191)
is True - all read errors are ignored.

 GetRoot (see page 178) Returns the current entity being edited by the form designer.

 GetRootClassName (see page 178) Returns the class name for the root component.

 GetScriptEvent (see page 178) Returns script procedure name assigned to the event.

 GetScrollRanges (see page 178) Returns the size of the logical designer window.

 GetSelections (see page 178) Fills a list with all selected components on the current root object.

 Redo (see page 179) Call Redo to repeat last undone operation.

 GetShiftState (see page 179) Returns the current state of the Shift, Alt, and Ctrl keys.

 Intf_Notification (see page 179) Allows the designer to respond when a notification (see page 183) is sent to
the form.

 IsComponentHidden (see page 179) Indicates whether a component does not appear directly in the form designer.

 IsLocked (see page 179) Specifies whether component is locked and can not be edited in designer.

 SaveToFile (see page 179) Saves Root (see page 192) component to file FileName with events
information. AsText specifies format of the file: text or binary.

 IsDesignMsg (see page 180) Determines when the designer should handle a Windows message.

 SaveToStream (see page 180) Save Root (see page 192) component to stream with events information.
AsText specifies storage format: text or binary.

 IsProtected (see page 180) Indicates whether component is protected and can not be changed by
designer.

 IsRootSelected (see page 180) Returns True if entire Root (see page 192) is selected

 IsSourceReadOnly (see page 180) Indicates whether the source file for the component being designed is
read-only.

 SelectedComponentsCount (see page 180) Returns number of selected components excluding Root (see page 192)
and non-component objects.

 KeyDown (see page 180) Respond to key press events.

 KeyPress (see page 181) Respond to keyboard input.

 KeyUp (see page 181) Respond to released key.

 MethodExists (see page 181) Indicates whether an event handler with a specified name already exists.

 Modified (see page 181) Notifies property and component editors when a change is made to a
component.

 ShowTabOrder (see page 182) Shows tab order icons over children controls of the selected control. Click on
the children controls changes their tab order. To exit "Show Tab Icons" mode
click on any not child control or press ESCAPE key.

 MouseDown (see page 182) Generates an OnMouseDown event.

 MouseMove (see page 182) Generates an OnMouseMove event.

 MouseUp (see page 182) Generates an OnMouseUp event.

 Navigate (see page 182) Performs navigation between control using keyboard

 UpdateAction (see page 182) Updates an action component to reflect the current state of the component.

 NoSelection (see page 183) Deselects all components in the form designer.

 Undo (see page 183) Backs out last change in the undo buffer.

 Notification (see page 183) Allows the designer to respond when a notification is sent to the form.

 NotifySelChanged (see page 183) Notifies active designer about changing selection list

 PaintControl (see page 184) Called for each WM_PAINT message to perform specific painting over control.

 PaintGrid (see page 184) Paints the alignment grid on the form's canvas.

 PasteSelection (see page 184) Pastes the contents of the clipboard into the selected component or
components.

 ReadComp (see page 184) Callback procedure for TReader.ReadComponents

 RenameMethod (see page 184) Renames an existing event handler.

 Scale (see page 185) Scale all controls using defined ratio

 SelectAll (see page 185) Selects all components.

 SelectComponent (see page 185) Replaces the current set of selected components by a single specified object.

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

163

1

 SelectedComponent (see page 185) Returns selected component if selection consist of single component; Root (
see page 192) component, if there is no selection; nil if selection consists of
several components.

 SelectionChanged (see page 185) This method call after selection has been changed.

 SelectObj (see page 185) Selects object passed as Instance parameter.

 SelectRect (see page 185) Selects all controls on the Prn control.

 SendToBack (see page 186) Moves a selected component behind all other components on the form. This is
called changing the component's z-order.

 SetPasteName (see page 186) Setting new name for pasting component

 SetScriptEvent (see page 186) Assigns script procedure with particular event of the Instance.

 SetSelections (see page 186) Changes the currently selected set of components.

 ShowMethod (see page 186) Activates the code editor with the input cursor in a specified event handler.

 ShowPopupMenu (see page 186) Show designer popup menu at the specified screen position.

 SizeSelected (see page 186) Perform size operation to selected components

 StartDrag (see page 187) Makes start settings before dragging operation

 UniqueName (see page 187) Generates a unique name from a specified base string.

 UpdateCompIcons (see page 187) Updates positions of component icons.

 ValidateMethod (see page 187) Determines whether method MAddr of object ARoot is valid method, i.e. it may
be assigned to the event.

TBaseDesigner Properties

TBaseDesigner Properties Description

 Active (see page 151) Switches target component between design and run-time modes

 HintObject (see page 152) Specifies object for which hint was activated.

 ShowHints (see page 152) Specifies showing of design hints.

TzCustomFormDesigner Class

TzCustomFormDesigner Class Description

 AllowComponents (see page 187) Specifies whether nonvisual components will be displayed in design mode

 AutoAlign (see page 187) Specifies using of align rulers.

 BDSStyle (see page 188) Specifies using of BDS style design environment.

 CaptionFont (see page 188) Controls the text attributes of non-visual components captions.

 CloseDisactive (see page 188) Specifies if TzCustomFormDesigner automatically deactivates when Target
(see page 193) Form (see page 189) is to be closed.

 ContainerWindow (see page 188) Determines generic container for any type of Target (see page 193)
components

 DesignSurface (see page 188) Specifies design surface.

 DisplayControlGrid (see page 189) Specifies whether designer has to paint grid over window controls that can
accept controls.

 DisplayGrid (see page 189) Determines whether dots are drawn on the Target (see page 193) form.

 FlatIcons (see page 189) Determines whether the non-visual component icons has a 3D border or not.

 DragParentLimit (see page 189) Specifies whether drag mouse movement should be clipped by parent's client
area.

 Form (see page 189) Provides access to designed form as TCustomForm type.

 Events (see page 189) Storage of assigned events.

 GridStepX (see page 190) Specifies grid step, in pixels, along X-axis

 GridStepY (see page 190) Specifies grid step, in pixels, along Y-axis

 LockControls (see page 190) Specifies if user can directly change size and position of controls by mouse.

 LockPublished (see page 190) Specifies if editing operation are forbidden by default

 MultiSelect (see page 190) Determines whether the user can select more than one control at a time.

 Groups (see page 190) Stores groups information.

 GuidelinesStyle (see page 191) Specifies guidelines options.

 IgnoreReadErrors (see page 191) Specifies whether read errors should be ignored when loading using
LoadFromFile (see page 177) and LoadFromStream (see page 178)
methods.

 ReadOnly (see page 191) Set Read Only mode.

 StoreEvents (see page 191) Specifies whether designer should process events storage.

 TabOrderIcons (see page 191) Properties of tab order icons. These controls are shown over children control
when designer is in "Show Tab Order" mode.

 TextEditMode (see page 191) Sets in-place text editing mode of designer.

 PopupMenu (see page 191) Identifies the pop-up menu associated with the Root (see page 192) control
of the Designer.

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

164

1

 UndoLimit (see page 192) Specifies the number of changes that can be undone.

 PopupMenuFilter (see page 192) Specifies which categories of items may be used to form default popup menu.

 UndoLoad (see page 192) Indicates that designer is in Undo (see page 183) loading state, i.e. in
reading previously saved form resource.

 Root (see page 192) Root component for TzCustomFormDesigner.

 RootModified (see page 192) Indicates whether the Root (see page 192) or its components are modified
(see page 181).

 SelCount (see page 193) Indicates number of selected components.

 Selected (see page 193) Indicates whether a particular control is selected.

 SelMarker (see page 193) Selection markers manager.

 ShowCaptions (see page 193) Specifies whether non-visual component icons captions are visible.

 SnapToGrid (see page 193) Automatically aligns components on the form with the nearest gridline. You
cannot place a component "in between" gridlines.

 Target (see page 193) Specifies object that is edited by the designer.

TBaseDesigner Events

TBaseDesigner Events Description

 OnActiveChanged (see page 152) Occurs when the Active (see page 151) property of the
TzCustomFormDesigner changes

 OnDragDrop (see page 152) Occurs when the user drops an object being dragged.

 OnDragOver (see page 152) Occurs when the user drags an object over a control.

 OnHandleControlMessage (see page 153) Occurs on any message sent to managed controls.

 OnKeyDown (see page 153) Occurs only at design mode when user presses down any key.

 OnKeyPress (see page 153) Occurs only at design mode when key pressed.

 OnKeyUp (see page 154) Occurs only at design mode when user releases key that has been pressed.

 OnMouseDown (see page 154) Occurs only at design mode when user presses mouse button.

 OnMouseMove (see page 154) Occurs only at design mode when user moves mouse.

 OnMouseUp (see page 154) Occurs only at design mode when user releases mouse button.

TzCustomFormDesigner Class

TzCustomFormDesigner Class Description

 OnCanEdit (see page 194) Occurs to determine whether Edit (see page 175) method of component
editor can be called.

 OnDrawControl (see page 195) Occurs when painting any control on the form. Use this event to draw over
control.

 OnExecuteAction (see page 195) Occurs when ExecuteAction (see page 175) method is called. Use it to
handle standard shared actions for currently active designer.

 OnGetComponentLocked (see page 195) Occurs to determine whether component is locked.

 OnCanDelete (see page 195) Occurs before deleting selected component.

 OnCanInsert (see page 195) Occurs before inserting new component.

 OnGetObjectName (see page 195) Occurs at the end of GetObjectName (see page 177) method to adjust
resulting name.

 OnCanMove (see page 196) Occurs before moving selected component.

 OnCanRename (see page 196) Occurs before renaming component.

 OnCanResize (see page 196) Occurs before resizing selected component.

 OnPopUndo (see page 196) Occurs when restoring Target (see page 193) from undo (see page 183)
buffer.

 OnCanSelect (see page 196) Occurs before selecting component.

 OnPushUndo (see page 197) Occurs when saving Target (see page 193) to undo (see page 183)
buffer.

 OnCreateComponent (see page 197) Occurs before new component creation.

 OnCreateFrame (see page 197) Occurs when frame is to be inserted on the form.

 OnSetNewName (see page 197) Occurs when assigning name to newly inserted component (created or
pasted).

 OnCreateIcon (see page 197) Occurs before creating icon for non-visual component.

 OnCreateMethod (see page 198) Occurs when new method name is input in object inspector.

 OnFormClosed (see page 198) Occurs immediately after hiding the Target (see page 193) form .

 OnUpdateAction (see page 198) Occurs when UpdateAction (see page 182) method is called. Use it to
handle standard shared actions for currently active designer.

 OnGetComponentHint (see page 198) Occurs when the application is about to display the hint window for the
particular component.

 OnGetMethodNames (see page 198) Occurs when method property editor requests designer for possible method
names.

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

165

1

 OnGetScriptProc (see page 199) Occurs when method property editor ask for script procedure name associated
with a given property.

 OnNotification (see page 199) Occurs when components are added or removed to/from Root (see page
192) object at design mode.

 OnRenameMethod (see page 200) Occurs when name of method is changed in object inspector.

 OnSetScriptProc (see page 200) Occurs when method property editor assigns script procedure to the event.

 OnShowMethod (see page 201) Occurs when user double clicks on the procedure in the object inspector.

 OnValidateMethod (see page 201) Occurs to validate method.

Legend

Method

protected

virtual

Property

read only

Event

TBaseDesigner Events

TBaseDesigner Events Description

 OnActiveChanged (see page 152) Occurs when the Active (see page 151) property of the
TzCustomFormDesigner changes

 OnDragDrop (see page 152) Occurs when the user drops an object being dragged.

 OnDragOver (see page 152) Occurs when the user drags an object over a control.

 OnHandleControlMessage (see page 153) Occurs on any message sent to managed controls.

 OnKeyDown (see page 153) Occurs only at design mode when user presses down any key.

 OnKeyPress (see page 153) Occurs only at design mode when key pressed.

 OnKeyUp (see page 154) Occurs only at design mode when user releases key that has been pressed.

 OnMouseDown (see page 154) Occurs only at design mode when user presses mouse button.

 OnMouseMove (see page 154) Occurs only at design mode when user moves mouse.

 OnMouseUp (see page 154) Occurs only at design mode when user releases mouse button.

TzCustomFormDesigner Class

TzCustomFormDesigner Class Description

 OnCanEdit (see page 194) Occurs to determine whether Edit (see page 175) method of component
editor can be called.

 OnDrawControl (see page 195) Occurs when painting any control on the form. Use this event to draw over
control.

 OnExecuteAction (see page 195) Occurs when ExecuteAction (see page 175) method is called. Use it to
handle standard shared actions for currently active designer.

 OnGetComponentLocked (see page 195) Occurs to determine whether component is locked.

 OnCanDelete (see page 195) Occurs before deleting selected component.

 OnCanInsert (see page 195) Occurs before inserting new component.

 OnGetObjectName (see page 195) Occurs at the end of GetObjectName (see page 177) method to adjust
resulting name.

 OnCanMove (see page 196) Occurs before moving selected component.

 OnCanRename (see page 196) Occurs before renaming component.

 OnCanResize (see page 196) Occurs before resizing selected component.

 OnPopUndo (see page 196) Occurs when restoring Target (see page 193) from undo (see page 183)
buffer.

 OnCanSelect (see page 196) Occurs before selecting component.

 OnPushUndo (see page 197) Occurs when saving Target (see page 193) to undo (see page 183)
buffer.

 OnCreateComponent (see page 197) Occurs before new component creation.

 OnCreateFrame (see page 197) Occurs when frame is to be inserted on the form.

 OnSetNewName (see page 197) Occurs when assigning name to newly inserted component (created or
pasted).

 OnCreateIcon (see page 197) Occurs before creating icon for non-visual component.

 OnCreateMethod (see page 198) Occurs when new method name is input in object inspector.

 OnFormClosed (see page 198) Occurs immediately after hiding the Target (see page 193) form .

 OnUpdateAction (see page 198) Occurs when UpdateAction (see page 182) method is called. Use it to
handle standard shared actions for currently active designer.

 OnGetComponentHint (see page 198) Occurs when the application is about to display the hint window for the
particular component.

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

166

1

 OnGetMethodNames (see page 198) Occurs when method property editor requests designer for possible method
names.

 OnGetScriptProc (see page 199) Occurs when method property editor ask for script procedure name associated
with a given property.

 OnNotification (see page 199) Occurs when components are added or removed to/from Root (see page
192) object at design mode.

 OnRenameMethod (see page 200) Occurs when name of method is changed in object inspector.

 OnSetScriptProc (see page 200) Occurs when method property editor assigns script procedure to the event.

 OnShowMethod (see page 201) Occurs when user double clicks on the procedure in the object inspector.

 OnValidateMethod (see page 201) Occurs to validate method.

TBaseDesigner Methods

TBaseDesigner Methods Description

 CanProcessNCMessages (see page 146) Called to check processing of non client mouse messages.

 Client2Screen (see page 147) Corrected version of ClientToScreen function to support RTL.

 ClientOrg (see page 147) Corrected version of ClientOrigin function to support RTL.

 Create (see page 147) Creates and initializes a TBaseDesigner instance.

 DesignState (see page 147) Indicates whether component in design or loading state. At design time (in
Delphi IDE) and during loading no activation occurs.

 Destroy (see page 147) Destroys an instance of TBaseDesigner.

 DoObjectHint (see page 147) Called to show hint for current design state.

 DragDrop (see page 147) OnDragDrop (see page 152) event dispatcher.

 DragOver (see page 148) OnDragOver (see page 152) event dispatcher.

 IsRTL (see page 148) Returns true when control is right-to-left.

 KeyDown (see page 148) Respond to key press events.

 KeyPress (see page 149) Respond to keyboard input.

 KeyUp (see page 149) Respond to released key.

 Loaded (see page 149) Initializes the component after the form file has been read into memory.

 MouseDown (see page 150) OnMouseDown (see page 154) event dispatcher.

 MouseMove (see page 150) OnMouseMove (see page 154) event dispatcher.

 MouseUp (see page 150) OnMouseUp (see page 154) event dispatcher.

 ProcessMessage (see page 151) Translates messages of all managed by designer controls.

 ResetHint (see page 151) Resets hint for another component

 Screen2Client (see page 151) Corrected version of ScreenToClient function to support RTL.

 SetActive (see page 151) Set method for Active (see page 151) property.

 ShowHint (see page 151) Indicates whether hints should be shown for controls in the Designer.

IClassSelector Interface

IClassSelector Interface Description

 ClsChanged (see page 511) Called when selected in component palette component class was changed.

 ClsPalChanged (see page 512) Called when component palette was changed.

TzCustomFormDesigner Class

TzCustomFormDesigner Class Description

 AddCompEditorMenu (see page 170) Adds menu items to the popup Menu associated with the component editor of
selected in designer component.
To remove previously added component editor's menu items use
ClearCompEditorMenu (see page 171) method.

 CanRedo (see page 170) Indicates whether the designer contains undone changes that can be repeated.

 CanUndo (see page 171) Indicates whether the designer contains changes that can be backed out.

 CheckAction (see page 171) Determines whether design operation specified by the Action parameter can
be executed.

 ClearCompEditorMenu (see page 171) Removes component editor's menu items added by the AddCompEditorMenu
(see page 170) method.

 ClearUndo (see page 171) Clears the undo (see page 183) buffer so that no changes to the Target (
see page 193) can be backed out.

 CloseTextEditor (see page 171) Closes in-place editor.

 DragDrop (see page 171) OnDragDrop event dispatcher.

 DragOver (see page 171) OnDragOver event dispatcher.

 EditAction (see page 172) Executes designer operation specified by the Action parameter.

 AlignSelected (see page 172) Performs alignment operation on selected components.

 AlignToGrid (see page 172) Aligns selected components to the closest grid point.

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

167

1

 BringToFront (see page 172) Moves a selected component in front of all other components on the form. This
is called changing the component's z-order.

 BuildLocalMenu (see page 172) Creates default popup menu.

 CancelDrag (see page 173) Cancels current drag&drop design operation.

 CanDelete (see page 173) Check if component can be deleted.

 GetEditState (see page 173) Returns set of possible designer operations.

 CanInsert (see page 173) Check if component can be inserted.

 CanMove (see page 173) Check if component can be moved.

 CanPaste (see page 173) Checks clipboard for components saved to it.

 CanRename (see page 173) Check if component can be renamed.

 CanResize (see page 174) Check if component can be resized.

 CanSelect (see page 174) Check if component can be selected.

 ClearSelection (see page 174) Resets selection.

 CopySelection (see page 174)

 Create (see page 174) Creates and initializes a TzCustomFormDesigner instance.

 CutSelection (see page 174) Cuts selected components to clipboard.

 DeleteSelection (see page 175) Deletes the selected component or components

 Destroy (see page 175) Destroys an instance of TzCustomFormDesigner.

 DoObjectHint (see page 175) Shows hint current design state.

 ExecuteAction (see page 175) Invokes an action with the component as its target.

 DragDraw (see page 175) Provides drag-and-draw graphic operation.

 Edit (see page 175) Displays the component editor for the specified component.

 EndDrag (see page 176) Provides drag-and-draw graphic operation.

 FlipChildren (see page 176) Allows to reverse the layout of components in the current form to a right-to-left
mirror image.

 GetCompObj (see page 176) Returns component

 GetComponent (see page 176) Returns the component with the name passed as a parameter.

 GetComponentName (see page 176) Returns the name of the component passed as its parameter.

 GetComponentNames (see page 177) Executes a callback for every component that can be assigned a property of a
specified type.

 GetControlAt (see page 177) Looks for control at specified point on the window prn.

 GetMethodName (see page 177) Returns the name of a specified event handler.

 GetNewName (see page 177) Returns new generated name for particular class of the component.

 GetObjectName (see page 177) Returns object name.

 LoadFromFile (see page 177) Load Root (see page 192) component from file. Inline events from resource
file are stored in Events (see page 189) property if property StoreEvents (
see page 191) is True. If IgnoreReadErrors (see page 191) is True - all read
errors are ignored.

 LoadFromStream (see page 178) Load Root (see page 192) component from stream. Inline events from
resource file are stored in Events (see page 189) property if property
StoreEvents (see page 191) is True. If IgnoreReadErrors (see page 191)
is True - all read errors are ignored.

 GetRoot (see page 178) Returns the current entity being edited by the form designer.

 GetRootClassName (see page 178) Returns the class name for the root component.

 GetScriptEvent (see page 178) Returns script procedure name assigned to the event.

 GetScrollRanges (see page 178) Returns the size of the logical designer window.

 GetSelections (see page 178) Fills a list with all selected components on the current root object.

 Redo (see page 179) Call Redo to repeat last undone operation.

 GetShiftState (see page 179) Returns the current state of the Shift, Alt, and Ctrl keys.

 Intf_Notification (see page 179) Allows the designer to respond when a notification (see page 183) is sent to
the form.

 IsComponentHidden (see page 179) Indicates whether a component does not appear directly in the form designer.

 IsLocked (see page 179) Specifies whether component is locked and can not be edited in designer.

 SaveToFile (see page 179) Saves Root (see page 192) component to file FileName with events
information. AsText specifies format of the file: text or binary.

 IsDesignMsg (see page 180) Determines when the designer should handle a Windows message.

 SaveToStream (see page 180) Save Root (see page 192) component to stream with events information.
AsText specifies storage format: text or binary.

 IsProtected (see page 180) Indicates whether component is protected and can not be changed by
designer.

 IsRootSelected (see page 180) Returns True if entire Root (see page 192) is selected

 IsSourceReadOnly (see page 180) Indicates whether the source file for the component being designed is
read-only.

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

168

1

 SelectedComponentsCount (see page 180) Returns number of selected components excluding Root (see page 192)
and non-component objects.

 KeyDown (see page 180) Respond to key press events.

 KeyPress (see page 181) Respond to keyboard input.

 KeyUp (see page 181) Respond to released key.

 MethodExists (see page 181) Indicates whether an event handler with a specified name already exists.

 Modified (see page 181) Notifies property and component editors when a change is made to a
component.

 ShowTabOrder (see page 182) Shows tab order icons over children controls of the selected control. Click on
the children controls changes their tab order. To exit "Show Tab Icons" mode
click on any not child control or press ESCAPE key.

 MouseDown (see page 182) Generates an OnMouseDown event.

 MouseMove (see page 182) Generates an OnMouseMove event.

 MouseUp (see page 182) Generates an OnMouseUp event.

 Navigate (see page 182) Performs navigation between control using keyboard

 UpdateAction (see page 182) Updates an action component to reflect the current state of the component.

 NoSelection (see page 183) Deselects all components in the form designer.

 Undo (see page 183) Backs out last change in the undo buffer.

 Notification (see page 183) Allows the designer to respond when a notification is sent to the form.

 NotifySelChanged (see page 183) Notifies active designer about changing selection list

 PaintControl (see page 184) Called for each WM_PAINT message to perform specific painting over control.

 PaintGrid (see page 184) Paints the alignment grid on the form's canvas.

 PasteSelection (see page 184) Pastes the contents of the clipboard into the selected component or
components.

 ReadComp (see page 184) Callback procedure for TReader.ReadComponents

 RenameMethod (see page 184) Renames an existing event handler.

 Scale (see page 185) Scale all controls using defined ratio

 SelectAll (see page 185) Selects all components.

 SelectComponent (see page 185) Replaces the current set of selected components by a single specified object.

 SelectedComponent (see page 185) Returns selected component if selection consist of single component; Root (
see page 192) component, if there is no selection; nil if selection consists of
several components.

 SelectionChanged (see page 185) This method call after selection has been changed.

 SelectObj (see page 185) Selects object passed as Instance parameter.

 SelectRect (see page 185) Selects all controls on the Prn control.

 SendToBack (see page 186) Moves a selected component behind all other components on the form. This is
called changing the component's z-order.

 SetPasteName (see page 186) Setting new name for pasting component

 SetScriptEvent (see page 186) Assigns script procedure with particular event of the Instance.

 SetSelections (see page 186) Changes the currently selected set of components.

 ShowMethod (see page 186) Activates the code editor with the input cursor in a specified event handler.

 ShowPopupMenu (see page 186) Show designer popup menu at the specified screen position.

 SizeSelected (see page 186) Perform size operation to selected components

 StartDrag (see page 187) Makes start settings before dragging operation

 UniqueName (see page 187) Generates a unique name from a specified base string.

 UpdateCompIcons (see page 187) Updates positions of component icons.

 ValidateMethod (see page 187) Determines whether method MAddr of object ARoot is valid method, i.e. it may
be assigned to the event.

TBaseDesigner Properties

TBaseDesigner Properties Description

 Active (see page 151) Switches target component between design and run-time modes

 HintObject (see page 152) Specifies object for which hint was activated.

 ShowHints (see page 152) Specifies showing of design hints.

TzCustomFormDesigner Class

TzCustomFormDesigner Class Description

 AllowComponents (see page 187) Specifies whether nonvisual components will be displayed in design mode

 AutoAlign (see page 187) Specifies using of align rulers.

 BDSStyle (see page 188) Specifies using of BDS style design environment.

 CaptionFont (see page 188) Controls the text attributes of non-visual components captions.

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

169

1

 CloseDisactive (see page 188) Specifies if TzCustomFormDesigner automatically deactivates when Target
(see page 193) Form (see page 189) is to be closed.

 ContainerWindow (see page 188) Determines generic container for any type of Target (see page 193)
components

 DesignSurface (see page 188) Specifies design surface.

 DisplayControlGrid (see page 189) Specifies whether designer has to paint grid over window controls that can
accept controls.

 DisplayGrid (see page 189) Determines whether dots are drawn on the Target (see page 193) form.

 FlatIcons (see page 189) Determines whether the non-visual component icons has a 3D border or not.

 DragParentLimit (see page 189) Specifies whether drag mouse movement should be clipped by parent's client
area.

 Form (see page 189) Provides access to designed form as TCustomForm type.

 Events (see page 189) Storage of assigned events.

 GridStepX (see page 190) Specifies grid step, in pixels, along X-axis

 GridStepY (see page 190) Specifies grid step, in pixels, along Y-axis

 LockControls (see page 190) Specifies if user can directly change size and position of controls by mouse.

 LockPublished (see page 190) Specifies if editing operation are forbidden by default

 MultiSelect (see page 190) Determines whether the user can select more than one control at a time.

 Groups (see page 190) Stores groups information.

 GuidelinesStyle (see page 191) Specifies guidelines options.

 IgnoreReadErrors (see page 191) Specifies whether read errors should be ignored when loading using
LoadFromFile (see page 177) and LoadFromStream (see page 178)
methods.

 ReadOnly (see page 191) Set Read Only mode.

 StoreEvents (see page 191) Specifies whether designer should process events storage.

 TabOrderIcons (see page 191) Properties of tab order icons. These controls are shown over children control
when designer is in "Show Tab Order" mode.

 TextEditMode (see page 191) Sets in-place text editing mode of designer.

 PopupMenu (see page 191) Identifies the pop-up menu associated with the Root (see page 192) control
of the Designer.

 UndoLimit (see page 192) Specifies the number of changes that can be undone.

 PopupMenuFilter (see page 192) Specifies which categories of items may be used to form default popup menu.

 UndoLoad (see page 192) Indicates that designer is in Undo (see page 183) loading state, i.e. in
reading previously saved form resource.

 Root (see page 192) Root component for TzCustomFormDesigner.

 RootModified (see page 192) Indicates whether the Root (see page 192) or its components are modified
(see page 181).

 SelCount (see page 193) Indicates number of selected components.

 Selected (see page 193) Indicates whether a particular control is selected.

 SelMarker (see page 193) Selection markers manager.

 ShowCaptions (see page 193) Specifies whether non-visual component icons captions are visible.

 SnapToGrid (see page 193) Automatically aligns components on the form with the nearest gridline. You
cannot place a component "in between" gridlines.

 Target (see page 193) Specifies object that is edited by the designer.

1.15.1.3.1 TzCustomFormDesigner Methods

1.15.1.3.1.1 TzCustomFormDesigner.AddCompEditorMenu Method

Adds menu items to the popup Menu associated with the component editor of selected in designer component.

To remove previously added component editor's menu items use ClearCompEditorMenu (see page 171) method.

procedure AddCompEditorMenu(Menu: TPopupMenu);

1.15.1.3.1.2 TzCustomFormDesigner.CanRedo Method

Indicates whether the designer contains undone changes that can be repeated.

function CanRedo: Boolean;

Description

Read CanRedo to determine whether the user has made undo (see page 183) operations to the Target (see page 193)

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

170

1

that can be undone by calling the Redo (see page 179) method. This is useful when enabling or disabling menu items that
correspond to these commands.

1.15.1.3.1.3 TzCustomFormDesigner.CanUndo Method

Indicates whether the designer contains changes that can be backed out.

function CanUndo: Boolean;

Description

Read CanUndo to determine whether the user has made any changes to the Target (see page 193) of the designer that
can be undone by calling the Undo (see page 183) method. This is useful when enabling or disabling menu items that
correspond to these commands.

1.15.1.3.1.4 TzCustomFormDesigner.CheckAction Method

Determines whether design operation specified by the Action parameter can be executed.

function CheckAction(Action: TEditStates): Boolean;

1.15.1.3.1.5 TzCustomFormDesigner.ClearCompEditorMenu Method

Removes component editor's menu items added by the AddCompEditorMenu (see page 170) method.

procedure ClearCompEditorMenu(Menu: TPopupMenu);

1.15.1.3.1.6 TzCustomFormDesigner.ClearUndo Method

Clears the undo (see page 183) buffer so that no changes to the Target (see page 193) can be backed out.

procedure ClearUndo;

Description

Use ClearUndo to commit changes Target (see page 193) resource. After calling ClearUndo, the CanUndo (see page
171) property is false and the Undo (see page 183) method does nothing.

1.15.1.3.1.7 TzCustomFormDesigner.CloseTextEditor Method

Closes in-place editor.

procedure CloseTextEditor(Accept: Boolean);

Description

If Accept is True, edited text will be saved to control, otherwise all not saved changes will be canceled.

1.15.1.3.1.8 TzCustomFormDesigner.DragDrop Method

OnDragDrop event dispatcher.

procedure DragDrop(Sender: TObject; Source: TObject; X: Integer; Y: Integer); override ;

Description

Override DragDrop to add additional code that executes before the OnDragDrop event handler is called.

The Source parameter is the object that was dropped onto the control Sender. The X and Y parameters are the mouse
coordinates where the object was dropped.

1.15.1.3.1.9 TzCustomFormDesigner.DragOver Method

OnDragOver event dispatcher.

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

171

1

function DragOver(Sender: TObject; Source: TObject; X: Integer; Y: Integer; State:
TDragState): Boolean; override ;

Description

Override DragOver to add additional code that executes before the OnDragOver event handler is called.

DragOver sets the Accept parameter to true to indicate that the user can drop the dragged object on the control. It sets
Accept to false to indicate that the user cannot drop the dragged object on the control.

The Source parameter is the object being dragged. The State parameter indicates how the dragged object is moving in
relation to the control. X and Y indicate the current position of the mouse.

1.15.1.3.1.10 TzCustomFormDesigner.EditAction Method

Executes designer operation specified by the Action parameter.

function EditAction(Action: TEditAction): Boolean;

1.15.1.3.1.11 TzCustomFormDesigner.AlignSelected Method

Performs alignment operation on selected components.

procedure AlignSelected(Horz: TCompAlign ; Vert: TCompAlign);

Description

AlignSelected is called automatically if user set new values in TAlignmentDlg form

Call this property programmatically to set new alignment for the selected components

Horz, Vert parameters are values for horizontal and vertical alignment correspondingly.

1.15.1.3.1.12 TzCustomFormDesigner.AlignToGrid Method

Aligns selected components to the closest grid point.

procedure AlignToGrid;

Description

Execute inner designer's command dsnAlignToGrid.

Call AlignToGrid programmatically to align selected components so that none of them is placed "in between" gridlines.

1.15.1.3.1.13 TzCustomFormDesigner.BringToFront Method

Moves a selected component in front of all other components on the form. This is called changing the component's z-order.

procedure BringToFront;

1.15.1.3.1.14 TzCustomFormDesigner.BuildLocalMenu Method

Creates default popup menu.

function BuildLocalMenu(Base: TPopupMenu; Filter: TLocalMenuFilters): TPopupMenu;

Description

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

172

1

1.15.1.3.1.15 TzCustomFormDesigner.CancelDrag Method

Cancels current drag&drop design operation.

procedure CancelDrag;

Description

This method is called when users press Esc key during dragging operation.

1.15.1.3.1.16 TzCustomFormDesigner.CanDelete Method

Check if component can be deleted.

function CanDelete(Component: TComponent): Boolean; dynamic ;

Description

CanDelete checks if component is not protected from deleting and than calls OnCanDelete (see page 195) event handler.

1.15.1.3.1.17 TzCustomFormDesigner.GetEditState Method

Returns set of possible designer operations.

function GetEditState: TEditState;

1.15.1.3.1.18 TzCustomFormDesigner.CanInsert Method

Check if component can be inserted.

function CanInsert(Component: TComponent): Boolean; dynamic ;

Description

CanInsert simply calls OnCanInsert (see page 195) event handler where user can define whether a component is allowed
to insert.

1.15.1.3.1.19 TzCustomFormDesigner.CanMove Method

Check if component can be moved.

function CanMove(Component: TComponent): Boolean; dynamic ;

Description

CanMove calls OnCanMove (see page 196) event handler where user can define whether a component is allowed to
move.

1.15.1.3.1.20 TzCustomFormDesigner.CanPaste Method

Checks clipboard for components saved to it.

function CanPaste: Boolean;

Description

Delphi IDE and EControl Form (see page 189) Designer Pro save components to clipboard in 'Delphi Components'
clipboard format. Therefore they are compatible and you may copy component from/to Delphi IDE and EControl Form (see
page 189) Designer Pro.

1.15.1.3.1.21 TzCustomFormDesigner.CanRename Method

Check if component can be renamed.

function CanRename(Component: TComponent; const NewName: string): Boolean; dynamic ;

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

173

1

Description

CanMove (see page 173) calls OnCanRename (see page 196) event handler where user can define whether a
component is allowed to rename.

1.15.1.3.1.22 TzCustomFormDesigner.CanResize Method

Check if component can be resized.

function CanResize(Component: TComponent): Boolean; dynamic ;

Description

CanMove (see page 173) calls OnCanResize (see page 196) event handler where user can define whether a
component is allowed to resize.

1.15.1.3.1.23 TzCustomFormDesigner.CanSelect Method

Check if component can be selected.

function CanSelect(Component: TComponent): Boolean; dynamic ;

Description

CanMove (see page 173) calls OnCanSelect (see page 196) event handler where user can define whether a component
is allowed to select.

1.15.1.3.1.24 TzCustomFormDesigner.ClearSelection Method

Resets selection.

procedure ClearSelection;

Description

This method set selection to nil, i.e. after calling this method Root (see page 192) is selected in object inspector and there
are no selected controls.

1.15.1.3.1.25 TzCustomFormDesigner.CopySelection Method
procedure CopySelection;

1.15.1.3.1.26 TzCustomFormDesigner.Create Constructor

Creates and initializes a TzCustomFormDesigner instance.

constructor Create(AOwner: TComponent); override ;

Description

Use Create to programmatically instantiate a TzCustomFormDesigner component. Components added in the form designer
are created automatically.

AOwner is the component that is responsible for freeing the component instance. It becomes the value of the Owner
property.

1.15.1.3.1.27 TzCustomFormDesigner.CutSelection Method

Cuts selected components to clipboard.

procedure CutSelection;

Description

Delphi IDE and EControl Form (see page 189) Designer Pro save components to clipboard in 'Delphi Components'
clipboard format. Therefore they are compatible and you may copy component from/to Delphi IDE and EControl Form (see
page 189) Designer Pro.

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

174

1

1.15.1.3.1.28 TzCustomFormDesigner.DeleteSelection Method

Deletes the selected component or components

procedure DeleteSelection(ADoAll: Boolean = False);

Description

Call DeleteSelection to remove the selected components in the designer and free their memory.

Use OnCanDelete (see page 195) event handler to define which components can not be deleted.

1.15.1.3.1.29 TzCustomFormDesigner.Destroy Destructor

Destroys an instance of TzCustomFormDesigner.

destructor Destroy; override ;

Description

Do not call Destroy directly. Call Free instead. Free verifies that the object reference is not nil before calling Destroy.

1.15.1.3.1.30 TzCustomFormDesigner.DoObjectHint Method

Shows hint current design state.

procedure DoObjectHint; override ;

Description

Used internally.

1.15.1.3.1.31 TzCustomFormDesigner.ExecuteAction Method

Invokes an action with the component as its target.

function ExecuteAction(Action: TBasicAction): Boolean; override ;

Description

When the user invokes an action, VCL makes a series of calls to respond to that action. First, it generates an OnExecute
event of the action list that contains the action. If the action list does not handle the OnExecute event, then the action is
routed to the Application object’s ExecuteAction method, which invokes the OnActionExecute event handler. If the
OnActionExecute event handler does not handle the action, then it is routed to the action’s OnExecute event handler. If that
does not handle the action, the active control’s ExecuteAction method is called.

The Action parameter specifies the action that was invoked. ExecuteAction returns true if the action was successfully
dispatched, and false if the component could not handle the action. If ExecuteAction returns false for the active control, VCL
calls the active form’s ExecuteAction method. If this returns false, VCL tries all active controls in the form. If these all return
false, VCL repeats the process with the main form, if that is different from the active form.

1.15.1.3.1.32 TzCustomFormDesigner.DragDraw Method

Provides drag-and-draw graphic operation.

procedure DragDraw;

Description

DragDraw is used internally in operation for selecting and dragging components on the designed form.

1.15.1.3.1.33 TzCustomFormDesigner.Edit Method

Displays the component editor for the specified component.

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

175

1

procedure Edit(const Component: IComponent);

Description

This method looks for component editor for give component and calls its method Edit. This method is called when user
double clicks on the component.

1.15.1.3.1.34 TzCustomFormDesigner.EndDrag Method

Provides drag-and-draw graphic operation.

procedure EndDrag(Shift: TShiftState);

Description

EndDraw is used internally in operation for selecting and dragging components on the designed form.

1.15.1.3.1.35 TzCustomFormDesigner.FlipChildren Method

Allows to reverse the layout of components in the current form to a right-to-left mirror image.

procedure FlipChildren(All: Boolean);

Description

This lets developers quickly change a form created for an audience that reads left to right so that it appears natural in
environments where users read from right to left.

1.15.1.3.1.36 TzCustomFormDesigner.GetCompObj Method

Returns component

function GetCompObj(AControl: TControl): TComponent;

Description

1.15.1.3.1.37 TzCustomFormDesigner.GetComponent Method

Returns the component with the name passed as a parameter.

function GetComponent(const Name: string): TComponent;

Description

Call GetComponent to access a component given its name. If the component is not in the current root object, the Name
parameter should include the name of the entity in which it resides. For example, to obtain a reference to a component in a
data module named 'DataModule2', use a line such as

 TheComponent := Designer.GetComponent('DataModule2.Button1');

1.15.1.3.1.38 TzCustomFormDesigner.GetComponentName Method

Returns the name of the component passed as its parameter.

function GetComponentName(Component: TComponent): string ;

Description

Call GetComponentName to obtain the name of a component. This is the inverse of GetComponent (see page 176).

Note: If the component is in the current root object, GetComponentName returns the Name property of the component
itself. If the component is in another entity, GetComponentName qualifies the component name with the name of the object
in which it resides.

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

176

1

1.15.1.3.1.39 TzCustomFormDesigner.GetComponentNames Method

Executes a callback for every component that can be assigned a property of a specified type.

procedure GetComponentNames(TypeData: PTypeData; Proc: TGetStrProc);

Description

Use GetComponentNames to call the procedure specified by the Proc parameter for every component that can be assigned
a property that matches the TypeData parameter. For each component, Proc is called with its S parameter set to the name
of the component. This parameter can be used to obtain a reference to the component by calling the GetComponent (see
page 176) method.

Note: GetComponentNames calls Proc for components in global components that can be defined using
TDesignerEvents.OnGetGlobalComponents event handler.

1.15.1.3.1.40 TzCustomFormDesigner.GetControlAt Method

Looks for control at specified point on the window prn.

function GetControlAt(prn: TWinControl; p: TPoint): TControl;

Description

Lets find Control under specified mouse point.

The Prn parameter is a Parent control for that specified control is looking for.

The P parameter is a mouse point.

1.15.1.3.1.41 TzCustomFormDesigner.GetMethodName Method

Returns the name of a specified event handler.

function GetMethodName(const Method: TMethod): string ;

Description

Call GetMethodName to obtain the name of an event handler given a pointer to it.

1.15.1.3.1.42 TzCustomFormDesigner.GetNewName Method

Returns new generated name for particular class of the component.

function GetNewName(AClass: TClass): string ;

Description

1.15.1.3.1.43 TzCustomFormDesigner.GetObjectName Method

Returns object name.

function GetObjectName(Instance: TPersistent): string ;

1.15.1.3.1.44 TzCustomFormDesigner.LoadFromFile Method

Load Root (see page 192) component from file. Inline events from resource file are stored in Events (see page 189)
property if property StoreEvents (see page 191) is True. If IgnoreReadErrors (see page 191) is True - all read errors are
ignored.

procedure LoadFromFile(const FileName: string);

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

177

1

1.15.1.3.1.45 TzCustomFormDesigner.LoadFromStream Method

Load Root (see page 192) component from stream. Inline events from resource file are stored in Events (see page 189)
property if property StoreEvents (see page 191) is True. If IgnoreReadErrors (see page 191) is True - all read errors are
ignored.

procedure LoadFromStream(Stream: TStream);

1.15.1.3.1.46 TzCustomFormDesigner.GetRoot Method

Returns the current entity being edited by the form designer.

function GetRoot: TComponent;

Description

GetRoot is the read implementation of the Root (see page 192) property. It returns the object on which the form designer
is working.

Root (see page 192) component is equal to Target (see page 193) property.

1.15.1.3.1.47 TzCustomFormDesigner.GetRootClassName Method

Returns the class name for the root component.

function GetRootClassName: string ;

Description

Call GetRootClassName to obtain the class name of the component specified by the Root (see page 192) property.

Instead of Delphi this method returns real class name of edited object, because no new class is created for edited object at
runtime.

1.15.1.3.1.48 TzCustomFormDesigner.GetScriptEvent Method

Returns script procedure name assigned to the event.

function GetScriptEvent(Instance: TObject; pInfo: PPropInfo): string ;

Description

This method calls OnGetScriptProc (see page 199) event handler to get script procedure name.

1.15.1.3.1.49 TzCustomFormDesigner.GetScrollRanges Method

Returns the size of the logical designer window.

function GetScrollRanges(const ScrollPosition: TPoint): TPoint;

Description

Call GetScrollRanges to determine the farthest point to which the designer can scroll. The ScrollPosition parameter specifies
a point that must be included in the scroll range. GetScrollRanges returns the coordinates that minimally contain all
components on the design surface plus the point specified by ScrollPosition.

1.15.1.3.1.50 TzCustomFormDesigner.GetSelections Method

Fills a list with all selected components on the current root object.

procedure GetSelections(const List: IDesignerSelections);

Description

Use GetSelections to access every component currently selected on the root object returned by the GetRoot (see page
178) method.

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

178

1

Pass a component that supports the IDesignerSelections interface as the List parameter. GetSelections fills this component
with references to the selected objects.

Note: GetSelections can return persistent objects that are not components, as well as components.

1.15.1.3.1.51 TzCustomFormDesigner.Redo Method

Call Redo to repeat last undone operation.

procedure Redo;

Description

To determine whether Redo operation is possible, call CanRedo (see page 170) method.

1.15.1.3.1.52 TzCustomFormDesigner.GetShiftState Method

Returns the current state of the Shift, Alt, and Ctrl keys.

function GetShiftState: TShiftState;

Description

Call GetShiftState to ascertain whether the Shift, Alt, and Ctrl keys are currently pressed. GetShiftState returns a TShiftState
value that indicates the status of these keys.

1.15.1.3.1.53 TzCustomFormDesigner.Intf_Notification Method

Allows the designer to respond when a notification (see page 183) is sent to the form.

procedure Intf_Notification(AnObject: TPersistent; Operation: TOperation);

Description

When a form receives a notification (see page 183), it calls the Notification (see page 183) method of the designer,
allowing the designer to respond to all the notifications the form receives.

It is implementation of IDesignerNotify.Notification (see page 183).

 procedure IDesignerNotify.Notification = Intf_Notification;

1.15.1.3.1.54 TzCustomFormDesigner.IsComponentHidden Method

Indicates whether a component does not appear directly in the form designer.

function IsComponentHidden(Component: TComponent): Boolean;

Description

Call IsComponentHidden to determine whether the component specified by the Component parameter appears directly in
the form designer. When IsComponentHidden returns true, the component does not appear as an icon or control. For
example, menu items and field components are hidden components, and can only be accessed through a parent
component’s editor (the menu designer or fields editor). Hidden components are registered using the RegisterNoIcon
procedure.

1.15.1.3.1.55 TzCustomFormDesigner.IsLocked Method

Specifies whether component is locked and can not be edited in designer.

function IsLocked(Component: TComponent): Boolean; dynamic ;

1.15.1.3.1.56 TzCustomFormDesigner.SaveToFile Method

Saves Root (see page 192) component to file FileName with events information. AsText specifies format of the file: text or
binary.

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

179

1

procedure SaveToFile(const FileName: string ; AsText: Boolean = True);

1.15.1.3.1.57 TzCustomFormDesigner.IsDesignMsg Method

Determines when the designer should handle a Windows message.

function IsDesignMsg(Sender: TControl; var Message : TMessage): Boolean;

Description

IsDesignMsg is called for each message sent to a component in the designer. This method returns true if the message is a
design message, meaning one the designer should handle for the component.

1.15.1.3.1.58 TzCustomFormDesigner.SaveToStream Method

Save Root (see page 192) component to stream with events information. AsText specifies storage format: text or binary.

procedure SaveToStream(Stream: TStream; AsText: Boolean = True);

1.15.1.3.1.59 TzCustomFormDesigner.IsProtected Method

Indicates whether component is protected and can not be changed by designer.

function IsProtected(Component: TComponent): Boolean; dynamic ;

Description

1.15.1.3.1.60 TzCustomFormDesigner.IsRootSelected Method

Returns True if entire Root (see page 192) is selected

function IsRootSelected: Boolean;

Description

Root (see page 192) is selected when there is no selection. I.e. to select root component you should call NoSelection (
see page 183) method.

1.15.1.3.1.61 TzCustomFormDesigner.IsSourceReadOnly Method

Indicates whether the source file for the component being designed is read-only.

function IsSourceReadOnly: Boolean;

Description

Call IsSourceReadOnly to determine whether the unit module for the object in the designer is a read-only file.

Note: In current version this methods always returns False.

1.15.1.3.1.62 TzCustomFormDesigner.SelectedComponentsCount Method

Returns number of selected components excluding Root (see page 192) and non-component objects.

function SelectedComponentsCount: integer;

1.15.1.3.1.63 TzCustomFormDesigner.KeyDown Method

Respond to key press events.

procedure KeyDown(var Key: Word; Shift: TShiftState); override ;

Description

It works similar to TWinControl.KeyDown.

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

180

1

First KeyDown fires OnKeyDown event .

Then processes keystrokes

• VK_F4 with ssCtrl in Shift switches Active property to False

• VK_DELETE - deletes selected controls

• VK_INSERT - with ssCtrl do copying from buffer, with ssShift - pasting

• VK_DOWN, VK_UP, VK_LEFT, VK_RIGHT - do moving selected controls

• VK_ESCAPE - moves selection from component to its parent

• VK_TAB - moves selection to another component in its TabOrder sequences

Finally calls DsnManager.KeyDown procedure.

See TWinControl.KeyDown for details.

1.15.1.3.1.64 TzCustomFormDesigner.KeyPress Method

Respond to keyboard input.

procedure KeyPress(var Key: Char); override ;

Description

First KeyPress fires OnKeyPress event .

Finally calls DsnManager.KeyPress procedure.

1.15.1.3.1.65 TzCustomFormDesigner.KeyUp Method

Respond to released key.

procedure KeyUp(var Key: Word; Shift: TShiftState); override ;

Description

Invokes OnKeyUp event.

1.15.1.3.1.66 TzCustomFormDesigner.MethodExists Method

Indicates whether an event handler with a specified name already exists.

function MethodExists(const Name: string): Boolean;

Description

Call MethodExists to determine whether an event handler with a given name has already been created.

It checks only existed in executed code methods, i.e. that methods which were created before compilation of application.

1.15.1.3.1.67 TzCustomFormDesigner.Modified Method

Notifies property and component editors when a change is made to a component.

procedure Modified;

Description

When any change is made to a component the property and component editors call this method, allowing the designer to
respond to the change.

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

181

1

1.15.1.3.1.68 TzCustomFormDesigner.ShowTabOrder Method

Shows tab order icons over children controls of the selected control. Click on the children controls changes their tab order.
To exit "Show Tab Icons" mode click on any not child control or press ESCAPE key.

procedure ShowTabOrder;

1.15.1.3.1.69 TzCustomFormDesigner.MouseDown Method

Generates an OnMouseDown event.

procedure MouseDown(Button: TMouseButton; Shift: TShiftState; X: Integer; Y: Integer);
override ;

Description

It works similar to TControl.MouseDown

See TControl.MouseDown for details.

1.15.1.3.1.70 TzCustomFormDesigner.MouseMove Method

Generates an OnMouseMove event.

procedure MouseMove(Shift: TShiftState; X: Integer; Y: Integer); override ;

Description

It works similar to TControl.MouseMove

See TControl.MouseMove for details.

1.15.1.3.1.71 TzCustomFormDesigner.MouseUp Method

Generates an OnMouseUp event.

procedure MouseUp(Button: TMouseButton; Shift: TShiftState; X: Integer; Y: Integer);
override ;

Description

It works similar to TControl.MouseUp

See TControl.MouseUp for details.

1.15.1.3.1.72 TzCustomFormDesigner.Navigate Method

Performs navigation between control using keyboard

procedure Navigate(Key: Word);

Description

1.15.1.3.1.73 TzCustomFormDesigner.UpdateAction Method

Updates an action component to reflect the current state of the component.

function UpdateAction(Action: TBasicAction): Boolean; override ;

Description

When the application is idle, VCL makes a series of calls to update the properties (such as whether it is enabled, checked,

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

182

1

and so on) of every action that is linked to a visible control or menu item. First, VCL generates an OnUpdate event of the
action list that contains the action. If the action list does not handle the OnUpdate event, then the action is routed to the
Application object’s UpdateAction method, which invokes the OnActionUpdate event handler. If the OnActionUpdate event
handler does not update the action, then it is routed to the action’s OnUpdate event handler. If that does not update the
action, the active control’s UpdateAction method is called.

The Action parameter specifies the action component that should be updated. UpdateAction returns true if the action
component now reflects the state of the component, and false if it did not know how to update the action. If UpdateAction
returns false for the active component, VCL calls the active form’

s UpdateAction method.

Do not call UpdateAction. It is called automatically when the application is idle. As implemented in TComponent,
UpdateAction allows the action to update itself with the component as a target. Descendants can override this method to
perform updates that reflect class-specific properties or states.

1.15.1.3.1.74 TzCustomFormDesigner.NoSelection Method

Deselects all components in the form designer.

procedure NoSelection;

Description

Use NoSelection to programmatically deselect all components in the designer.

Note: To set the selection to a specific component or set of components, use the SelectComponent (see page 185) or
SetSelections (see page 186) method.

1.15.1.3.1.75 TzCustomFormDesigner.Undo Method

Backs out last change in the undo buffer.

procedure Undo;

Description

Call Undo to cancel last change made to the Target (see page 193). To determine whether there are any changes in the
undo buffer, check the CanUndo (see page 171) property.

1.15.1.3.1.76 TzCustomFormDesigner.Notification Method

Allows the designer to respond when a notification is sent to the form.

procedure Notification(AComponent: TComponent; Operation: TOperation); override ;

Description

It is overridden procedure from IDesignerNotify.Notification

First it calls inherited, then if AComponent is FPopupMenu it frees FPopupMenu.

1.15.1.3.1.77 TzCustomFormDesigner.NotifySelChanged Method

Notifies active designer about changing selection list

procedure NotifySelChanged;

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

183

1

Description

1.15.1.3.1.78 TzCustomFormDesigner.PaintControl Method

Called for each WM_PAINT message to perform specific painting over control.

function PaintControl(Sender: TControl; var Message : TMessage): Boolean; virtual ;

Description

1.15.1.3.1.79 TzCustomFormDesigner.PaintGrid Method

Paints the alignment grid on the form's canvas.

procedure PaintGrid;

Description

Forms that are associated with a designer call the PaintGrid method in response to Windows paint messages. If there is no
designer associated with the form, the form’s Paint method is called instead.

1.15.1.3.1.80 TzCustomFormDesigner.PasteSelection Method

Pastes the contents of the clipboard into the selected component or components.

procedure PasteSelection;

Description

Call PasteSelection to paste the contents of the clipboard to the components returned by GetSelections (see page 178).

1.15.1.3.1.81 TzCustomFormDesigner.ReadComp Method

Callback procedure for TReader.ReadComponents

procedure ReadComp(Component: TComponent);

Description

ReadComp is a TReadComponentsProc for TReader.ReadComponents procedure.

ReadComponents reads components by calling the ReadComponent method, passing each returned component to the
method passed in ReadComp

1.15.1.3.1.82 TzCustomFormDesigner.RenameMethod Method

Renames an existing event handler.

procedure RenameMethod(const CurName: string ; const NewName: string);

Description

Call RenameMethod to provide an event handler with a new name. The CurName parameter specifies the current name of
the event handler, and the NewName parameter specifies the value that the name should be changed to.

This methods calls OnRenameMethod (see page 200) event to update method name in script code.

Note: Before calling RenameMethod, check whether a method with the new name already exists by calling MethodExists (
see page 181).

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

184

1

1.15.1.3.1.83 TzCustomFormDesigner.Scale Method

Scale all controls using defined ratio

procedure Scale(Ratio: integer);

Description

Works only if Ratio is between 40 and 400

1.15.1.3.1.84 TzCustomFormDesigner.SelectAll Method

Selects all components.

procedure SelectAll;

Description

Selects all components of the form.

1.15.1.3.1.85 TzCustomFormDesigner.SelectComponent Method

Replaces the current set of selected components by a single specified object.

procedure SelectComponent(Instance: TPersistent); overload ;

Description

Call SelectComponent to select a single persistent object in the designer. Any previous set of selected components is
deselected. To select a set of objects, use the SetSelections (see page 186) method instead.

1.15.1.3.1.86 TzCustomFormDesigner.SelectedComponent Method

Returns selected component if selection consist of single component; Root (see page 192) component, if there is no
selection; nil if selection consists of several components.

function SelectedComponent: TComponent;

1.15.1.3.1.87 TzCustomFormDesigner.SelectionChanged Method

This method call after selection has been changed.

procedure SelectionChanged; virtual ;

Description

1.15.1.3.1.88 TzCustomFormDesigner.SelectObj Method

Selects object passed as Instance parameter.

function SelectObj(Instance: TPersistent; Show: Boolean): Boolean;

Description

1.15.1.3.1.89 TzCustomFormDesigner.SelectRect Method

Selects all controls on the Prn control.

procedure SelectRect(ARect: TRect; Prn: TWinControl; ToAdd: Boolean);

Description

Selects all controls on the Prn control with bounds intersected with ARect. If ToAdd is True controls are added to current
selection, otherwise current selection is cleared before adding new control from the ARect.

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

185

1

1.15.1.3.1.90 TzCustomFormDesigner.SendToBack Method

Moves a selected component behind all other components on the form. This is called changing the component's z-order.

procedure SendToBack;

Description

1.15.1.3.1.91 TzCustomFormDesigner.SetPasteName Method

Setting new name for pasting component

procedure SetPasteName(Reader: TReader; Component: TComponent; var Name: string); virtual ;

Description

1.15.1.3.1.92 TzCustomFormDesigner.SetScriptEvent Method

Assigns script procedure with particular event of the Instance.

procedure SetScriptEvent(Instance: TObject; pInfo: PPropInfo; const EventProc: string);

Description

This method only calls OnSetScriptEvent handler.

1.15.1.3.1.93 TzCustomFormDesigner.SetSelections Method

Changes the currently selected set of components.

procedure SetSelections(const List: IDesignerSelections);

Description

Call SetSelections to programmatically change which objects in the root object are selected. Pass in a list of selections using
an object that supports the IDesignerSelections interface.

Note: The List parameter of SetSelections can contain persistent objects that are not components.

1.15.1.3.1.94 TzCustomFormDesigner.ShowMethod Method

Activates the code editor with the input cursor in a specified event handler.

procedure ShowMethod(const Name: string);

Description

Call ShowMethod to allow the user to edit (see page 175) the method specified by the Name parameter.

Note: You should write OnShowMethod (see page 201) event handler in which code editor will be activated.

1.15.1.3.1.95 TzCustomFormDesigner.ShowPopupMenu Method

Show designer popup menu at the specified screen position.

procedure ShowPopupMenu(X: integer; Y: integer);

1.15.1.3.1.96 TzCustomFormDesigner.SizeSelected Method

Perform size operation to selected components

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

186

1

procedure SizeSelected(WSize: TCompSize ; HSize: TCompSize ; AWidth: integer; AHeight:
integer);

Description

It is called after TSizeAdjDlg dialog.

1.15.1.3.1.97 TzCustomFormDesigner.StartDrag Method

Makes start settings before dragging operation

procedure StartDrag(X: integer; Y: integer);

Description

1.15.1.3.1.98 TzCustomFormDesigner.UniqueName Method

Generates a unique name from a specified base string.

function UniqueName(const BaseName: string): string ;

Description

Call UniqueName to automatically generate a unique name for a component. Specify the base string for the name by the
BaseName parameter. UniqueName appends a number to BaseName to ensure that there are no name-space conflicts.

1.15.1.3.1.99 TzCustomFormDesigner.UpdateCompIcons Method

Updates positions of component icons.

procedure UpdateCompIcons;

Description

1.15.1.3.1.100 TzCustomFormDesigner.ValidateMethod Method

Determines whether method MAddr of object ARoot is valid method, i.e. it may be assigned to the event.

function ValidateMethod(TypeData: PTypeData; ARoot: TObject; MAddr: pointer; MName:
string): Boolean;

1.15.1.3.2 TzCustomFormDesigner Properties

1.15.1.3.2.1 TzCustomFormDesigner.AllowComponents Property

Specifies whether nonvisual components will be displayed in design mode

property AllowComponents: Boolean;

Description

Nonvisual components (not derived from TControl) are normally invisible in run-time.

AllowComponents specifies whether those components will be displayed in design mode.

1.15.1.3.2.2 TzCustomFormDesigner.AutoAlign Property

Specifies using of align rulers.

property AutoAlign: Boolean;

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

187

1

Description

Align rulers are auxiliary lines to nearest controls. They allows easily aligning moved/resized control to other controls.

1.15.1.3.2.3 TzCustomFormDesigner.BDSStyle Property

Specifies using of BDS style design environment.

property BDSStyle: Boolean;

Description

When BDSStyle is True moving and resizing of controls are performed as in BDS, i.e. control is visible during operation,
otherwise old designer operations are used - when only frames are drawn during moving or resizing.

1.15.1.3.2.4 TzCustomFormDesigner.CaptionFont Property

Controls the text attributes of non-visual components captions.

property CaptionFont: TFont;

Description

This property controls the text attributes of non-visual components captions when ShowCaptions (see page 193) is True.

1.15.1.3.2.5 TzCustomFormDesigner.CloseDisactive Property

Specifies if TzCustomFormDesigner (see page 161) automatically deactivates when Target (see page 193) Form (see
page 189) is to be closed.

property CloseDisactive: Boolean;

Description

Set this property to True to force TzCustomFormDesigner (see page 161) automatically deactivates when Target (see
page 193) Form (see page 189) is to be closed.

1.15.1.3.2.6 TzCustomFormDesigner.ContainerWindow Property

Determines generic container for any type of Target (see page 193) components

property ContainerWindow: TWinControl;

Description

ContainerWindow is used internally to represent common generic approach for Target (see page 193) component.

Do not specify ContainerWindow directly, use Target (see page 193) property instead.

1.15.1.3.2.7 TzCustomFormDesigner.DesignSurface Property

Specifies design surface.

property DesignSurface: TDesignSurface ;

Description

When design surface, control of TDesignSurface (see page 237) class, is assigned form is placed on it. Form (see page
189) does not activated, when user clicks on the form design surface gets focus.

Design surface is usual control which can not be placed on any container - form, tab sheet, panel, etc.

This allows organizing of multiple documents applications where each form is placed on separate tab sheet.

Also design surface allows hidding of form caption and border by setting TDesignSurface.HideFormBorders (see page
240) property.

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

188

1

Using design surface you may implement BDS like design environment.

1.15.1.3.2.8 TzCustomFormDesigner.DisplayControlGrid Property

Specifies whether designer has to paint grid over window controls that can accept controls.

property DisplayControlGrid: Boolean;

Description

Set this property to True to display design grid over window controls that can accept controls, for example, over tab sheet or
panel.

1.15.1.3.2.9 TzCustomFormDesigner.DisplayGrid Property

Determines whether dots are drawn on the Target (see page 193) form.

property DisplayGrid: Boolean;

Description

Set DisplayGrid to True for dots represesenting as grid on the Target (see page 193) Form (see page 189).

Dots will be shown only if Target (see page 193) is a TCustomForm descendant.

1.15.1.3.2.10 TzCustomFormDesigner.FlatIcons Property

Determines whether the non-visual component icons has a 3D border or not.

property FlatIcons: Boolean;

Description

Set FlatIcons to True to remove the 3D border around the non-visual component icons.

1.15.1.3.2.11 TzCustomFormDesigner.DragParentLimit Property

Specifies whether drag mouse movement should be clipped by parent's client area.

property DragParentLimit: Boolean;

1.15.1.3.2.12 TzCustomFormDesigner.Form Property

Provides access to designed form as TCustomForm type.

property Form: TCustomForm;

Description

Form is used internally to represent specific approach for Target (see page 193) component.

Do not specify Form directly, use Target (see page 193) property instead.

1.15.1.3.2.13 TzCustomFormDesigner.Events Property

Storage of assigned events.

property Events: TStrings;

Description

Designer stores assigned events (associations between event and script procedure) to this string list. To enable events
processing by designer set property StoreEvents (see page 191) to True.

Use Events.Names[Index] to access property path in view "ComponentName.EventName". For root events component
name is omitted. Use Events.ValueFromIndex[Index] to get script procedure name.

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

189

1

1.15.1.3.2.14 TzCustomFormDesigner.GridStepX Property

Specifies grid step, in pixels, along X-axis

property GridStepX: integer;

Description

Use this property to read or change grid step along X-axis.

1.15.1.3.2.15 TzCustomFormDesigner.GridStepY Property

Specifies grid step, in pixels, along Y-axis

property GridStepY: integer;

Description

Use this property to read or change grid step along Y-axis.

1.15.1.3.2.16 TzCustomFormDesigner.LockControls Property

Specifies if user can directly change size and position of controls by mouse.

property LockControls: Boolean;

Description

Set this property to False to allow user changing controls position and size only through Object Inspector (TObjectInspector).

1.15.1.3.2.17 TzCustomFormDesigner.LockPublished Property

Specifies if editing operation are forbidden by default

property LockPublished: Boolean;

Description

Set this property to True to programmatically control what kind of editing will be allowed.

User can adjust reaction on editing request in event handlers.

It affects on events

• OnCanDelete (see page 195)

• OnCanSelect (see page 196)

• OnCanResize (see page 196)

• OnCanMove (see page 196)

• OnCanRename (see page 196)

1.15.1.3.2.18 TzCustomFormDesigner.MultiSelect Property

Determines whether the user can select more than one control at a time.

property MultiSelect: Boolean;

Description

Set MultiSelect to True to allow the user to select multiple controls. If MultiSelect if False, multiple controls cannot be
selected at the same time.

1.15.1.3.2.19 TzCustomFormDesigner.Groups Property

Stores groups information.

property Groups: TControlGroups ;

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

190

1

Description

Grouping controls allows easier selection and operations on groups of controls.

1.15.1.3.2.20 TzCustomFormDesigner.GuidelinesStyle Property

Specifies guidelines options.

property GuidelinesStyle: TGuidelinesStyles ;

1.15.1.3.2.21 TzCustomFormDesigner.IgnoreReadErrors Property

Specifies whether read errors should be ignored when loading using LoadFromFile (see page 177) and LoadFromStream
(see page 178) methods.

property IgnoreReadErrors: Boolean;

1.15.1.3.2.22 TzCustomFormDesigner.ReadOnly Property

Set Read Only mode.

property ReadOnly : Boolean;

Description

Set ReadOnly to True to disable any changes in designer. In read only mode there is no popup menu, all changes to
controls are disabled (moving, resizing, etc.), component editors are disabled.

1.15.1.3.2.23 TzCustomFormDesigner.StoreEvents Property

Specifies whether designer should process events storage.

property StoreEvents: Boolean;

Description

When StorageEvents is True events associations are save to Events (see page 189) property.These events are saved in
resource (DFM file or stream).

Otherwise you need to use OnSetScriptProc (see page 200) and OnGetScriptProc (see page 199) events to process
events associations manually.

1.15.1.3.2.24 TzCustomFormDesigner.TabOrderIcons Property

Properties of tab order icons. These controls are shown over children control when designer is in "Show Tab Order" mode.

property TabOrderIcons: TTabOrderIcons ;

1.15.1.3.2.25 TzCustomFormDesigner.TextEditMode Property

Sets in-place text editing mode of designer.

property TextEditMode: Boolean;

Description

Set TextEditMode to True to enable in-place editing of control's texts. In this mode labels, button captions, list box items,
combo box items and many others text properties may be edited directly on the form. It will give more interactivity to design
process.

To activate in-place editor user needs to click on text string on the control or press Enter, when this control is selected.

In-place editors are handled by special design classes derived from

1.15.1.3.2.26 TzCustomFormDesigner.PopupMenu Property

Identifies the pop-up menu associated with the Root (see page 192) control of the Designer.

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

191

1

property PopupMenu: TPopupMenu;

Description

It is similar to TControl.PopupMenu property.

If there are no popup menu assigned to this property default popup menu is created. In this case you may use
PopupMenuFilter (see page 192) to define possible item groups in default popup menu.

See TControl.PopupMenu for details.

1.15.1.3.2.27 TzCustomFormDesigner.UndoLimit Property

Specifies the number of changes that can be undone.

property UndoLimit: integer;

Description

Use UndoLimit to restrict undo (see page 183) records list. If UndoLimit is 0, undo (see page 183) operation is disabled.

Default value is 16.

1.15.1.3.2.28 TzCustomFormDesigner.PopupMenuFilter Property

Specifies which categories of items may be used to form default popup menu.

property PopupMenuFilter: TLocalMenuFilters ;

Description

1.15.1.3.2.29 TzCustomFormDesigner.UndoLoad Property

Indicates that designer is in Undo (see page 183) loading state, i.e. in reading previously saved form resource.

property UndoLoad: Boolean;

1.15.1.3.2.30 TzCustomFormDesigner.Root Property

Root component for TzCustomFormDesigner (see page 161).

property Root: TComponent;

Description

Designer works only with components owned by the root.

Root is used internally to represent specific approach for Target (see page 193) component.

Do not specify Root directly, use Target (see page 193) property instead.

1.15.1.3.2.31 TzCustomFormDesigner.RootModified Property

Indicates whether the Root (see page 192) or its components are modified (see page 181).

property RootModified: Boolean;

Description

Check Modified (see page 181) to determine if the designed components are modified (see page 181). Write it to force
OnRootModified event.

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

192

1

1.15.1.3.2.32 TzCustomFormDesigner.SelCount Property

Indicates number of selected components.

property SelCount: integer;

Description

Read this property to get the number of components selected in Root (see page 192).

1.15.1.3.2.33 TzCustomFormDesigner.Selected Property

Indicates whether a particular control is selected.

property Selected [Index : integer]: TControl;

Description

Use Selected to get the indexed control from the designer's array of selected items.

The Index parameter is the item referenced by its position in the array of controls, with the first item having an Index value of
0.

1.15.1.3.2.34 TzCustomFormDesigner.SelMarker Property

Selection markers manager.

property SelMarker: TzBoundCtrl ;

Description

Use this object to customize shape and colors of selection markers. Selection markers are visible when only one component
is selected.

1.15.1.3.2.35 TzCustomFormDesigner.ShowCaptions Property

Specifies whether non-visual component icons captions are visible.

property ShowCaptions: Boolean;

Description

When ShowCaption is True non-visual components icons have captions with their names below them.

For data modules captions are always visible

1.15.1.3.2.36 TzCustomFormDesigner.SnapToGrid Property

Automatically aligns components on the form with the nearest gridline. You cannot place a component "in between" gridlines.

property SnapToGrid: Boolean;

Description

1.15.1.3.2.37 TzCustomFormDesigner.Target Property

Specifies object that is edited by the designer.

property Target: TComponent;

Description

Setting this property affects to Root (see page 192), ContainerWindow (see page 188) and Form (see page 189)
properties.

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

193

1

Possible Target types are following:

1. TCustomForm - form designing.

In this case:

Root (see page 192) = ContainerWindow (see page 188) = Form (see page 189) = Target.

2. TWinControl, owned by the form. This control and all it's children controls are edited. Also non-visual components owned
by the form may be edited too if AllowComponents (see page 187) is True.

In this case:

Root (see page 192) = Form (see page 189) = (Target.Owner as TCustomForm);

ContainerWindow (see page 188) = (Target as TWinControl);

3. TWinControl, not owned by the form, for example, TQuickReport.

This control and all owned by it components are edited.

In this case temporary form is created as container in design mode.

Client size of this form is equal to size of the Target.

Changing form size does not change size of the Target.

In this case:

Form (see page 189) = temporary internal Form (see page 189);

Root (see page 192) = Target;

ContainerWindow (see page 188) = (Target as TWinControl);

4. TCustomFrame.

Identical to case 3, but changing form size changes size of the frame.

5. TDataModule.

Data module and all it's components are edited.

For editing of data modules temporary Form (see page 189) and temporary container are created, in which designing are
performed.

In this case:

Root (see page 192) = Target;

Form (see page 189) = temporary internal Form (see page 189);

ContainerWindow (see page 188) = temporary internal Container;

1.15.1.3.3 TzCustomFormDesigner Events

1.15.1.3.3.1 TzCustomFormDesigner.OnCanEdit Event

Occurs to determine whether Edit (see page 175) method of component editor can be called.

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

194

1

property OnCanEdit: TComponentEvent ;

Description

Write OnCanEdit event handler to disable component editor call when user double clicks component.

1.15.1.3.3.2 TzCustomFormDesigner.OnDrawControl Event

Occurs when painting any control on the form. Use this event to draw over control.

property OnDrawControl: TDrawControlEvent ;

1.15.1.3.3.3 TzCustomFormDesigner.OnExecuteAction Event

Occurs when ExecuteAction (see page 175) method is called. Use it to handle standard shared actions for currently active
designer.

property OnExecuteAction: THandleActionEvent ;

1.15.1.3.3.4 TzCustomFormDesigner.OnGetComponentLocked Event

Occurs to determine whether component is locked.

property OnGetComponentLocked: TComponentEvent ;

Description

Write OnGetComponentLocked event handler to specify which components are locked, i.e can be edited in designer.

1.15.1.3.3.5 TzCustomFormDesigner.OnCanDelete Event

Occurs before deleting selected component.

property OnCanDelete: TComponentEvent ;

Description

Write an OnCanDelete event handler to provide custom action. You may forbid deleting for example.

The Sender parameter is the object whose event handler is called.

The Component parameter is the component that is being deleted

The Accept parameter determines whether a component is allowed to delete.

1.15.1.3.3.6 TzCustomFormDesigner.OnCanInsert Event

Occurs before inserting new component.

property OnCanInsert: TComponentEvent ;

Description

Write an OnCanInsert event handler to provide custom action. You may forbid inserting this new component.

The Sender parameter is the object whose event handler is called.

The Component parameter is the component that is being inserted

The Accept parameter determines whether a component is allowed to insert.

1.15.1.3.3.7 TzCustomFormDesigner.OnGetObjectName Event

Occurs at the end of GetObjectName (see page 177) method to adjust resulting name.

property OnGetObjectName: TGetObjNameEvent ;

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

195

1

Description

This event may be helpful if visible control is only proxy of real object.

1.15.1.3.3.8 TzCustomFormDesigner.OnCanMove Event

Occurs before moving selected component.

property OnCanMove: TComponentEvent ;

Description

Write an OnCanMove event handler to provide custom action. You may forbid moving this component.

The Sender parameter is the object whose event handler is called.

The Component parameter is the component that is being moved

The Accept parameter determines whether a component is allowed to move.

1.15.1.3.3.9 TzCustomFormDesigner.OnCanRename Event

Occurs before renaming component.

property OnCanRename: TRenameEvent ;

Description

Write an OnCanRename event handler to provide custom action. You may forbid renaming this component or set another
name.

The Sender parameter is the object whose event handler is called.

The Component parameter is the component that is being renamed

The NewName parameter is the suggested name

The Accept parameter determines whether a component is allowed to rename.

1.15.1.3.3.10 TzCustomFormDesigner.OnCanResize Event

Occurs before resizing selected component.

property OnCanResize: TComponentEvent ;

Description

Write an OnCanResize event handler to provide custom action. You may forbid resizing this component.

The Sender parameter is the object whose event handler is called.

The Component parameter is the component that is being resized

The Accept parameter determines whether a component is allowed to resize.

1.15.1.3.3.11 TzCustomFormDesigner.OnPopUndo Event

Occurs when restoring Target (see page 193) from undo (see page 183) buffer.

property OnPopUndo: TUndoRecEvent ;

1.15.1.3.3.12 TzCustomFormDesigner.OnCanSelect Event

Occurs before selecting component.

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

196

1

property OnCanSelect: TComponentEvent ;

Description

Write an OnCanSelect event handler to provide custom action. You may forbid selecting this component.

The Sender parameter is the object whose event handler is called.

The Component parameter is the component that is being selected

The Accept parameter determines whether a component is allowed to select.

1.15.1.3.3.13 TzCustomFormDesigner.OnPushUndo Event

Occurs when saving Target (see page 193) to undo (see page 183) buffer.

property OnPushUndo: TUndoRecEvent ;

1.15.1.3.3.14 TzCustomFormDesigner.OnCreateComponent Event

Occurs before new component creation.

property OnCreateComponent: TCreateComponentEvent ;

Description

Write this handler to customize component creation.

AClass - class of inserted component;

AOwner - owner of the component (root)

Instance - reference to component to be created.

Note : if you create (see page 174) event handler you should create (see page 174) component in it. Default component
creation will be skipped. This allows to restrict component creation.

1.15.1.3.3.15 TzCustomFormDesigner.OnCreateFrame Event

Occurs when frame is to be inserted on the form.

property OnCreateFrame: TCreateFrameEvent ;

Description

By default PackageMng.CreateFrame method is called. This method shows select frame dialog and creates an instance of
frame class. Using this event you may change default behavior.

1.15.1.3.3.16 TzCustomFormDesigner.OnSetNewName Event

Occurs when assigning name to newly inserted component (created or pasted).

property OnSetNewName: TSetNameEvent ;

1.15.1.3.3.17 TzCustomFormDesigner.OnCreateIcon Event

Occurs before creating icon for non-visual component.

property OnCreateIcon: TCreateIconEvent ;

Description

Write an OnCreateIcon event handler to provide custom action. You may forbid component icon creation, so that component
will not be visible on the designed Target (see page 193), but will be accessible in object inspector.

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

197

1

The Sender parameter is the object whose event handler is called.

The Component parameter is the component icon is being created for

The AllowCreate parameter determines whether an icon will be created.

1.15.1.3.3.18 TzCustomFormDesigner.OnCreateMethod Event

Occurs when new method name is input in object inspector.

property OnCreateMethod: TCreateMethodEvent ;

Description

Write this event handler to specify method reference when there is no registered method with the specified Name.

Use TypeData to validate possible assignment, i.e. do not assign to Method reference to procedure with another type. This
may cause system halt.

Note: This event is intended for only in-code implemeted methods. If you are working with script procedures use
OnSetScriptProc (see page 200) event.

1.15.1.3.3.19 TzCustomFormDesigner.OnFormClosed Event

Occurs immediately after hiding the Target (see page 193) form .

property OnFormClosed: TNotifyEvent;

Description

Write an OnFormClosed event handler to provide custom action when designed form is closed.

The Sender parameter is the object whose event handler is called.

1.15.1.3.3.20 TzCustomFormDesigner.OnUpdateAction Event

Occurs when UpdateAction (see page 182) method is called. Use it to handle standard shared actions for currently active
designer.

property OnUpdateAction: THandleActionEvent ;

1.15.1.3.3.21 TzCustomFormDesigner.OnGetComponentHint Event

Occurs when the application is about to display the hint window for the particular component.

property OnGetComponentHint: TGetComponentHintEvent ;

Description

Write an OnGetComponentHint event handler to provide custom action. You may change hint or even forbid to display it.

The Sender parameter is the object whose event handler is called.

The Component parameter is the component that is being selected

The Hint parameter is the hint string that user can change

The ShowHint parameter determines whether a hint will be displayed.

1.15.1.3.3.22 TzCustomFormDesigner.OnGetMethodNames Event

Occurs when method property editor requests designer for possible method names.

property OnGetMethodNames: TGetMethodNamesEvent ;

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

198

1

Description

Write this handler to specify possible procedure names that can be assigned to the selected in object inspector event.

Use TypeData to filter possible procedures, for example, by procedure parameters. Call Proc for each possible procedure.

This event is intended for integration with external script engines.

See Also

OnGetScriptProc (see page 199), OnSetScriptProc (see page 200), OnShowMethod (see page 201),
OnRenameMethod (see page 200)

Example

This example shows using of the event. EControl Syntax Editor SDK is used as source code analyzer

procedure TForm4.zFormDesigner1GetMethodNames(Sender: TObject;
 TypeData: PTypeData; Proc: TGetStrProc);
var i: integer;
 R: TTagBlockCondition;
begin
 with CodeEditor.SyntObj do
 begin
 // Looking for all text ranges with rule "function"
 R := TTagBlockCondition(Owner.BlockRules.ItemByName('function'));
 if R <> nil then
 for i := 0 to RangeCount - 1 do
 if (Ranges[i].Rule = R) then
 Proc(TagStr[Ranges[i].StartIdx + 1]); // Adds function to procedures list
 end ;
end ;

1.15.1.3.3.23 TzCustomFormDesigner.OnGetScriptProc Event

Occurs when method property editor ask for script procedure name associated with a given property.

property OnGetScriptProc: TGetScriptProcEvent ;

Description

Write this event handler to return procedure name associated with property pInfo^.Name of object Instance.

See Also

OnGetMethodNames (see page 198), OnSetScriptProc (see page 200), OnShowMethod (see page 201),
OnRenameMethod (see page 200)

Example

In this sample associations of script procedures and properties are stores in TStrings object (property Items in list box
EventsList) with items - <ObjectName>.<PropertyName>=<ScriptProcedure>

procedure TForm4.zFormDesigner1GetScriptProc(Sender, Instance: TObject;
 pInfo: PPropInfo; var ProcName: String);
begin
 ProcName := '';
 if Instance is TComponent then
 if zFormDesigner1.Root = Instance then
 ProcName := EventsList.Items.Values[PInfo^.Name]
 else
 ProcName := EventsList.Items.Values[(Instance as TComponent).Name + '.' +
PInfo^.Name];
end ;

1.15.1.3.3.24 TzCustomFormDesigner.OnNotification Event

Occurs when components are added or removed to/from Root (see page 192) object at design mode.

property OnNotification: TNotificationEvent ;

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

199

1

Description

Write an OnNotification event handler to provide custom action when components are added or removed to/from Root (
see page 192) object at design mode.

The Sender parameter is the object whose event handler is called.

The AnObject parameter is the TPersistent object that is being operated

The Operation parameter specifies kind of operation applied to object

• opInsert - object inserted

• opRemove - object removed.

1.15.1.3.3.25 TzCustomFormDesigner.OnRenameMethod Event

Occurs when name of method is changed in object inspector.

property OnRenameMethod: TRenameMethodEvent ;

Description

Write this event handler to change script procedure name in script code. You should find script procedure CurName and
change its name to NewName.

See Also

OnGetMethodNames (see page 198), OnSetScriptProc (see page 200), OnShowMethod (see page 201),
OnGetScriptProc (see page 199)

1.15.1.3.3.26 TzCustomFormDesigner.OnSetScriptProc Event

Occurs when method property editor assigns script procedure to the event.

property OnSetScriptProc: TSetScriptProcEvent ;

Description

Write this event handler to save association between event property end script procedure.

See Also

OnGetMethodNames (see page 198), OnRenameMethod (see page 200), OnShowMethod (see page 201),
OnGetScriptProc (see page 199)

Example

In this sample associations of script procedures and properties are stores in TStrings object (property Items in list box
EventsList) with items - <ObjectName>.<PropertyName>=<ScriptProcedure>

procedure TForm4.zFormDesigner1SetScriptProc(Sender, Instance: TObject;
 pInfo: PPropInfo; const EventProc: String);
var idx: integer;
 pn: string ;
begin
 if Instance is TComponent then
 begin
 // event name for root object is without object name
 if zFormDesigner1.Root = Instance then
 pn := PInfo^.Name
 else
 pn := (Instance as TComponent).Name + '.' + PInfo^.Name;
 // Delete previous association
 idx := EventsList.Items.IndexOfName(pn);
 if idx <> -1 then
 EventsList.Items.Delete(idx);
 // Add new association
 if EventProc <> '' then

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

200

1

 begin
 // Saving associating
 EventsList.Items.Add(pn + '=' + EventProc);
 // Creating event handler text body
 CreateMethod(EventProc, Instance, pInfo);
 end ;
 end ;
end ;

1.15.1.3.3.27 TzCustomFormDesigner.OnShowMethod Event

Occurs when user double clicks on the procedure in the object inspector.

property OnShowMethod: TShowMethodEvent ;

Description

Write this handler to highlight script procedure MethodName in script code text.

1.15.1.3.3.28 TzCustomFormDesigner.OnValidateMethod Event

Occurs to validate method.

property OnValidateMethod: TValidateMethodEvent ;

Description

Write an OnValidateMethod event handler to provide custom validation of the particular method.

The Sender parameter is the object whose event handler is called.

The TypeData parameter is the type of method

The ARoot parameter is the owner of this method

The MethAddr parameter is the address of this method

The MethodName parameter is the name of method

The Accept parameter determines whether this method is allowed to add to list of methods.

1.15.1.4 TzFormDesigner Class
TzFormDesigner is main library component.

Class Hierarchy

TzFormDesigner = class (TzCustomFormDesigner);

File

ed_Designer

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

201

1

Description

TzFormDesigner provides full-sized functionality to manipulate with controls at run-time as if it was to be in design-time IDE.

TzFormDesigner implements all the required design-time interfaces for this purpose and propose a set of properties,
methods and events to create (see page 174) design-like environment at runtime.

With TzFormDesigner user may design forms, data-modules, report sheets and so on.

It uses all the standard Borland property and component editors.

Members

TBaseDesigner Methods

TBaseDesigner Methods Description

 CanProcessNCMessages (see page 146) Called to check processing of non client mouse messages.

 Client2Screen (see page 147) Corrected version of ClientToScreen function to support RTL.

 ClientOrg (see page 147) Corrected version of ClientOrigin function to support RTL.

 Create (see page 147) Creates and initializes a TBaseDesigner instance.

 DesignState (see page 147) Indicates whether component in design or loading state. At design time (in
Delphi IDE) and during loading no activation occurs.

 Destroy (see page 147) Destroys an instance of TBaseDesigner.

 DoObjectHint (see page 147) Called to show hint for current design state.

 DragDrop (see page 147) OnDragDrop (see page 152) event dispatcher.

 DragOver (see page 148) OnDragOver (see page 152) event dispatcher.

 IsRTL (see page 148) Returns true when control is right-to-left.

 KeyDown (see page 148) Respond to key press events.

 KeyPress (see page 149) Respond to keyboard input.

 KeyUp (see page 149) Respond to released key.

 Loaded (see page 149) Initializes the component after the form file has been read into memory.

 MouseDown (see page 150) OnMouseDown (see page 154) event dispatcher.

 MouseMove (see page 150) OnMouseMove (see page 154) event dispatcher.

 MouseUp (see page 150) OnMouseUp (see page 154) event dispatcher.

 ProcessMessage (see page 151) Translates messages of all managed by designer controls.

 ResetHint (see page 151) Resets hint for another component

 Screen2Client (see page 151) Corrected version of ScreenToClient function to support RTL.

 SetActive (see page 151) Set method for Active (see page 151) property.

 ShowHint (see page 151) Indicates whether hints should be shown for controls in the Designer.

IClassSelector Interface

IClassSelector Interface Description

 ClsChanged (see page 511) Called when selected in component palette component class was changed.

 ClsPalChanged (see page 512) Called when component palette was changed.

TzCustomFormDesigner Class

TzCustomFormDesigner Class Description

 AddCompEditorMenu (see page 170) Adds menu items to the popup Menu associated with the component editor of
selected in designer component.
To remove previously added component editor's menu items use
ClearCompEditorMenu (see page 171) method.

 CanRedo (see page 170) Indicates whether the designer contains undone changes that can be repeated.

 CanUndo (see page 171) Indicates whether the designer contains changes that can be backed out.

 CheckAction (see page 171) Determines whether design operation specified by the Action parameter can
be executed.

 ClearCompEditorMenu (see page 171) Removes component editor's menu items added by the AddCompEditorMenu
(see page 170) method.

 ClearUndo (see page 171) Clears the undo (see page 183) buffer so that no changes to the Target (
see page 193) can be backed out.

 CloseTextEditor (see page 171) Closes in-place editor.

 DragDrop (see page 171) OnDragDrop event dispatcher.

 DragOver (see page 171) OnDragOver event dispatcher.

 EditAction (see page 172) Executes designer operation specified by the Action parameter.

 AlignSelected (see page 172) Performs alignment operation on selected components.

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

202

1

 AlignToGrid (see page 172) Aligns selected components to the closest grid point.

 BringToFront (see page 172) Moves a selected component in front of all other components on the form. This
is called changing the component's z-order.

 BuildLocalMenu (see page 172) Creates default popup menu.

 CancelDrag (see page 173) Cancels current drag&drop design operation.

 CanDelete (see page 173) Check if component can be deleted.

 GetEditState (see page 173) Returns set of possible designer operations.

 CanInsert (see page 173) Check if component can be inserted.

 CanMove (see page 173) Check if component can be moved.

 CanPaste (see page 173) Checks clipboard for components saved to it.

 CanRename (see page 173) Check if component can be renamed.

 CanResize (see page 174) Check if component can be resized.

 CanSelect (see page 174) Check if component can be selected.

 ClearSelection (see page 174) Resets selection.

 CopySelection (see page 174)

 Create (see page 174) Creates and initializes a TzCustomFormDesigner instance.

 CutSelection (see page 174) Cuts selected components to clipboard.

 DeleteSelection (see page 175) Deletes the selected component or components

 Destroy (see page 175) Destroys an instance of TzCustomFormDesigner.

 DoObjectHint (see page 175) Shows hint current design state.

 ExecuteAction (see page 175) Invokes an action with the component as its target.

 DragDraw (see page 175) Provides drag-and-draw graphic operation.

 Edit (see page 175) Displays the component editor for the specified component.

 EndDrag (see page 176) Provides drag-and-draw graphic operation.

 FlipChildren (see page 176) Allows to reverse the layout of components in the current form to a right-to-left
mirror image.

 GetCompObj (see page 176) Returns component

 GetComponent (see page 176) Returns the component with the name passed as a parameter.

 GetComponentName (see page 176) Returns the name of the component passed as its parameter.

 GetComponentNames (see page 177) Executes a callback for every component that can be assigned a property of a
specified type.

 GetControlAt (see page 177) Looks for control at specified point on the window prn.

 GetMethodName (see page 177) Returns the name of a specified event handler.

 GetNewName (see page 177) Returns new generated name for particular class of the component.

 GetObjectName (see page 177) Returns object name.

 LoadFromFile (see page 177) Load Root (see page 192) component from file. Inline events from resource
file are stored in Events (see page 189) property if property StoreEvents (
see page 191) is True. If IgnoreReadErrors (see page 191) is True - all read
errors are ignored.

 LoadFromStream (see page 178) Load Root (see page 192) component from stream. Inline events from
resource file are stored in Events (see page 189) property if property
StoreEvents (see page 191) is True. If IgnoreReadErrors (see page 191)
is True - all read errors are ignored.

 GetRoot (see page 178) Returns the current entity being edited by the form designer.

 GetRootClassName (see page 178) Returns the class name for the root component.

 GetScriptEvent (see page 178) Returns script procedure name assigned to the event.

 GetScrollRanges (see page 178) Returns the size of the logical designer window.

 GetSelections (see page 178) Fills a list with all selected components on the current root object.

 Redo (see page 179) Call Redo to repeat last undone operation.

 GetShiftState (see page 179) Returns the current state of the Shift, Alt, and Ctrl keys.

 Intf_Notification (see page 179) Allows the designer to respond when a notification (see page 183) is sent to
the form.

 IsComponentHidden (see page 179) Indicates whether a component does not appear directly in the form designer.

 IsLocked (see page 179) Specifies whether component is locked and can not be edited in designer.

 SaveToFile (see page 179) Saves Root (see page 192) component to file FileName with events
information. AsText specifies format of the file: text or binary.

 IsDesignMsg (see page 180) Determines when the designer should handle a Windows message.

 SaveToStream (see page 180) Save Root (see page 192) component to stream with events information.
AsText specifies storage format: text or binary.

 IsProtected (see page 180) Indicates whether component is protected and can not be changed by
designer.

 IsRootSelected (see page 180) Returns True if entire Root (see page 192) is selected

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

203

1

 IsSourceReadOnly (see page 180) Indicates whether the source file for the component being designed is
read-only.

 SelectedComponentsCount (see page 180) Returns number of selected components excluding Root (see page 192)
and non-component objects.

 KeyDown (see page 180) Respond to key press events.

 KeyPress (see page 181) Respond to keyboard input.

 KeyUp (see page 181) Respond to released key.

 MethodExists (see page 181) Indicates whether an event handler with a specified name already exists.

 Modified (see page 181) Notifies property and component editors when a change is made to a
component.

 ShowTabOrder (see page 182) Shows tab order icons over children controls of the selected control. Click on
the children controls changes their tab order. To exit "Show Tab Icons" mode
click on any not child control or press ESCAPE key.

 MouseDown (see page 182) Generates an OnMouseDown event.

 MouseMove (see page 182) Generates an OnMouseMove event.

 MouseUp (see page 182) Generates an OnMouseUp event.

 Navigate (see page 182) Performs navigation between control using keyboard

 UpdateAction (see page 182) Updates an action component to reflect the current state of the component.

 NoSelection (see page 183) Deselects all components in the form designer.

 Undo (see page 183) Backs out last change in the undo buffer.

 Notification (see page 183) Allows the designer to respond when a notification is sent to the form.

 NotifySelChanged (see page 183) Notifies active designer about changing selection list

 PaintControl (see page 184) Called for each WM_PAINT message to perform specific painting over control.

 PaintGrid (see page 184) Paints the alignment grid on the form's canvas.

 PasteSelection (see page 184) Pastes the contents of the clipboard into the selected component or
components.

 ReadComp (see page 184) Callback procedure for TReader.ReadComponents

 RenameMethod (see page 184) Renames an existing event handler.

 Scale (see page 185) Scale all controls using defined ratio

 SelectAll (see page 185) Selects all components.

 SelectComponent (see page 185) Replaces the current set of selected components by a single specified object.

 SelectedComponent (see page 185) Returns selected component if selection consist of single component; Root (
see page 192) component, if there is no selection; nil if selection consists of
several components.

 SelectionChanged (see page 185) This method call after selection has been changed.

 SelectObj (see page 185) Selects object passed as Instance parameter.

 SelectRect (see page 185) Selects all controls on the Prn control.

 SendToBack (see page 186) Moves a selected component behind all other components on the form. This is
called changing the component's z-order.

 SetPasteName (see page 186) Setting new name for pasting component

 SetScriptEvent (see page 186) Assigns script procedure with particular event of the Instance.

 SetSelections (see page 186) Changes the currently selected set of components.

 ShowMethod (see page 186) Activates the code editor with the input cursor in a specified event handler.

 ShowPopupMenu (see page 186) Show designer popup menu at the specified screen position.

 SizeSelected (see page 186) Perform size operation to selected components

 StartDrag (see page 187) Makes start settings before dragging operation

 UniqueName (see page 187) Generates a unique name from a specified base string.

 UpdateCompIcons (see page 187) Updates positions of component icons.

 ValidateMethod (see page 187) Determines whether method MAddr of object ARoot is valid method, i.e. it may
be assigned to the event.

TBaseDesigner Properties

TBaseDesigner Properties Description

 Active (see page 151) Switches target component between design and run-time modes

 HintObject (see page 152) Specifies object for which hint was activated.

 ShowHints (see page 152) Specifies showing of design hints.

TzCustomFormDesigner Class

TzCustomFormDesigner Class Description

 AllowComponents (see page 187) Specifies whether nonvisual components will be displayed in design mode

 AutoAlign (see page 187) Specifies using of align rulers.

 BDSStyle (see page 188) Specifies using of BDS style design environment.

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

204

1

 CaptionFont (see page 188) Controls the text attributes of non-visual components captions.

 CloseDisactive (see page 188) Specifies if TzCustomFormDesigner (see page 161) automatically
deactivates when Target (see page 193) Form (see page 189) is to be
closed.

 ContainerWindow (see page 188) Determines generic container for any type of Target (see page 193)
components

 DesignSurface (see page 188) Specifies design surface.

 DisplayControlGrid (see page 189) Specifies whether designer has to paint grid over window controls that can
accept controls.

 DisplayGrid (see page 189) Determines whether dots are drawn on the Target (see page 193) form.

 FlatIcons (see page 189) Determines whether the non-visual component icons has a 3D border or not.

 DragParentLimit (see page 189) Specifies whether drag mouse movement should be clipped by parent's client
area.

 Form (see page 189) Provides access to designed form as TCustomForm type.

 Events (see page 189) Storage of assigned events.

 GridStepX (see page 190) Specifies grid step, in pixels, along X-axis

 GridStepY (see page 190) Specifies grid step, in pixels, along Y-axis

 LockControls (see page 190) Specifies if user can directly change size and position of controls by mouse.

 LockPublished (see page 190) Specifies if editing operation are forbidden by default

 MultiSelect (see page 190) Determines whether the user can select more than one control at a time.

 Groups (see page 190) Stores groups information.

 GuidelinesStyle (see page 191) Specifies guidelines options.

 IgnoreReadErrors (see page 191) Specifies whether read errors should be ignored when loading using
LoadFromFile (see page 177) and LoadFromStream (see page 178)
methods.

 ReadOnly (see page 191) Set Read Only mode.

 StoreEvents (see page 191) Specifies whether designer should process events storage.

 TabOrderIcons (see page 191) Properties of tab order icons. These controls are shown over children control
when designer is in "Show Tab Order" mode.

 TextEditMode (see page 191) Sets in-place text editing mode of designer.

 PopupMenu (see page 191) Identifies the pop-up menu associated with the Root (see page 192) control
of the Designer.

 UndoLimit (see page 192) Specifies the number of changes that can be undone.

 PopupMenuFilter (see page 192) Specifies which categories of items may be used to form default popup menu.

 UndoLoad (see page 192) Indicates that designer is in Undo (see page 183) loading state, i.e. in
reading previously saved form resource.

 Root (see page 192) Root component for TzCustomFormDesigner (see page 161).

 RootModified (see page 192) Indicates whether the Root (see page 192) or its components are modified
(see page 181).

 SelCount (see page 193) Indicates number of selected components.

 Selected (see page 193) Indicates whether a particular control is selected.

 SelMarker (see page 193) Selection markers manager.

 ShowCaptions (see page 193) Specifies whether non-visual component icons captions are visible.

 SnapToGrid (see page 193) Automatically aligns components on the form with the nearest gridline. You
cannot place a component "in between" gridlines.

 Target (see page 193) Specifies object that is edited by the designer.

TzFormDesigner Class

TzFormDesigner Class Description

 Active (see page 214) Switches target component between design and run-time modes

 AllowComponents (see page 214) Specifies whether nonvisual components will be displayed in design mode

 AutoAlign (see page 214) Specifies using of align rulers.

 BDSStyle (see page 214) Specifies using of BDS style design environment.

 CaptionFont (see page 214) Controls the text attributes of non-visual components captions.

 CloseDisactive (see page 214) Specifies if TzCustomFormDesigner automatically deactivates when Target
Form is to be closed.

 DesignSurface (see page 215) Specifies design surface.

 DisplayControlGrid (see page 215) Specifies whether designer has to paint grid over window controls that can
accept controls.

 DisplayGrid (see page 215) Determines whether dots are drawn on the Target form.

 DragParentLimit (see page 215) Specifies whether drag mouse movement should be clipped by parent's client
area.

 FlatIcons (see page 215) Determines whether the non-visual component icons has a 3D border or not.

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

205

1

 GridStepX (see page 215) Specifies grid step, in pixels, along X-axis

 GridStepY (see page 216) Specifies grid step, in pixels, along Y-axis

 GuidelinesStyle (see page 216) Specifies guidelines options.

 IgnoreReadErrors (see page 216) Specifies whether read errors should be ignored when loading using
LoadFromFile and LoadFromStream methods.

 LockControls (see page 216) Specifies if user can directly change size and position of controls by mouse.

 LockPublished (see page 216) Specifies if editing operation are forbidden by default

 MultiSelect (see page 216) Determines whether the user can select more than one control at a time.

 OnActiveChanged (see page 217) Occurs when the Active property of the TzCustomFormDesigner changes

 OnCanDelete (see page 217) Occurs before deleting selected component.

 OnCanEdit (see page 217) Occurs to determine whether Edit method of component editor can be called.

 OnCanInsert (see page 217) Occurs before inserting new component.

 OnCanMove (see page 217) Occurs before moving selected component.

 OnCanRename (see page 218) Occurs before renaming component.

 OnCanResize (see page 218) Occurs before resizing selected component.

 OnCanSelect (see page 218) Occurs before selecting component.

 OnCreateComponent (see page 218) Occurs before new component creation.

 OnCreateFrame (see page 219) Occurs when frame is to be inserted on the form.

 OnCreateIcon (see page 219) Occurs before creating icon for non-visual component.

 OnCreateMethod (see page 219) Occurs when new method name is input in object inspector.

 OnDragDrop (see page 219) Occurs when the user drops an object being dragged.

 OnDragOver (see page 220) Occurs when the user drags an object over a control.

 OnDrawControl (see page 220) Occurs when painting any control on the form. Use this event to draw over
control.

 OnExecuteAction (see page 220) Occurs when ExecuteAction method is called. Use it to handle standard
shared actions for currently active designer.

 OnFormClosed (see page 220) Occurs immediately after hiding the Target form .

 OnGetComponentHint (see page 220) Occurs when the application is about to display the hint window for the
particular component.

 OnGetComponentLocked (see page 221) Occurs to determine whether component is locked.

 OnGetMethodNames (see page 221) Occurs when method property editor requests designer for possible method
names.

 OnGetObjectName (see page 221) Occurs at the end of GetObjectName (see page 177) method to adjust
resulting name.

 OnGetScriptProc (see page 222) Occurs when method property editor ask for script procedure name associated
with a given property.

 OnHandleControlMessage (see page 222) Occurs on any message sent to managed controls.

 OnKeyDown (see page 222) Occurs only at design mode when user presses down any key.

 OnKeyPress (see page 223) Occurs only at design mode when key pressed.

 OnKeyUp (see page 223) Occurs only at design mode when user releases key that has been pressed.

 OnMouseDown (see page 223) Occurs only at design mode when user presses mouse button.

 OnMouseMove (see page 223) Occurs only at design mode when user moves mouse.

 OnMouseUp (see page 224) Occurs only at design mode when user releases mouse button.

 OnNotification (see page 224) Occurs when components are added or removed to/from Root object at design
mode.

 OnPopUndo (see page 224) Occurs when restoring Target from undo buffer.

 OnPushUndo (see page 224) Occurs when saving Target to undo buffer.

 OnRenameMethod (see page 224) Occurs when name of method is changed in object inspector.

 OnSetNewName (see page 225) Occurs when assigning name to newly inserted component (created or
pasted).

 OnSetScriptProc (see page 225) Occurs when method property editor assigns script procedure to the event.

 OnShowMethod (see page 225) Occurs when user double clicks on the procedure in the object inspector.

 OnUpdateAction (see page 225) Occurs when UpdateAction method is called. Use it to handle standard shared
actions for currently active designer.

 OnValidateMethod (see page 225) Occurs to validate method.

 PopupMenu (see page 226) Identifies the pop-up menu associated with the Root control of the Designer.

 PopupMenuFilter (see page 226) Specifies which categories of items may be used to form default popup menu.

 ReadOnly (see page 226) Set Read Only mode.

 SelMarker (see page 226) Selection markers manager.

 ShowCaptions (see page 227) Specifies whether non-visual component icons captions are visible.

 ShowHints (see page 227) Specifies showing of design hints.

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

206

1

 SnapToGrid (see page 227) Automatically aligns components on the form with the nearest gridline. You
cannot place a component "in between" gridlines.

 StoreEvents (see page 227) Specifies whether designer should process events storage.

 TabOrderIcons (see page 227) Properties of tab order icons. These controls are shown over children control
when designer is in "Show Tab Order" mode.

 Target (see page 227) Specifies object that is edited by the designer.

 TextEditMode (see page 228) Sets in-place text editing mode of designer.

 UndoLimit (see page 229) Specifies the number of changes that can be undone.

TBaseDesigner Events

TBaseDesigner Events Description

 OnActiveChanged (see page 152) Occurs when the Active (see page 151) property of the
TzCustomFormDesigner changes

 OnDragDrop (see page 152) Occurs when the user drops an object being dragged.

 OnDragOver (see page 152) Occurs when the user drags an object over a control.

 OnHandleControlMessage (see page 153) Occurs on any message sent to managed controls.

 OnKeyDown (see page 153) Occurs only at design mode when user presses down any key.

 OnKeyPress (see page 153) Occurs only at design mode when key pressed.

 OnKeyUp (see page 154) Occurs only at design mode when user releases key that has been pressed.

 OnMouseDown (see page 154) Occurs only at design mode when user presses mouse button.

 OnMouseMove (see page 154) Occurs only at design mode when user moves mouse.

 OnMouseUp (see page 154) Occurs only at design mode when user releases mouse button.

TzCustomFormDesigner Class

TzCustomFormDesigner Class Description

 OnCanEdit (see page 194) Occurs to determine whether Edit (see page 175) method of component
editor can be called.

 OnDrawControl (see page 195) Occurs when painting any control on the form. Use this event to draw over
control.

 OnExecuteAction (see page 195) Occurs when ExecuteAction (see page 175) method is called. Use it to
handle standard shared actions for currently active designer.

 OnGetComponentLocked (see page 195) Occurs to determine whether component is locked.

 OnCanDelete (see page 195) Occurs before deleting selected component.

 OnCanInsert (see page 195) Occurs before inserting new component.

 OnGetObjectName (see page 195) Occurs at the end of GetObjectName (see page 177) method to adjust
resulting name.

 OnCanMove (see page 196) Occurs before moving selected component.

 OnCanRename (see page 196) Occurs before renaming component.

 OnCanResize (see page 196) Occurs before resizing selected component.

 OnPopUndo (see page 196) Occurs when restoring Target (see page 193) from undo (see page 183)
buffer.

 OnCanSelect (see page 196) Occurs before selecting component.

 OnPushUndo (see page 197) Occurs when saving Target (see page 193) to undo (see page 183)
buffer.

 OnCreateComponent (see page 197) Occurs before new component creation.

 OnCreateFrame (see page 197) Occurs when frame is to be inserted on the form.

 OnSetNewName (see page 197) Occurs when assigning name to newly inserted component (created or
pasted).

 OnCreateIcon (see page 197) Occurs before creating icon for non-visual component.

 OnCreateMethod (see page 198) Occurs when new method name is input in object inspector.

 OnFormClosed (see page 198) Occurs immediately after hiding the Target (see page 193) form .

 OnUpdateAction (see page 198) Occurs when UpdateAction (see page 182) method is called. Use it to
handle standard shared actions for currently active designer.

 OnGetComponentHint (see page 198) Occurs when the application is about to display the hint window for the
particular component.

 OnGetMethodNames (see page 198) Occurs when method property editor requests designer for possible method
names.

 OnGetScriptProc (see page 199) Occurs when method property editor ask for script procedure name associated
with a given property.

 OnNotification (see page 199) Occurs when components are added or removed to/from Root (see page
192) object at design mode.

 OnRenameMethod (see page 200) Occurs when name of method is changed in object inspector.

 OnSetScriptProc (see page 200) Occurs when method property editor assigns script procedure to the event.

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

207

1

 OnShowMethod (see page 201) Occurs when user double clicks on the procedure in the object inspector.

 OnValidateMethod (see page 201) Occurs to validate method.

Legend

Method

protected

virtual

Property

read only

Event

TBaseDesigner Events

TBaseDesigner Events Description

 OnActiveChanged (see page 152) Occurs when the Active (see page 151) property of the
TzCustomFormDesigner changes

 OnDragDrop (see page 152) Occurs when the user drops an object being dragged.

 OnDragOver (see page 152) Occurs when the user drags an object over a control.

 OnHandleControlMessage (see page 153) Occurs on any message sent to managed controls.

 OnKeyDown (see page 153) Occurs only at design mode when user presses down any key.

 OnKeyPress (see page 153) Occurs only at design mode when key pressed.

 OnKeyUp (see page 154) Occurs only at design mode when user releases key that has been pressed.

 OnMouseDown (see page 154) Occurs only at design mode when user presses mouse button.

 OnMouseMove (see page 154) Occurs only at design mode when user moves mouse.

 OnMouseUp (see page 154) Occurs only at design mode when user releases mouse button.

TzCustomFormDesigner Class

TzCustomFormDesigner Class Description

 OnCanEdit (see page 194) Occurs to determine whether Edit (see page 175) method of component
editor can be called.

 OnDrawControl (see page 195) Occurs when painting any control on the form. Use this event to draw over
control.

 OnExecuteAction (see page 195) Occurs when ExecuteAction (see page 175) method is called. Use it to
handle standard shared actions for currently active designer.

 OnGetComponentLocked (see page 195) Occurs to determine whether component is locked.

 OnCanDelete (see page 195) Occurs before deleting selected component.

 OnCanInsert (see page 195) Occurs before inserting new component.

 OnGetObjectName (see page 195) Occurs at the end of GetObjectName (see page 177) method to adjust
resulting name.

 OnCanMove (see page 196) Occurs before moving selected component.

 OnCanRename (see page 196) Occurs before renaming component.

 OnCanResize (see page 196) Occurs before resizing selected component.

 OnPopUndo (see page 196) Occurs when restoring Target (see page 193) from undo (see page 183)
buffer.

 OnCanSelect (see page 196) Occurs before selecting component.

 OnPushUndo (see page 197) Occurs when saving Target (see page 193) to undo (see page 183)
buffer.

 OnCreateComponent (see page 197) Occurs before new component creation.

 OnCreateFrame (see page 197) Occurs when frame is to be inserted on the form.

 OnSetNewName (see page 197) Occurs when assigning name to newly inserted component (created or
pasted).

 OnCreateIcon (see page 197) Occurs before creating icon for non-visual component.

 OnCreateMethod (see page 198) Occurs when new method name is input in object inspector.

 OnFormClosed (see page 198) Occurs immediately after hiding the Target (see page 193) form .

 OnUpdateAction (see page 198) Occurs when UpdateAction (see page 182) method is called. Use it to
handle standard shared actions for currently active designer.

 OnGetComponentHint (see page 198) Occurs when the application is about to display the hint window for the
particular component.

 OnGetMethodNames (see page 198) Occurs when method property editor requests designer for possible method
names.

 OnGetScriptProc (see page 199) Occurs when method property editor ask for script procedure name associated
with a given property.

 OnNotification (see page 199) Occurs when components are added or removed to/from Root (see page
192) object at design mode.

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

208

1

 OnRenameMethod (see page 200) Occurs when name of method is changed in object inspector.

 OnSetScriptProc (see page 200) Occurs when method property editor assigns script procedure to the event.

 OnShowMethod (see page 201) Occurs when user double clicks on the procedure in the object inspector.

 OnValidateMethod (see page 201) Occurs to validate method.

TBaseDesigner Methods

TBaseDesigner Methods Description

 CanProcessNCMessages (see page 146) Called to check processing of non client mouse messages.

 Client2Screen (see page 147) Corrected version of ClientToScreen function to support RTL.

 ClientOrg (see page 147) Corrected version of ClientOrigin function to support RTL.

 Create (see page 147) Creates and initializes a TBaseDesigner instance.

 DesignState (see page 147) Indicates whether component in design or loading state. At design time (in
Delphi IDE) and during loading no activation occurs.

 Destroy (see page 147) Destroys an instance of TBaseDesigner.

 DoObjectHint (see page 147) Called to show hint for current design state.

 DragDrop (see page 147) OnDragDrop (see page 152) event dispatcher.

 DragOver (see page 148) OnDragOver (see page 152) event dispatcher.

 IsRTL (see page 148) Returns true when control is right-to-left.

 KeyDown (see page 148) Respond to key press events.

 KeyPress (see page 149) Respond to keyboard input.

 KeyUp (see page 149) Respond to released key.

 Loaded (see page 149) Initializes the component after the form file has been read into memory.

 MouseDown (see page 150) OnMouseDown (see page 154) event dispatcher.

 MouseMove (see page 150) OnMouseMove (see page 154) event dispatcher.

 MouseUp (see page 150) OnMouseUp (see page 154) event dispatcher.

 ProcessMessage (see page 151) Translates messages of all managed by designer controls.

 ResetHint (see page 151) Resets hint for another component

 Screen2Client (see page 151) Corrected version of ScreenToClient function to support RTL.

 SetActive (see page 151) Set method for Active (see page 151) property.

 ShowHint (see page 151) Indicates whether hints should be shown for controls in the Designer.

IClassSelector Interface

IClassSelector Interface Description

 ClsChanged (see page 511) Called when selected in component palette component class was changed.

 ClsPalChanged (see page 512) Called when component palette was changed.

TzCustomFormDesigner Class

TzCustomFormDesigner Class Description

 AddCompEditorMenu (see page 170) Adds menu items to the popup Menu associated with the component editor of
selected in designer component.
To remove previously added component editor's menu items use
ClearCompEditorMenu (see page 171) method.

 CanRedo (see page 170) Indicates whether the designer contains undone changes that can be repeated.

 CanUndo (see page 171) Indicates whether the designer contains changes that can be backed out.

 CheckAction (see page 171) Determines whether design operation specified by the Action parameter can
be executed.

 ClearCompEditorMenu (see page 171) Removes component editor's menu items added by the AddCompEditorMenu
(see page 170) method.

 ClearUndo (see page 171) Clears the undo (see page 183) buffer so that no changes to the Target (
see page 193) can be backed out.

 CloseTextEditor (see page 171) Closes in-place editor.

 DragDrop (see page 171) OnDragDrop event dispatcher.

 DragOver (see page 171) OnDragOver event dispatcher.

 EditAction (see page 172) Executes designer operation specified by the Action parameter.

 AlignSelected (see page 172) Performs alignment operation on selected components.

 AlignToGrid (see page 172) Aligns selected components to the closest grid point.

 BringToFront (see page 172) Moves a selected component in front of all other components on the form. This
is called changing the component's z-order.

 BuildLocalMenu (see page 172) Creates default popup menu.

 CancelDrag (see page 173) Cancels current drag&drop design operation.

 CanDelete (see page 173) Check if component can be deleted.

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

209

1

 GetEditState (see page 173) Returns set of possible designer operations.

 CanInsert (see page 173) Check if component can be inserted.

 CanMove (see page 173) Check if component can be moved.

 CanPaste (see page 173) Checks clipboard for components saved to it.

 CanRename (see page 173) Check if component can be renamed.

 CanResize (see page 174) Check if component can be resized.

 CanSelect (see page 174) Check if component can be selected.

 ClearSelection (see page 174) Resets selection.

 CopySelection (see page 174)

 Create (see page 174) Creates and initializes a TzCustomFormDesigner instance.

 CutSelection (see page 174) Cuts selected components to clipboard.

 DeleteSelection (see page 175) Deletes the selected component or components

 Destroy (see page 175) Destroys an instance of TzCustomFormDesigner.

 DoObjectHint (see page 175) Shows hint current design state.

 ExecuteAction (see page 175) Invokes an action with the component as its target.

 DragDraw (see page 175) Provides drag-and-draw graphic operation.

 Edit (see page 175) Displays the component editor for the specified component.

 EndDrag (see page 176) Provides drag-and-draw graphic operation.

 FlipChildren (see page 176) Allows to reverse the layout of components in the current form to a right-to-left
mirror image.

 GetCompObj (see page 176) Returns component

 GetComponent (see page 176) Returns the component with the name passed as a parameter.

 GetComponentName (see page 176) Returns the name of the component passed as its parameter.

 GetComponentNames (see page 177) Executes a callback for every component that can be assigned a property of a
specified type.

 GetControlAt (see page 177) Looks for control at specified point on the window prn.

 GetMethodName (see page 177) Returns the name of a specified event handler.

 GetNewName (see page 177) Returns new generated name for particular class of the component.

 GetObjectName (see page 177) Returns object name.

 LoadFromFile (see page 177) Load Root (see page 192) component from file. Inline events from resource
file are stored in Events (see page 189) property if property StoreEvents (
see page 191) is True. If IgnoreReadErrors (see page 191) is True - all read
errors are ignored.

 LoadFromStream (see page 178) Load Root (see page 192) component from stream. Inline events from
resource file are stored in Events (see page 189) property if property
StoreEvents (see page 191) is True. If IgnoreReadErrors (see page 191)
is True - all read errors are ignored.

 GetRoot (see page 178) Returns the current entity being edited by the form designer.

 GetRootClassName (see page 178) Returns the class name for the root component.

 GetScriptEvent (see page 178) Returns script procedure name assigned to the event.

 GetScrollRanges (see page 178) Returns the size of the logical designer window.

 GetSelections (see page 178) Fills a list with all selected components on the current root object.

 Redo (see page 179) Call Redo to repeat last undone operation.

 GetShiftState (see page 179) Returns the current state of the Shift, Alt, and Ctrl keys.

 Intf_Notification (see page 179) Allows the designer to respond when a notification (see page 183) is sent to
the form.

 IsComponentHidden (see page 179) Indicates whether a component does not appear directly in the form designer.

 IsLocked (see page 179) Specifies whether component is locked and can not be edited in designer.

 SaveToFile (see page 179) Saves Root (see page 192) component to file FileName with events
information. AsText specifies format of the file: text or binary.

 IsDesignMsg (see page 180) Determines when the designer should handle a Windows message.

 SaveToStream (see page 180) Save Root (see page 192) component to stream with events information.
AsText specifies storage format: text or binary.

 IsProtected (see page 180) Indicates whether component is protected and can not be changed by
designer.

 IsRootSelected (see page 180) Returns True if entire Root (see page 192) is selected

 IsSourceReadOnly (see page 180) Indicates whether the source file for the component being designed is
read-only.

 SelectedComponentsCount (see page 180) Returns number of selected components excluding Root (see page 192)
and non-component objects.

 KeyDown (see page 180) Respond to key press events.

 KeyPress (see page 181) Respond to keyboard input.

 KeyUp (see page 181) Respond to released key.

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

210

1

 MethodExists (see page 181) Indicates whether an event handler with a specified name already exists.

 Modified (see page 181) Notifies property and component editors when a change is made to a
component.

 ShowTabOrder (see page 182) Shows tab order icons over children controls of the selected control. Click on
the children controls changes their tab order. To exit "Show Tab Icons" mode
click on any not child control or press ESCAPE key.

 MouseDown (see page 182) Generates an OnMouseDown event.

 MouseMove (see page 182) Generates an OnMouseMove event.

 MouseUp (see page 182) Generates an OnMouseUp event.

 Navigate (see page 182) Performs navigation between control using keyboard

 UpdateAction (see page 182) Updates an action component to reflect the current state of the component.

 NoSelection (see page 183) Deselects all components in the form designer.

 Undo (see page 183) Backs out last change in the undo buffer.

 Notification (see page 183) Allows the designer to respond when a notification is sent to the form.

 NotifySelChanged (see page 183) Notifies active designer about changing selection list

 PaintControl (see page 184) Called for each WM_PAINT message to perform specific painting over control.

 PaintGrid (see page 184) Paints the alignment grid on the form's canvas.

 PasteSelection (see page 184) Pastes the contents of the clipboard into the selected component or
components.

 ReadComp (see page 184) Callback procedure for TReader.ReadComponents

 RenameMethod (see page 184) Renames an existing event handler.

 Scale (see page 185) Scale all controls using defined ratio

 SelectAll (see page 185) Selects all components.

 SelectComponent (see page 185) Replaces the current set of selected components by a single specified object.

 SelectedComponent (see page 185) Returns selected component if selection consist of single component; Root (
see page 192) component, if there is no selection; nil if selection consists of
several components.

 SelectionChanged (see page 185) This method call after selection has been changed.

 SelectObj (see page 185) Selects object passed as Instance parameter.

 SelectRect (see page 185) Selects all controls on the Prn control.

 SendToBack (see page 186) Moves a selected component behind all other components on the form. This is
called changing the component's z-order.

 SetPasteName (see page 186) Setting new name for pasting component

 SetScriptEvent (see page 186) Assigns script procedure with particular event of the Instance.

 SetSelections (see page 186) Changes the currently selected set of components.

 ShowMethod (see page 186) Activates the code editor with the input cursor in a specified event handler.

 ShowPopupMenu (see page 186) Show designer popup menu at the specified screen position.

 SizeSelected (see page 186) Perform size operation to selected components

 StartDrag (see page 187) Makes start settings before dragging operation

 UniqueName (see page 187) Generates a unique name from a specified base string.

 UpdateCompIcons (see page 187) Updates positions of component icons.

 ValidateMethod (see page 187) Determines whether method MAddr of object ARoot is valid method, i.e. it may
be assigned to the event.

TBaseDesigner Properties

TBaseDesigner Properties Description

 Active (see page 151) Switches target component between design and run-time modes

 HintObject (see page 152) Specifies object for which hint was activated.

 ShowHints (see page 152) Specifies showing of design hints.

TzCustomFormDesigner Class

TzCustomFormDesigner Class Description

 AllowComponents (see page 187) Specifies whether nonvisual components will be displayed in design mode

 AutoAlign (see page 187) Specifies using of align rulers.

 BDSStyle (see page 188) Specifies using of BDS style design environment.

 CaptionFont (see page 188) Controls the text attributes of non-visual components captions.

 CloseDisactive (see page 188) Specifies if TzCustomFormDesigner (see page 161) automatically
deactivates when Target (see page 193) Form (see page 189) is to be
closed.

 ContainerWindow (see page 188) Determines generic container for any type of Target (see page 193)
components

 DesignSurface (see page 188) Specifies design surface.

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

211

1

 DisplayControlGrid (see page 189) Specifies whether designer has to paint grid over window controls that can
accept controls.

 DisplayGrid (see page 189) Determines whether dots are drawn on the Target (see page 193) form.

 FlatIcons (see page 189) Determines whether the non-visual component icons has a 3D border or not.

 DragParentLimit (see page 189) Specifies whether drag mouse movement should be clipped by parent's client
area.

 Form (see page 189) Provides access to designed form as TCustomForm type.

 Events (see page 189) Storage of assigned events.

 GridStepX (see page 190) Specifies grid step, in pixels, along X-axis

 GridStepY (see page 190) Specifies grid step, in pixels, along Y-axis

 LockControls (see page 190) Specifies if user can directly change size and position of controls by mouse.

 LockPublished (see page 190) Specifies if editing operation are forbidden by default

 MultiSelect (see page 190) Determines whether the user can select more than one control at a time.

 Groups (see page 190) Stores groups information.

 GuidelinesStyle (see page 191) Specifies guidelines options.

 IgnoreReadErrors (see page 191) Specifies whether read errors should be ignored when loading using
LoadFromFile (see page 177) and LoadFromStream (see page 178)
methods.

 ReadOnly (see page 191) Set Read Only mode.

 StoreEvents (see page 191) Specifies whether designer should process events storage.

 TabOrderIcons (see page 191) Properties of tab order icons. These controls are shown over children control
when designer is in "Show Tab Order" mode.

 TextEditMode (see page 191) Sets in-place text editing mode of designer.

 PopupMenu (see page 191) Identifies the pop-up menu associated with the Root (see page 192) control
of the Designer.

 UndoLimit (see page 192) Specifies the number of changes that can be undone.

 PopupMenuFilter (see page 192) Specifies which categories of items may be used to form default popup menu.

 UndoLoad (see page 192) Indicates that designer is in Undo (see page 183) loading state, i.e. in
reading previously saved form resource.

 Root (see page 192) Root component for TzCustomFormDesigner (see page 161).

 RootModified (see page 192) Indicates whether the Root (see page 192) or its components are modified
(see page 181).

 SelCount (see page 193) Indicates number of selected components.

 Selected (see page 193) Indicates whether a particular control is selected.

 SelMarker (see page 193) Selection markers manager.

 ShowCaptions (see page 193) Specifies whether non-visual component icons captions are visible.

 SnapToGrid (see page 193) Automatically aligns components on the form with the nearest gridline. You
cannot place a component "in between" gridlines.

 Target (see page 193) Specifies object that is edited by the designer.

TzFormDesigner Class

TzFormDesigner Class Description

 Active (see page 214) Switches target component between design and run-time modes

 AllowComponents (see page 214) Specifies whether nonvisual components will be displayed in design mode

 AutoAlign (see page 214) Specifies using of align rulers.

 BDSStyle (see page 214) Specifies using of BDS style design environment.

 CaptionFont (see page 214) Controls the text attributes of non-visual components captions.

 CloseDisactive (see page 214) Specifies if TzCustomFormDesigner automatically deactivates when Target
Form is to be closed.

 DesignSurface (see page 215) Specifies design surface.

 DisplayControlGrid (see page 215) Specifies whether designer has to paint grid over window controls that can
accept controls.

 DisplayGrid (see page 215) Determines whether dots are drawn on the Target form.

 DragParentLimit (see page 215) Specifies whether drag mouse movement should be clipped by parent's client
area.

 FlatIcons (see page 215) Determines whether the non-visual component icons has a 3D border or not.

 GridStepX (see page 215) Specifies grid step, in pixels, along X-axis

 GridStepY (see page 216) Specifies grid step, in pixels, along Y-axis

 GuidelinesStyle (see page 216) Specifies guidelines options.

 IgnoreReadErrors (see page 216) Specifies whether read errors should be ignored when loading using
LoadFromFile and LoadFromStream methods.

 LockControls (see page 216) Specifies if user can directly change size and position of controls by mouse.

 LockPublished (see page 216) Specifies if editing operation are forbidden by default

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

212

1

 MultiSelect (see page 216) Determines whether the user can select more than one control at a time.

 OnActiveChanged (see page 217) Occurs when the Active property of the TzCustomFormDesigner changes

 OnCanDelete (see page 217) Occurs before deleting selected component.

 OnCanEdit (see page 217) Occurs to determine whether Edit method of component editor can be called.

 OnCanInsert (see page 217) Occurs before inserting new component.

 OnCanMove (see page 217) Occurs before moving selected component.

 OnCanRename (see page 218) Occurs before renaming component.

 OnCanResize (see page 218) Occurs before resizing selected component.

 OnCanSelect (see page 218) Occurs before selecting component.

 OnCreateComponent (see page 218) Occurs before new component creation.

 OnCreateFrame (see page 219) Occurs when frame is to be inserted on the form.

 OnCreateIcon (see page 219) Occurs before creating icon for non-visual component.

 OnCreateMethod (see page 219) Occurs when new method name is input in object inspector.

 OnDragDrop (see page 219) Occurs when the user drops an object being dragged.

 OnDragOver (see page 220) Occurs when the user drags an object over a control.

 OnDrawControl (see page 220) Occurs when painting any control on the form. Use this event to draw over
control.

 OnExecuteAction (see page 220) Occurs when ExecuteAction method is called. Use it to handle standard
shared actions for currently active designer.

 OnFormClosed (see page 220) Occurs immediately after hiding the Target form .

 OnGetComponentHint (see page 220) Occurs when the application is about to display the hint window for the
particular component.

 OnGetComponentLocked (see page 221) Occurs to determine whether component is locked.

 OnGetMethodNames (see page 221) Occurs when method property editor requests designer for possible method
names.

 OnGetObjectName (see page 221) Occurs at the end of GetObjectName (see page 177) method to adjust
resulting name.

 OnGetScriptProc (see page 222) Occurs when method property editor ask for script procedure name associated
with a given property.

 OnHandleControlMessage (see page 222) Occurs on any message sent to managed controls.

 OnKeyDown (see page 222) Occurs only at design mode when user presses down any key.

 OnKeyPress (see page 223) Occurs only at design mode when key pressed.

 OnKeyUp (see page 223) Occurs only at design mode when user releases key that has been pressed.

 OnMouseDown (see page 223) Occurs only at design mode when user presses mouse button.

 OnMouseMove (see page 223) Occurs only at design mode when user moves mouse.

 OnMouseUp (see page 224) Occurs only at design mode when user releases mouse button.

 OnNotification (see page 224) Occurs when components are added or removed to/from Root object at design
mode.

 OnPopUndo (see page 224) Occurs when restoring Target from undo buffer.

 OnPushUndo (see page 224) Occurs when saving Target to undo buffer.

 OnRenameMethod (see page 224) Occurs when name of method is changed in object inspector.

 OnSetNewName (see page 225) Occurs when assigning name to newly inserted component (created or
pasted).

 OnSetScriptProc (see page 225) Occurs when method property editor assigns script procedure to the event.

 OnShowMethod (see page 225) Occurs when user double clicks on the procedure in the object inspector.

 OnUpdateAction (see page 225) Occurs when UpdateAction method is called. Use it to handle standard shared
actions for currently active designer.

 OnValidateMethod (see page 225) Occurs to validate method.

 PopupMenu (see page 226) Identifies the pop-up menu associated with the Root control of the Designer.

 PopupMenuFilter (see page 226) Specifies which categories of items may be used to form default popup menu.

 ReadOnly (see page 226) Set Read Only mode.

 SelMarker (see page 226) Selection markers manager.

 ShowCaptions (see page 227) Specifies whether non-visual component icons captions are visible.

 ShowHints (see page 227) Specifies showing of design hints.

 SnapToGrid (see page 227) Automatically aligns components on the form with the nearest gridline. You
cannot place a component "in between" gridlines.

 StoreEvents (see page 227) Specifies whether designer should process events storage.

 TabOrderIcons (see page 227) Properties of tab order icons. These controls are shown over children control
when designer is in "Show Tab Order" mode.

 Target (see page 227) Specifies object that is edited by the designer.

 TextEditMode (see page 228) Sets in-place text editing mode of designer.

 UndoLimit (see page 229) Specifies the number of changes that can be undone.

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

213

1

1.15.1.4.1 TzFormDesigner Properties

1.15.1.4.1.1 TzFormDesigner.Active Property

Switches target component between design and run-time modes

property Active: Boolean;

Description

Active is one of main properties of TzCustomFormDesigner.

It switches target component (it must be TWinControl descendant) between design and run-time mode.

When in design mode all of parents controls are in design mode too so user can manipulate all of this properties.

Manipulating with nonvilual components depends on AllowComponents property.

1.15.1.4.1.2 TzFormDesigner.AllowComponents Property

Specifies whether nonvisual components will be displayed in design mode

property AllowComponents: Boolean;

Description

Nonvisual components (not derived from TControl) are normally invisible in run-time.

AllowComponents specifies whether those components will be displayed in design mode.

1.15.1.4.1.3 TzFormDesigner.AutoAlign Property

Specifies using of align rulers.

property AutoAlign: Boolean;

Description

Align rulers are auxiliary lines to nearest controls. They allows easily aligning moved/resized control to other controls.

1.15.1.4.1.4 TzFormDesigner.BDSStyle Property

Specifies using of BDS style design environment.

property BDSStyle: Boolean;

Description

When BDSStyle is True moving and resizing of controls are performed as in BDS, i.e. control is visible during operation,
otherwise old designer operations are used - when only frames are drawn during moving or resizing.

1.15.1.4.1.5 TzFormDesigner.CaptionFont Property

Controls the text attributes of non-visual components captions.

property CaptionFont: TFont;

Description

This property controls the text attributes of non-visual components captions when ShowCaptions is True.

1.15.1.4.1.6 TzFormDesigner.CloseDisactive Property

Specifies if TzCustomFormDesigner automatically deactivates when Target Form is to be closed.

property CloseDisactive: Boolean;

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

214

1

Description

Set this property to True to force TzCustomFormDesigner automatically deactivates when Target Form is to be closed.

1.15.1.4.1.7 TzFormDesigner.DesignSurface Property

Specifies design surface.

property DesignSurface: TDesignSurface ;

Description

When design surface, control of TDesignSurface class, is assigned form is placed on it. Form does not activated, when user
clicks on the form design surface gets focus.

Design surface is usual control which can not be placed on any container - form, tab sheet, panel, etc.

This allows organizing of multiple documents applications where each form is placed on separate tab sheet.

Also design surface allows hidding of form caption and border by setting TDesignSurface.HideFormBorders property.

Using design surface you may implement BDS like design environment.

1.15.1.4.1.8 TzFormDesigner.DisplayControlGrid Property

Specifies whether designer has to paint grid over window controls that can accept controls.

property DisplayControlGrid: Boolean;

Description

Set this property to True to display design grid over window controls that can accept controls, for example, over tab sheet or
panel.

1.15.1.4.1.9 TzFormDesigner.DisplayGrid Property

Determines whether dots are drawn on the Target form.

property DisplayGrid: Boolean;

Description

Set DisplayGrid to True for dots represesenting as grid on the Target Form.

Dots will be shown only if Target is a TCustomForm descendant.

1.15.1.4.1.10 TzFormDesigner.DragParentLimit Property

Specifies whether drag mouse movement should be clipped by parent's client area.

property DragParentLimit: Boolean;

1.15.1.4.1.11 TzFormDesigner.FlatIcons Property

Determines whether the non-visual component icons has a 3D border or not.

property FlatIcons: Boolean;

Description

Set FlatIcons to True to remove the 3D border around the non-visual component icons.

1.15.1.4.1.12 TzFormDesigner.GridStepX Property

Specifies grid step, in pixels, along X-axis

property GridStepX: integer;

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

215

1

Description

Use this property to read or change grid step along X-axis.

1.15.1.4.1.13 TzFormDesigner.GridStepY Property

Specifies grid step, in pixels, along Y-axis

property GridStepY: integer;

Description

Use this property to read or change grid step along Y-axis.

1.15.1.4.1.14 TzFormDesigner.GuidelinesStyle Property

Specifies guidelines options.

property GuidelinesStyle: TGuidelinesStyles ;

1.15.1.4.1.15 TzFormDesigner.IgnoreReadErrors Property

Specifies whether read errors should be ignored when loading using LoadFromFile and LoadFromStream methods.

property IgnoreReadErrors: Boolean;

1.15.1.4.1.16 TzFormDesigner.LockControls Property

Specifies if user can directly change size and position of controls by mouse.

property LockControls: Boolean;

Description

Set this property to False to allow user changing controls position and size only through Object Inspector (TObjectInspector).

1.15.1.4.1.17 TzFormDesigner.LockPublished Property

Specifies if editing operation are forbidden by default

property LockPublished: Boolean;

Description

Set this property to True to programmatically control what kind of editing will be allowed.

User can adjust reaction on editing request in event handlers.

It affects on events

• OnCanDelete

• OnCanSelect

• OnCanResize

• OnCanMove

• OnCanRename

1.15.1.4.1.18 TzFormDesigner.MultiSelect Property

Determines whether the user can select more than one control at a time.

property MultiSelect: Boolean;

Description

Set MultiSelect to True to allow the user to select multiple controls. If MultiSelect if False, multiple controls cannot be
selected at the same time.

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

216

1

1.15.1.4.1.19 TzFormDesigner.OnActiveChanged Property

Occurs when the Active property of the TzCustomFormDesigner changes

property OnActiveChanged: TNotifyEvent;

Description

Write an OnActiveChange event handler to take specific action immediately after the TzCustomFormDesigner changes its
Active property. For example user can prohibit saving or loading form being designed while Active = True.

The Sender parameter is the object whose event handler is called.

1.15.1.4.1.20 TzFormDesigner.OnCanDelete Property

Occurs before deleting selected component.

property OnCanDelete: TComponentEvent ;

Description

Write an OnCanDelete event handler to provide custom action. You may forbid deleting for example.

The Sender parameter is the object whose event handler is called.

The Component parameter is the component that is being deleted

The Accept parameter determines whether a component is allowed to delete.

1.15.1.4.1.21 TzFormDesigner.OnCanEdit Property

Occurs to determine whether Edit method of component editor can be called.

property OnCanEdit: TComponentEvent ;

Description

Write OnCanEdit event handler to disable component editor call when user double clicks component.

1.15.1.4.1.22 TzFormDesigner.OnCanInsert Property

Occurs before inserting new component.

property OnCanInsert: TComponentEvent ;

Description

Write an OnCanInsert event handler to provide custom action. You may forbid inserting this new component.

The Sender parameter is the object whose event handler is called.

The Component parameter is the component that is being inserted

The Accept parameter determines whether a component is allowed to insert.

1.15.1.4.1.23 TzFormDesigner.OnCanMove Property

Occurs before moving selected component.

property OnCanMove: TComponentEvent ;

Description

Write an OnCanMove event handler to provide custom action. You may forbid moving this component.

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

217

1

The Sender parameter is the object whose event handler is called.

The Component parameter is the component that is being moved

The Accept parameter determines whether a component is allowed to move.

1.15.1.4.1.24 TzFormDesigner.OnCanRename Property

Occurs before renaming component.

property OnCanRename: TRenameEvent ;

Description

Write an OnCanRename event handler to provide custom action. You may forbid renaming this component or set another
name.

The Sender parameter is the object whose event handler is called.

The Component parameter is the component that is being renamed

The NewName parameter is the suggested name

The Accept parameter determines whether a component is allowed to rename.

1.15.1.4.1.25 TzFormDesigner.OnCanResize Property

Occurs before resizing selected component.

property OnCanResize: TComponentEvent ;

Description

Write an OnCanResize event handler to provide custom action. You may forbid resizing this component.

The Sender parameter is the object whose event handler is called.

The Component parameter is the component that is being resized

The Accept parameter determines whether a component is allowed to resize.

1.15.1.4.1.26 TzFormDesigner.OnCanSelect Property

Occurs before selecting component.

property OnCanSelect: TComponentEvent ;

Description

Write an OnCanSelect event handler to provide custom action. You may forbid selecting this component.

The Sender parameter is the object whose event handler is called.

The Component parameter is the component that is being selected

The Accept parameter determines whether a component is allowed to select.

1.15.1.4.1.27 TzFormDesigner.OnCreateComponent Property

Occurs before new component creation.

property OnCreateComponent: TCreateComponentEvent ;

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

218

1

Description

Write this handler to customize component creation.

AClass - class of inserted component;

AOwner - owner of the component (root)

Instance - reference to component to be created.

Note : if you create event handler you should create component in it. Default component creation will be skipped. This allows
to restrict component creation.

1.15.1.4.1.28 TzFormDesigner.OnCreateFrame Property

Occurs when frame is to be inserted on the form.

property OnCreateFrame: TCreateFrameEvent ;

Description

By default PackageMng.CreateFrame method is called. This method shows select frame dialog and creates an instance of
frame class. Using this event you may change default behavior.

1.15.1.4.1.29 TzFormDesigner.OnCreateIcon Property

Occurs before creating icon for non-visual component.

property OnCreateIcon: TCreateIconEvent ;

Description

Write an OnCreateIcon event handler to provide custom action. You may forbid component icon creation, so that component
will not be visible on the designed Target, but will be accessible in object inspector.

The Sender parameter is the object whose event handler is called.

The Component parameter is the component icon is being created for

The AllowCreate parameter determines whether an icon will be created.

1.15.1.4.1.30 TzFormDesigner.OnCreateMethod Property

Occurs when new method name is input in object inspector.

property OnCreateMethod: TCreateMethodEvent ;

Description

Write this event handler to specify method reference when there is no registered method with the specified Name.

Use TypeData to validate possible assignment, i.e. do not assign to Method reference to procedure with another type. This
may cause system halt.

Note: This event is intended for only in-code implemeted methods. If you are working with script procedures use
OnSetScriptProc event.

1.15.1.4.1.31 TzFormDesigner.OnDragDrop Property

Occurs when the user drops an object being dragged.

property OnDragDrop: TDragDropEvent;

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

219

1

Description

Use the OnDragDrop event handler to specify what happens when the user drops an object. The Source parameter of the
OnDragDrop event is the object being dropped, and the Sender is the control the object is being dropped on. The X and Y
parameters are the coordinates of the mouse positioned over the control

1.15.1.4.1.32 TzFormDesigner.OnDragOver Property

Occurs when the user drags an object over a control.

property OnDragOver: TDragOverEvent;

Description

Use an OnDragOver event to signal that the control can accept a dragged object so the user can drop or dock it.

Within the OnDragOver event handler, change the Accept parameter to false to reject the dragged object. Leave Accept as
true to allow the user to drop or dock the dragged object on the control.

To change the shape of the cursor, indicating that the control can accept the dragged object, change the value of the
DragCursor property for the control before the OnDragOver event occurs.

The Source is the object being dragged, the Sender is the potential drop target, and X and Y are screen coordinates in
pixels. The State parameter specifies how the dragged object is moving over the control.

Note: Within the OnDragOver event handler, the Accept parameter defaults to true. However, if an OnDragOver event
handler is not supplied, the control rejects the dragged object, as if the Accept parameter were changed to false.

1.15.1.4.1.33 TzFormDesigner.OnDrawControl Property

Occurs when painting any control on the form. Use this event to draw over control.

property OnDrawControl: TDrawControlEvent ;

1.15.1.4.1.34 TzFormDesigner.OnExecuteAction Property

Occurs when ExecuteAction method is called. Use it to handle standard shared actions for currently active designer.

property OnExecuteAction: THandleActionEvent ;

1.15.1.4.1.35 TzFormDesigner.OnFormClosed Property

Occurs immediately after hiding the Target form .

property OnFormClosed: TNotifyEvent;

Description

Write an OnFormClosed event handler to provide custom action when designed form is closed.

The Sender parameter is the object whose event handler is called.

1.15.1.4.1.36 TzFormDesigner.OnGetComponentHint Property

Occurs when the application is about to display the hint window for the particular component.

property OnGetComponentHint: TGetComponentHintEvent ;

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

220

1

Description

Write an OnGetComponentHint event handler to provide custom action. You may change hint or even forbid to display it.

The Sender parameter is the object whose event handler is called.

The Component parameter is the component that is being selected

The Hint parameter is the hint string that user can change

The ShowHint parameter determines whether a hint will be displayed.

1.15.1.4.1.37 TzFormDesigner.OnGetComponentLocked Property

Occurs to determine whether component is locked.

property OnGetComponentLocked: TComponentEvent ;

Description

Write OnGetComponentLocked event handler to specify which components are locked, i.e can be edited in designer.

1.15.1.4.1.38 TzFormDesigner.OnGetMethodNames Property

Occurs when method property editor requests designer for possible method names.

property OnGetMethodNames: TGetMethodNamesEvent ;

Description

Write this handler to specify possible procedure names that can be assigned to the selected in object inspector event.

Use TypeData to filter possible procedures, for example, by procedure parameters. Call Proc for each possible procedure.

This event is intended for integration with external script engines.

See Also

OnGetScriptProc, OnSetScriptProc, OnShowMethod, OnRenameMethod

Example

This example shows using of the event. EControl Syntax Editor SDK is used as source code analyzer

procedure TForm4.zFormDesigner1GetMethodNames(Sender: TObject;
 TypeData: PTypeData; Proc: TGetStrProc);
var i: integer;
 R: TTagBlockCondition;
begin
 with CodeEditor.SyntObj do
 begin
 // Looking for all text ranges with rule "function"
 R := TTagBlockCondition(Owner.BlockRules.ItemByName('function'));
 if R <> nil then
 for i := 0 to RangeCount - 1 do
 if (Ranges[i].Rule = R) then
 Proc(TagStr[Ranges[i].StartIdx + 1]); // Adds function to procedures list
 end ;
end ;

1.15.1.4.1.39 TzFormDesigner.OnGetObjectName Property

Occurs at the end of GetObjectName (see page 177) method to adjust resulting name.

property OnGetObjectName: TGetObjNameEvent ;

Description

This event may be helpful if visible control is only proxy of real object.

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

221

1

1.15.1.4.1.40 TzFormDesigner.OnGetScriptProc Property

Occurs when method property editor ask for script procedure name associated with a given property.

property OnGetScriptProc: TGetScriptProcEvent ;

Description

Write this event handler to return procedure name associated with property pInfo^.Name of object Instance.

See Also

OnGetMethodNames, OnSetScriptProc, OnShowMethod, OnRenameMethod

Example

In this sample associations of script procedures and properties are stores in TStrings object (property Items in list box
EventsList) with items - <ObjectName>.<PropertyName>=<ScriptProcedure>

procedure TForm4.zFormDesigner1GetScriptProc(Sender, Instance: TObject;
 pInfo: PPropInfo; var ProcName: String);
begin
 ProcName := '';
 if Instance is TComponent then
 if zFormDesigner1.Root = Instance then
 ProcName := EventsList.Items.Values[PInfo^.Name]
 else
 ProcName := EventsList.Items.Values[(Instance as TComponent).Name + '.' +
PInfo^.Name];
end ;

1.15.1.4.1.41 TzFormDesigner.OnHandleControlMessage Property

Occurs on any message sent to managed controls.

property OnHandleControlMessage: THandleControlMessage ;

Description

Write this event handler to process messages.

Sender - designer component;

Control - control to which message was sent;

Message - message;

Handled - handling flag. Set this flag to True to abort following message processing.

1.15.1.4.1.42 TzFormDesigner.OnKeyDown Property

Occurs only at design mode when user presses down any key.

property OnKeyDown: TKeyEvent;

Description

It is the same as standard TWinControl.OnKeyDown event.

Use the OnKeyDown event handler to specify special processing to occur when a key is pressed. The OnKeyDown handler
can respond to all keyboard keys, including function keys and keys combined with the Shift, Alt, and Ctrl keys, and pressed
mouse buttons.

See TWinControl.OnKeyDown for details

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

222

1

1.15.1.4.1.43 TzFormDesigner.OnKeyPress Property

Occurs only at design mode when key pressed.

property OnKeyPress: TKeyPressEvent;

Description

It is the same as standard TWinControl.OnKeyPress event.

Use the OnKeyPress event handler to make something happen as a result of a single character key press.

See TWinControl.OnKeyPress for details

1.15.1.4.1.44 TzFormDesigner.OnKeyUp Property

Occurs only at design mode when user releases key that has been pressed.

property OnKeyUp: TKeyEvent;

Description

It is the same as standard TWinControl.OnKeyUp event.

Use the OnKeyUp event handler to provide special processing that occurs when a key is released. The OnKeyUp handler
can respond to all keyboard keys, including function keys and keys combined with the Shift, Alt, and Ctrl keys.

See TWinControl.OnKeyUp for details

1.15.1.4.1.45 TzFormDesigner.OnMouseDown Property

Occurs only at design mode when user presses mouse button.

property OnMouseDown: TMouseEvent;

Description

It is the same as standard TControl.OnMouseDown event.

Use the OnMouseDown event handler to implement any special processing that should occur as a result of pressing a
mouse button.

See TControl.OnMouseDown for details.

1.15.1.4.1.46 TzFormDesigner.OnMouseMove Property

Occurs only at design mode when user moves mouse.

property OnMouseMove: TMouseMoveEvent;

Description

It is the same as standard TControl.OnMouseMove event.

Use the OnMouseMove event handler to respond when the mouse pointer moves after the control has captured the mouse.

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

223

1

See TControl.OnMouseMove for details.

1.15.1.4.1.47 TzFormDesigner.OnMouseUp Property

Occurs only at design mode when user releases mouse button.

property OnMouseUp: TMouseEvent;

Description

It is the same as standard TControl.OnMouseUp event.

Use an OnMouseUp event handler to implement special processing when the user releases a mouse button.

See TControl.OnMouseUp for details.

1.15.1.4.1.48 TzFormDesigner.OnNotification Property

Occurs when components are added or removed to/from Root object at design mode.

property OnNotification: TNotificationEvent ;

Description

Write an OnNotification event handler to provide custom action when components are added or removed to/from Root object
at design mode.

The Sender parameter is the object whose event handler is called.

The AnObject parameter is the TPersistent object that is being operated

The Operation parameter specifies kind of operation applied to object

• opInsert - object inserted

• opRemove - object removed.

1.15.1.4.1.49 TzFormDesigner.OnPopUndo Property

Occurs when restoring Target from undo buffer.

property OnPopUndo: TUndoRecEvent ;

1.15.1.4.1.50 TzFormDesigner.OnPushUndo Property

Occurs when saving Target to undo buffer.

property OnPushUndo: TUndoRecEvent ;

1.15.1.4.1.51 TzFormDesigner.OnRenameMethod Property

Occurs when name of method is changed in object inspector.

property OnRenameMethod: TRenameMethodEvent ;

Description

Write this event handler to change script procedure name in script code. You should find script procedure CurName and
change its name to NewName.

See Also

OnGetMethodNames, OnSetScriptProc, OnShowMethod, OnGetScriptProc

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

224

1

1.15.1.4.1.52 TzFormDesigner.OnSetNewName Property

Occurs when assigning name to newly inserted component (created or pasted).

property OnSetNewName: TSetNameEvent ;

1.15.1.4.1.53 TzFormDesigner.OnSetScriptProc Property

Occurs when method property editor assigns script procedure to the event.

property OnSetScriptProc: TSetScriptProcEvent ;

Description

Write this event handler to save association between event property end script procedure.

See Also

OnGetMethodNames, OnRenameMethod, OnShowMethod, OnGetScriptProc

Example

In this sample associations of script procedures and properties are stores in TStrings object (property Items in list box
EventsList) with items - <ObjectName>.<PropertyName>=<ScriptProcedure>

procedure TForm4.zFormDesigner1SetScriptProc(Sender, Instance: TObject;
 pInfo: PPropInfo; const EventProc: String);
var idx: integer;
 pn: string ;
begin
 if Instance is TComponent then
 begin
 // event name for root object is without object name
 if zFormDesigner1.Root = Instance then
 pn := PInfo^.Name
 else
 pn := (Instance as TComponent).Name + '.' + PInfo^.Name;
 // Delete previous association
 idx := EventsList.Items.IndexOfName(pn);
 if idx <> -1 then
 EventsList.Items.Delete(idx);
 // Add new association
 if EventProc <> '' then
 begin
 // Saving associating
 EventsList.Items.Add(pn + '=' + EventProc);
 // Creating event handler text body
 CreateMethod(EventProc, Instance, pInfo);
 end ;
 end ;
end ;

1.15.1.4.1.54 TzFormDesigner.OnShowMethod Property

Occurs when user double clicks on the procedure in the object inspector.

property OnShowMethod: TShowMethodEvent ;

Description

Write this handler to highlight script procedure MethodName in script code text.

1.15.1.4.1.55 TzFormDesigner.OnUpdateAction Property

Occurs when UpdateAction method is called. Use it to handle standard shared actions for currently active designer.

property OnUpdateAction: THandleActionEvent ;

1.15.1.4.1.56 TzFormDesigner.OnValidateMethod Property

Occurs to validate method.

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

225

1

property OnValidateMethod: TValidateMethodEvent ;

Description

Write an OnValidateMethod event handler to provide custom validation of the particular method.

The Sender parameter is the object whose event handler is called.

The TypeData parameter is the type of method

The ARoot parameter is the owner of this method

The MethAddr parameter is the address of this method

The MethodName parameter is the name of method

The Accept parameter determines whether this method is allowed to add to list of methods.

1.15.1.4.1.57 TzFormDesigner.PopupMenu Property

Identifies the pop-up menu associated with the Root control of the Designer.

property PopupMenu: TPopupMenu;

Description

It is similar to TControl.PopupMenu property.

If there are no popup menu assigned to this property default popup menu is created. In this case you may use
PopupMenuFilter to define possible item groups in default popup menu.

See TControl.PopupMenu for details.

1.15.1.4.1.58 TzFormDesigner.PopupMenuFilter Property

Specifies which categories of items may be used to form default popup menu.

property PopupMenuFilter: TLocalMenuFilters ;

Description

1.15.1.4.1.59 TzFormDesigner.ReadOnly Property

Set Read Only mode.

property ReadOnly : Boolean;

Description

Set ReadOnly to True to disable any changes in designer. In read only mode there is no popup menu, all changes to
controls are disabled (moving, resizing, etc.), component editors are disabled.

1.15.1.4.1.60 TzFormDesigner.SelMarker Property

Selection markers manager.

property SelMarker: TzBoundCtrl ;

Description

Use this object to customize shape and colors of selection markers. Selection markers are visible when only one component
is selected.

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

226

1

1.15.1.4.1.61 TzFormDesigner.ShowCaptions Property

Specifies whether non-visual component icons captions are visible.

property ShowCaptions: Boolean;

Description

When ShowCaption is True non-visual components icons have captions with their names below them.

For data modules captions are always visible

1.15.1.4.1.62 TzFormDesigner.ShowHints Property

Specifies showing of design hints.

property ShowHints: Boolean;

Description

Use this property to enable/disable designer's hints.

1.15.1.4.1.63 TzFormDesigner.SnapToGrid Property

Automatically aligns components on the form with the nearest gridline. You cannot place a component "in between" gridlines.

property SnapToGrid: Boolean;

Description

1.15.1.4.1.64 TzFormDesigner.StoreEvents Property

Specifies whether designer should process events storage.

property StoreEvents: Boolean;

Description

When StorageEvents is True events associations are save to Events (see page 189) property.These events are saved in
resource (DFM file or stream).

Otherwise you need to use OnSetScriptProc and OnGetScriptProc events to process events associations manually.

1.15.1.4.1.65 TzFormDesigner.TabOrderIcons Property

Properties of tab order icons. These controls are shown over children control when designer is in "Show Tab Order" mode.

property TabOrderIcons: TTabOrderIcons ;

1.15.1.4.1.66 TzFormDesigner.Target Property

Specifies object that is edited by the designer.

property Target: TComponent;

Description

Setting this property affects to Root, ContainerWindow and Form properties.

Possible Target types are following:

1. TCustomForm - form designing.

In this case:

Root = ContainerWindow = Form = Target.

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

227

1

2. TWinControl, owned by the form. This control and all it's children controls are edited. Also non-visual components owned
by the form may be edited too if AllowComponents is True.

In this case:

Root = Form = (Target.Owner as TCustomForm);

ContainerWindow = (Target as TWinControl);

3. TWinControl, not owned by the form, for example, TQuickReport.

This control and all owned by it components are edited.

In this case temporary form is created as container in design mode.

Client size of this form is equal to size of the Target.

Changing form size does not change size of the Target.

In this case:

Form = temporary internal Form;

Root = Target;

ContainerWindow = (Target as TWinControl);

4. TCustomFrame.

Identical to case 3, but changing form size changes size of the frame.

5. TDataModule.

Data module and all it's components are edited.

For editing of data modules temporary Form and temporary container are created, in which designing are performed.

In this case:

Root = Target;

Form = temporary internal Form;

ContainerWindow = temporary internal Container;

1.15.1.4.1.67 TzFormDesigner.TextEditMode Property

Sets in-place text editing mode of designer.

property TextEditMode: Boolean;

Description

Set TextEditMode to True to enable in-place editing of control's texts. In this mode labels, button captions, list box items,
combo box items and many others text properties may be edited directly on the form. It will give more interactivity to design
process.

To activate in-place editor user needs to click on text string on the control or press Enter, when this control is selected.

In-place editors are handled by special design classes derived from

1.15 ed_Designer Namespace EControl Form Designer Pro Classes

228

1

1.15.1.4.1.68 TzFormDesigner.UndoLimit Property

Specifies the number of changes that can be undone.

property UndoLimit: integer;

Description

Use UndoLimit to restrict undo records list. If UndoLimit is 0, undo operation is disabled.

Default value is 16.

1.15.2 Structs, Records, Enums

The following table lists structs, records, enums in this documentation.

Enumerations

Enumeration Description

 TBufferizedType (see page 229) Determines how object were placed into buffer

 TCompAlign (see page 229) Specifies how selected will be aligned. This type is used for both vertical and
horizontal alignment.

 TCompSize (see page 230) Specifies type of selected component sizing.

 TGuidelinesStyle (see page 230) Guidelines options.

 TLocalMenuFilter (see page 231) Popup menu groups

Legend

Enumeration

1.15.2.1 ed_Designer.TBufferizedType Enumeration
Determines how object were placed into buffer

TBufferizedType = (
 btCopy,
 btCut
);

File

ed_Designer

Members

Members Description

btCopy objects were copyed

btCut objects were cutted

Description

• btCopy - objects were copied

• btCut - objects were cut

TBufferizedType is used to calculate smart offset when pasting components back to the form.

1.15.2.2 ed_Designer.TCompAlign Enumeration
Specifies how selected will be aligned. This type is used for both vertical and horizontal alignment.

TCompAlign = (
 ca_None,
 caMin,

1.15 ed_Designer Namespace EControl Form Designer Pro Structs, Records, Enums

229

1

 caCenters,
 caMax,
 caSpaceEq,
 caCenterWnd
);

File

ed_Designer

Members

Members Description

ca_None Does not change the alignment of the component

caMin Lines up the left (top) edges of the selected components.

caCenters Lines up the centers of the selected components

caMax Lines up the right (bottom) edges of the selected components.

caSpaceEq Lines up the selected components equidistant from each other.

caCenterWnd Lines up the selected components with the center of the window

1.15.2.3 ed_Designer.TCompSize Enumeration
Specifies type of selected component sizing.

TCompSize = (
 csNone,
 csShrink,
 csGrow,
 csValue
);

File

ed_Designer

Members

Members Description

csNone Does not change the size of the components.

csShrink Resizes the group of components to the height or width of the smallest
selected component.

csGrow Resizes the group of components to the height or width of the largest selected
component.

csValue Sets a custom width (height) for the selected components.

1.15.2.4 ed_Designer.TGuidelinesStyle Enumeration
Guidelines options.

TGuidelinesStyle = (
 glLeft,
 glHCenter,
 glRight,
 glTop,
 glVCenter,
 glBottom,
 glMouse,
 glKeyboard,
 glMoving,
 glSizing,
 glStatic,
 glMultiple,
 glMultipleSel
);

File

ed_Designer

1.15 ed_Designer Namespace EControl Form Designer Pro Structs, Records, Enums

230

1

Members

Members Description

glLeft Specifies whether guideline can be shown for left edges of controls.

glHCenter Specifies whether guideline can be shown for horizontal centers of controls.

glRight Specifies whether guideline can be shown for right edges of controls.

glTop Specifies whether guideline can be shown for top edges of controls.

glVCenter Specifies whether guideline can be shown for vertical centers of controls.

glBottom Specifies whether guideline can be shown for bottom edges of controls.

glMouse Specifies whether guidelines can be shown when moving or sizing by mouse.

glKeyboard Specifies whether guidelines can be shown when Control or Shift keys are
pressed, i.e. when moving or sizing by keyboard.

glMoving Specifies whether guidelines can be shown when moving selected controls.

glSizing Specifies whether guidelines can be shown when sizing selected control.

glStatic Specifies whether guidelines can be shown for selected controls when no
actions are perform on them, i.e. in static mode.

glMultiple Specifies whether multiple guidelines can be shown, otherwise only single
guideline will be displayed.

glMultipleSel Specifies whether guidelines can be shown when more than one control is
selected.

1.15.2.5 ed_Designer.TLocalMenuFilter Enumeration
TLocalMenuFilter = (
 lmModule,
 lmComponent,
 lmDesigner
);

File

ed_Designer

Members

Members Description

lmModule Include custom module menu items.

lmComponent Menu items for working with components.

lmDesigner Menu items for working with controls.

Description

Popup menu groups

1.15.3 Types

The following table lists types in this documentation.

Types

Type Description

TComponentEvent (see page 232) Event type for events on manipulations with components.

TCreateComponentEvent (see page 232) See

TCreateFrameEvent (see page 232) See TzCustomFormDesigner.OnCreateFrame Event (see page 197)

TCreateIconEvent (see page 232) See TzCustomFormDesigner.OnCreateIcon Event (see page 197)

TCreateMethodEvent (see page 233) See TzCustomFormDesigner.OnCreateMethod Event (see page 198)

TDrawControlEvent (see page 233) See TzFormDesigner.OnDrawControl Event (see page 220).

TGetComponentHintEvent (see page 233) See TzCustomFormDesigner.OnGetComponentHint Event (see page 198)

TGetMethodNamesEvent (see page 233) See TzCustomFormDesigner.OnGetMethodNames Event (see page 198)

TGetObjNameEvent (see page 233) See TzCustomFormDesigner.OnGetObjectName Event (see page 195)

TGetScriptProcEvent (see page 234) See TzCustomFormDesigner.OnGetScriptProc Event (see page 199)

1.15 ed_Designer Namespace EControl Form Designer Pro Types

231

1

TGuidelinesStyles (see page 234) Set of TGuidelinesStyle (see page 230).

THandleActionEvent (see page 234) See TzCustomFormDesigner.OnExecuteAction Event (see page 195)

TLocalMenuFilters (see page 234) Set of TLocalMenuFilter (see page 231)

TNotificationEvent (see page 234) See TzCustomFormDesigner.OnNotification Event (see page 199)

TRenameEvent (see page 235) See TzCustomFormDesigner.OnRenameMethod Event (see page 200)

TRenameMethodEvent (see page 235) See TzCustomFormDesigner.OnRenameMethod Event (see page 200)

TSetNameEvent (see page 235) See TzCustomFormDesigner.OnSetNewName Event (see page 197)

TSetScriptProcEvent (see page 235) See TzCustomFormDesigner.OnSetScriptProc Event (see page 200)

TShowMethodEvent (see page 235) See TzCustomFormDesigner.OnShowMethod Event (see page 201)

TUndoRecEvent (see page 236) See TzCustomFormDesigner.OnPopUndo Event (see page 196) and
TzCustomFormDesigner.OnPushUndo Event (see page 197)

TValidateMethodEvent (see page 236) See TzCustomFormDesigner.OnValidateMethod Event (see page 201)

1.15.3.1 ed_Designer.TComponentEvent Type
TComponentEvent = procedure (Sender: TObject; Component: TComponent; var Accept: Boolean)
of object ;

File

ed_Designer

Description

Event type for events on manipulations with components.

1.15.3.2 ed_Designer.TCreateComponentEvent Type
TCreateComponentEvent = procedure (Sender: TObject; AClass: TComponentClass; AOwner:
TComponent; var Instance: TComponent) of object ;

File

ed_Designer

Description

See

1.15.3.3 ed_Designer.TCreateFrameEvent Type
TCreateFrameEvent = procedure (Sender: TObject; Root: TComponent; var Frame: TComponent) of
object ;

File

ed_Designer

Description

See TzCustomFormDesigner.OnCreateFrame Event (see page 197)

1.15.3.4 ed_Designer.TCreateIconEvent Type
TCreateIconEvent = procedure (Sender: TObject; Component: TComponent; var AllowCreate:
Boolean) of object ;

File

ed_Designer

1.15 ed_Designer Namespace EControl Form Designer Pro Types

232

1

Description

See TzCustomFormDesigner.OnCreateIcon Event (see page 197)

1.15.3.5 ed_Designer.TCreateMethodEvent Type
TCreateMethodEvent = procedure (Sender: TObject; const Name: string ; TypeData: PTypeData;
var Method: TMethod) of object ;

File

ed_Designer

Description

See TzCustomFormDesigner.OnCreateMethod Event (see page 198)

1.15.3.6 ed_Designer.TDrawControlEvent Type
See TzFormDesigner.OnDrawControl Event (see page 220).

TDrawControlEvent = procedure (Sender: TObject; Control: TControl; DC: HDC) of object ;

File

ed_Designer

1.15.3.7 ed_Designer.TGetComponentHintEvent Type
TGetComponentHintEvent = procedure (Sender: TObject; Component: TComponent; var Hint:
string ; var ShowHint: Boolean) of object ;

File

ed_Designer

Description

See TzCustomFormDesigner.OnGetComponentHint Event (see page 198)

1.15.3.8 ed_Designer.TGetMethodNamesEvent Type
TGetMethodNamesEvent = procedure (Sender: TObject; TypeData: PTypeData; Proc: TGetStrProc)
of object ;

File

ed_Designer

Description

See TzCustomFormDesigner.OnGetMethodNames Event (see page 198)

1.15.3.9 ed_Designer.TGetObjNameEvent Type
See TzCustomFormDesigner.OnGetObjectName Event (see page 195)

TGetObjNameEvent = procedure (Sender: TObject; Obj: TObject; var ObjName: string) of object ;

File

ed_Designer

1.15 ed_Designer Namespace EControl Form Designer Pro Types

233

1

1.15.3.10 ed_Designer.TGetScriptProcEvent Type
TGetScriptProcEvent = procedure (Sender: TObject; Instance: TObject; pInfo: PPropInfo; var
ProcName: string) of object ;

File

ed_Designer

Description

See TzCustomFormDesigner.OnGetScriptProc Event (see page 199)

1.15.3.11 ed_Designer.TGuidelinesStyles Type
Set of TGuidelinesStyle (see page 230).

TGuidelinesStyles = set of TGuidelinesStyle ;

File

ed_Designer

1.15.3.12 ed_Designer.THandleActionEvent Type
See TzCustomFormDesigner.OnExecuteAction Event (see page 195)

THandleActionEvent = procedure (Sender: TObject; Action: TBasicAction; var Handled:
Boolean) of object ;

File

ed_Designer

1.15.3.13 ed_Designer.TLocalMenuFilters Type
TLocalMenuFilters = set of TLocalMenuFilter ;

File

ed_Designer

Description

Set of TLocalMenuFilter (see page 231)

1.15.3.14 ed_Designer.TNotificationEvent Type
TNotificationEvent = procedure (Sender: TObject; AnObject: TPersistent; Operation:
TOperation) of object ;

File

ed_Designer

Description

See TzCustomFormDesigner.OnNotification Event (see page 199)

1.15 ed_Designer Namespace EControl Form Designer Pro Types

234

1

1.15.3.15 ed_Designer.TRenameEvent Type
TRenameEvent = procedure (Sender: TObject; Component: TComponent; const NewName: string ;
var Accept: Boolean) of object ;

File

ed_Designer

Description

See TzCustomFormDesigner.OnRenameMethod Event (see page 200)

1.15.3.16 ed_Designer.TRenameMethodEvent Type
TRenameMethodEvent = procedure (Sender: TObject; const CurName, NewName: string) of object ;

File

ed_Designer

Description

See TzCustomFormDesigner.OnRenameMethod Event (see page 200)

1.15.3.17 ed_Designer.TSetNameEvent Type
See TzCustomFormDesigner.OnSetNewName Event (see page 197)

TSetNameEvent = procedure (Sender: TObject; Component: TComponent; var Name: string) of
object ;

File

ed_Designer

1.15.3.18 ed_Designer.TSetScriptProcEvent Type
TSetScriptProcEvent = procedure (Sender: TObject; Instance: TObject; pInfo: PPropInfo;
const EventProc: string) of object ;

File

ed_Designer

Description

See TzCustomFormDesigner.OnSetScriptProc Event (see page 200)

1.15.3.19 ed_Designer.TShowMethodEvent Type
TShowMethodEvent = procedure (Sender: TObject; const MethodName: string) of object ;

File

ed_Designer

Description

See TzCustomFormDesigner.OnShowMethod Event (see page 201)

1.15 ed_Designer Namespace EControl Form Designer Pro Types

235

1

1.15.3.20 ed_Designer.TUndoRecEvent Type
See TzCustomFormDesigner.OnPopUndo Event (see page 196) and TzCustomFormDesigner.OnPushUndo Event (see
page 197)

TUndoRecEvent = procedure (Sender: TObject; Stream: TStream) of object ;

File

ed_Designer

1.15.3.21 ed_Designer.TValidateMethodEvent Type
TValidateMethodEvent = procedure (Sender: TObject; TypeData: PTypeData; ARoot: TObject;
MethAddr: pointer; const MethodName: string ; var Accept: Boolean) of object ;

File

ed_Designer

Description

See TzCustomFormDesigner.OnValidateMethod Event (see page 201)

1.15.4 Constants

The following table lists constants in this documentation.

Constants

Constant Description

DM_POSCHANGED (see page 236) The DM_POSCHANGED message is sent to a window whose size, position,
or place in the Z order has changed to update selection markers around
selected components.

sLineBreak (see page 236) Used for Delphi5

1.15.4.1 ed_Designer.DM_POSCHANGED Constant
The DM_POSCHANGED message is sent to a window whose size, position, or place in the Z order has changed to update
selection markers around selected components.

DM_POSCHANGED = $C002;

File

ed_Designer

Description

1.15.4.2 ed_Designer.sLineBreak Constant
Used for Delphi5

sLineBreak = #13#10;

File

ed_Designer

1.15 ed_Designer Namespace EControl Form Designer Pro Constants

236

1

Description

1.16 ed_dsncont Namespace

1.16.1 Classes

The following table lists classes in this documentation.

Classes

Class Description

TDesignSurface (see page 237) Design surface window.

1.16.1.1 TDesignSurface Class
Design surface window.

Class Hierarchy

TDesignSurface = class (TCustomControl);

File

ed_dsncont

Description

Serves as deigned form container. Blocks activation of the form.Redirects keyboard input to designer.

Assign design surface to TzCustomFormDesigner.DesignSurface Property (see page 188). Designer automatically puts
designed form on the surface.

Members

TDesignSurface Methods

TDesignSurface Methods Description

 Activate (see page 238) Activates associated designer.

 AdjustScroll (see page 238) Adjusts scrollbars and form position in the container.

 DoSizing (see page 238) Called by designer when form was resized.

 ExecuteAction (see page 238) Invokes an action with the component as its target.

 UpdateAction (see page 239) Updates an action component to reflect the current state of the component.

TDesignSurface Properties

TDesignSurface Properties Description

 DsnShowFrame (see page 239) Designer sets this property to show/hide frame around form.

 FlatScrollBars (see page 239) Specifies type of used scroll bars.

 Form (see page 240) Specifies attached form.

 FormOrigin (see page 240) Specifies offset of the form relative to client origin of design surface.

 FrameSize (see page 240) Specifies width of the frame line.

 HideFormBorders (see page 240) Specifies whether form caption and border should be hidden.

 RulerClientArea (see page 240) Specifies whether ruler displays scale only for client area.

 ScrollPos (see page 240) Specifies current scrolling position.

1.16 ed_dsncont Namespace EControl Form Designer Pro Classes

237

1

 ShowFrame (see page 240) Specifies whether frame around form may be visible.

 ShowRuler (see page 241) Specifies whether rulers are visible.

 UseUnits (see page 241) Specifies units used by rulers.

Legend

Method

virtual

Property

read only

TDesignSurface Methods

TDesignSurface Methods Description

 Activate (see page 238) Activates associated designer.

 AdjustScroll (see page 238) Adjusts scrollbars and form position in the container.

 DoSizing (see page 238) Called by designer when form was resized.

 ExecuteAction (see page 238) Invokes an action with the component as its target.

 UpdateAction (see page 239) Updates an action component to reflect the current state of the component.

TDesignSurface Properties

TDesignSurface Properties Description

 DsnShowFrame (see page 239) Designer sets this property to show/hide frame around form.

 FlatScrollBars (see page 239) Specifies type of used scroll bars.

 Form (see page 240) Specifies attached form.

 FormOrigin (see page 240) Specifies offset of the form relative to client origin of design surface.

 FrameSize (see page 240) Specifies width of the frame line.

 HideFormBorders (see page 240) Specifies whether form caption and border should be hidden.

 RulerClientArea (see page 240) Specifies whether ruler displays scale only for client area.

 ScrollPos (see page 240) Specifies current scrolling position.

 ShowFrame (see page 240) Specifies whether frame around form may be visible.

 ShowRuler (see page 241) Specifies whether rulers are visible.

 UseUnits (see page 241) Specifies units used by rulers.

1.16.1.1.1 TDesignSurface Methods

1.16.1.1.1.1 TDesignSurface.Activate Method

Activates associated designer.

procedure Activate;

1.16.1.1.1.2 TDesignSurface.AdjustScroll Method

Adjusts scrollbars and form position in the container.

procedure AdjustScroll;

1.16.1.1.1.3 TDesignSurface.DoSizing Method

Called by designer when form was resized.

procedure DoSizing(var Rect: TRect);

Description

1.16.1.1.1.4 TDesignSurface.ExecuteAction Method

Invokes an action with the component as its target.

function ExecuteAction(Action: TBasicAction): Boolean; override ;

1.16 ed_dsncont Namespace EControl Form Designer Pro Classes

238

1

Description

When the user invokes an action, VCL makes a series of calls to respond to that action. First, it generates an OnExecute
event of the action list that contains the action. If the action list does not handle the OnExecute event, then the action is
routed to the Application object’s ExecuteAction method, which invokes the OnActionExecute event handler. If the
OnActionExecute event handler does not handle the action, then it is routed to the action’s OnExecute event handler. If that
does not handle the action, the active control’s ExecuteAction method is called.

The Action parameter specifies the action that was invoked. ExecuteAction returns true if the action was successfully
dispatched, and false if the component could not handle the action. If ExecuteAction returns false for the active control, VCL
calls the active form’s ExecuteAction method. If this returns false, VCL tries all active controls in the form. If these all return
false, VCL repeats the process with the main form, if that is different from the active form.

1.16.1.1.1.5 TDesignSurface.UpdateAction Method

Updates an action component to reflect the current state of the component.

function UpdateAction(Action: TBasicAction): Boolean; override ;

Description

When the application is idle, VCL makes a series of calls to update the properties (such as whether it is enabled, checked,
and so on) of every action that is linked to a visible control or menu item. First, VCL generates an OnUpdate event of the
action list that contains the action. If the action list does not handle the OnUpdate event, then the action is routed to the
Application object’s UpdateAction method, which invokes the OnActionUpdate event handler. If the OnActionUpdate event
handler does not update the action, then it is routed to the action’s OnUpdate event handler. If that does not update the
action, the active control’s UpdateAction method is called.

The Action parameter specifies the action component that should be updated. UpdateAction returns true if the action
component now reflects the state of the component, and false if it did not know how to update the action. If UpdateAction
returns false for the active component, VCL calls the active form’

s UpdateAction method.

Do not call UpdateAction. It is called automatically when the application is idle. As implemented in TComponent,
UpdateAction allows the action to update itself with the component as a target. Descendants can override this method to
perform updates that reflect class-specific properties or states.

1.16.1.1.2 TDesignSurface Properties

1.16.1.1.2.1 TDesignSurface.DsnShowFrame Property

Designer sets this property to show/hide frame around form.

property DsnShowFrame: Boolean;

Description

Frame around form is displayed when ShowFrame (see page 240) = True and DsnShowFrame = True.

Designer shows frame when there are no selected controls, i.e. when entire form is selected.

1.16.1.1.2.2 TDesignSurface.FlatScrollBars Property

Specifies type of used scroll bars.

property FlatScrollBars: Boolean;

1.16 ed_dsncont Namespace EControl Form Designer Pro Classes

239

1

Description

If FlatScrollBars is True flat scroll bar controls are used, otherwise standard windows scroll bars are used.

1.16.1.1.2.3 TDesignSurface.Form Property

Specifies attached form.

property Form: TCustomForm;

Description

1.16.1.1.2.4 TDesignSurface.FormOrigin Property

Specifies offset of the form relative to client origin of design surface.

property FormOrigin: TPoint;

Description

1.16.1.1.2.5 TDesignSurface.FrameSize Property

Specifies width of the frame line.

property FrameSize: integer;

Description

1.16.1.1.2.6 TDesignSurface.HideFormBorders Property

Specifies whether form caption and border should be hidden.

property HideFormBorders: Boolean;

Description

This property allows hidding of form border and caption during design. It is useful when you are implementing flat pane
designer.

1.16.1.1.2.7 TDesignSurface.RulerClientArea Property

Specifies whether ruler displays scale only for client area.

property RulerClientArea: Boolean;

1.16.1.1.2.8 TDesignSurface.ScrollPos Property

Specifies current scrolling position.

property ScrollPos: TPoint;

Description

1.16.1.1.2.9 TDesignSurface.ShowFrame Property

Specifies whether frame around form may be visible.

property ShowFrame: Boolean;

1.16 ed_dsncont Namespace EControl Form Designer Pro Classes

240

1

Description

When this property is True, designer can show frame by setting DsnShowFrame (see page 239) property to True. Form (
see page 240) origin is increased on FrameSize (see page 240) pixels.

1.16.1.1.2.10 TDesignSurface.ShowRuler Property

Specifies whether rulers are visible.

property ShowRuler: Boolean;

Description

Use this property to hide/show rulers.

1.16.1.1.2.11 TDesignSurface.UseUnits Property

Specifies units used by rulers.

property UseUnits: TRulerUnits ;

Description

1.16.2 Structs, Records, Enums

The following table lists structs, records, enums in this documentation.

Enumerations

Enumeration Description

 TRulerUnits (see page 241) Units for design surface ruler.

Legend

Enumeration

1.16.2.1 ed_dsncont.TRulerUnits Enumeration
TRulerUnits = (
 ruCantimeters,
 ruPixels,
 ruInches
);

File

ed_dsncont

Members

Members Description

ruCantimeters Centimeters

ruPixels Pixels

ruInches Inches

Description

Units for design surface ruler.

1.17 ed_RegComps Namespace EControl Form Designer Pro

241

1

1.17 ed_RegComps Namespace

1.17.1 Classes

The following table lists classes in this documentation.

Classes

Class Description

Frames (see page 242) Special class to support work with frames in design-mode

TComponentClassInfo (see page 242) Class description for registered component.

TCustomModuleInfo (see page 245) Description of the custom modules classes.

TFrameInfo (see page 245) Frame's registration information

TPackageInfo (see page 246) Package description for registered package.

TPackageMng (see page 248) TPackageMng is a global registration object for components, property and
component editors, actions and so on.

1.17.1.1 Frames Class
Special class to support work with frames in design-mode

Class Hierarchy

Frames = class (TComponent);

File

ed_RegComps

Description

This class is used internally to provide working with instances of TFrame descendants.

1.17.1.2 TComponentClassInfo Class
Class description for registered component.

Class Hierarchy

TComponentClassInfo = class ;

File

ed_RegComps

Description

TComponentClassInfo encapsulates information on registered component.

Instances of this class is being created for every component in the registered package while RegisterComponents procedure
is called by the application or in Register method in the packages.

1.17 ed_RegComps Namespace EControl Form Designer Pro Classes

242

1

Members

TComponentClassInfo Methods

TComponentClassInfo Methods Description

 Create (see page 243) Creates instance of this class.

 Destroy (see page 243) Destroys instance of this class.

 IsIconValid (see page 244) Returns true if component icon is valid image.

TComponentClassInfo Properties

TComponentClassInfo Properties Description

 ComponentClass (see page 244) Reference to the component class.

 DisplayName (see page 244) Display name of component class.

 Hidden (see page 244) Specifies whether component class is visible on the component palette.

 Icon (see page 244) Specifies bitmap image that is displayed in the component palette.

 InitPage (see page 244) Specifies the initial palette page name (specified during registration).

 Module (see page 244) Reference to package description where this component class has been
registered from.

 Page (see page 245) Palette page name where component's icon has being located.

Legend

Constructor

virtual

Property

read only

TComponentClassInfo Methods

TComponentClassInfo Methods Description

 Create (see page 243) Creates instance of this class.

 Destroy (see page 243) Destroys instance of this class.

 IsIconValid (see page 244) Returns true if component icon is valid image.

TComponentClassInfo Properties

TComponentClassInfo Properties Description

 ComponentClass (see page 244) Reference to the component class.

 DisplayName (see page 244) Display name of component class.

 Hidden (see page 244) Specifies whether component class is visible on the component palette.

 Icon (see page 244) Specifies bitmap image that is displayed in the component palette.

 InitPage (see page 244) Specifies the initial palette page name (specified during registration).

 Module (see page 244) Reference to package description where this component class has been
registered from.

 Page (see page 245) Palette page name where component's icon has being located.

1.17.1.2.1 TComponentClassInfo Methods

1.17.1.2.1.1 TComponentClassInfo.Create Constructor

Creates instance of this class.

constructor Create(AClass: TComponentClass; const APage: string);

1.17.1.2.1.2 TComponentClassInfo.Destroy Destructor

Destroys instance of this class.

destructor Destroy; override ;

Description

1.17 ed_RegComps Namespace EControl Form Designer Pro Classes

243

1

1.17.1.2.1.3 TComponentClassInfo.IsIconValid Method

Returns true if component icon is valid image.

function IsIconValid: Boolean;

1.17.1.2.2 TComponentClassInfo Properties

1.17.1.2.2.1 TComponentClassInfo.ComponentClass Property

Reference to the component class.

property ComponentClass: TComponentClass;

Description

ComponentClass is a reference to component class whose information TComponentClassInfo (see page 242) instance
keeps.

1.17.1.2.2.2 TComponentClassInfo.DisplayName Property

Display name of component class.

property DisplayName: WideString;

Description

Display name is used in component palette and palette tool list. It is initialized with the component class name, but it may be
changed at runtime.

1.17.1.2.2.3 TComponentClassInfo.Hidden Property

Specifies whether component class is visible on the component palette.

property Hidden: Boolean;

Description

Use this property to get or set visibility of the component icon on the palette.

1.17.1.2.2.4 TComponentClassInfo.Icon Property

Specifies bitmap image that is displayed in the component palette.

property Icon: TBitmap;

Description

Use this property to get or set component's icon on the palette.

1.17.1.2.2.5 TComponentClassInfo.InitPage Property

Specifies the initial palette page name (specified during registration).

property InitPage: string ;

Description

This field means Palette page name by default and is specified during registration process. Real name may differ because of
palette customizing process.

1.17.1.2.2.6 TComponentClassInfo.Module Property

Reference to package description where this component class has been registered from.

property Module: TPackageInfo ;

1.17 ed_RegComps Namespace EControl Form Designer Pro Classes

244

1

Description

Use this field to access to module's info where this component from. This field may be nil if component has no owner's
module, i.e. 'Frames (see page 242)'.

1.17.1.2.2.7 TComponentClassInfo.Page Property

Palette page name where component's icon has being located.

property Page: string ;

Description

This page may differ from InitPage (see page 244), because user may customize component palette.

1.17.1.3 TCustomModuleInfo Class
Description of the custom modules classes.

Class Hierarchy

TCustomModuleInfo = class ;

File

ed_RegComps

Description

Custom modules is registered to support custom design environment. For example, 'Quick report' library has own custom
module.

1.17.1.4 TFrameInfo Class
Frame's registration information

Class Hierarchy

TFrameInfo = class ;

File

ed_RegComps

Members

TFrameInfo Properties

TFrameInfo Properties Description

 FrameClass (see page 246) Frame class, instance of which is created when frame inserted on the form.

 FrameResource (see page 246) Frame resource which is used to initialize new frame instance.

Legend

Property

read only

TFrameInfo Properties

TFrameInfo Properties Description

 FrameClass (see page 246) Frame class, instance of which is created when frame inserted on the form.

 FrameResource (see page 246) Frame resource which is used to initialize new frame instance.

1.17 ed_RegComps Namespace EControl Form Designer Pro Classes

245

1

1.17.1.4.1 TFrameInfo Properties

1.17.1.4.1.1 TFrameInfo.FrameClass Property

Frame class, instance of which is created when frame inserted on the form.

property FrameClass: TCustomFrameClass;

1.17.1.4.1.2 TFrameInfo.FrameResource Property

Frame resource which is used to initialize new frame instance.

property FrameResource: TCustomFrame;

1.17.1.5 TPackageInfo Class
Package description for registered package.

Class Hierarchy

TPackageInfo = class ;

File

ed_RegComps

Description

Instances of this class created during loading packages using PackageMng.AddPackage.

Members

TPackageInfo Methods

TPackageInfo Methods Description

 Create (see page 247) Creates and initializes instance of TPackageInfo class.

 Destroy (see page 247) Destroys instance of TPackageInfo and releases all of resources.

TPackageInfo Properties

TPackageInfo Properties Description

 Active (see page 247) Specifies whether component of this package available in component palette.

 Description (see page 247) Specifies description string from the package header.

 FileName (see page 247) Specifies file name of the package.

 Handle (see page 247) Specifies package handle.

 Requires (see page 247) Specifies list of packages those are loaded with this package.

 Units (see page 248) Specifies list of units in the package.

Legend

Constructor

virtual

Property

read only

TPackageInfo Methods

TPackageInfo Methods Description

 Create (see page 247) Creates and initializes instance of TPackageInfo class.

 Destroy (see page 247) Destroys instance of TPackageInfo and releases all of resources.

TPackageInfo Properties

TPackageInfo Properties Description

 Active (see page 247) Specifies whether component of this package available in component palette.

1.17 ed_RegComps Namespace EControl Form Designer Pro Classes

246

1

 Description (see page 247) Specifies description string from the package header.

 FileName (see page 247) Specifies file name of the package.

 Handle (see page 247) Specifies package handle.

 Requires (see page 247) Specifies list of packages those are loaded with this package.

 Units (see page 248) Specifies list of units in the package.

1.17.1.5.1 TPackageInfo Methods

1.17.1.5.1.1 TPackageInfo.Create Constructor

Creates and initializes instance of TPackageInfo (see page 246) class.

constructor Create(AFileName: string);

1.17.1.5.1.2 TPackageInfo.Destroy Destructor

Destroys instance of TPackageInfo (see page 246) and releases all of resources.

destructor Destroy; override ;

1.17.1.5.2 TPackageInfo Properties

1.17.1.5.2.1 TPackageInfo.Active Property

Specifies whether component of this package available in component palette.

property Active: Boolean;

Description

Set Active to True to let components of this package be available on component palette and vice versa.

1.17.1.5.2.2 TPackageInfo.Description Property

Specifies description string from the package header.

property Description: string ;

Description

This is read-only property.

1.17.1.5.2.3 TPackageInfo.FileName Property

Specifies file name of the package.

property FileName: string ;

Description

This is read-only property.

1.17.1.5.2.4 TPackageInfo.Handle Property

Specifies package handle.

property Handle: HMODULE;

Description

This is read-only property.

1.17.1.5.2.5 TPackageInfo.Requires Property

Specifies list of packages those are loaded with this package.

1.17 ed_RegComps Namespace EControl Form Designer Pro Classes

247

1

property Requires : TStrings;

Description

This is read-only property.

1.17.1.5.2.6 TPackageInfo.Units Property

Specifies list of units in the package.

property Units: TStrings;

Description

This is read-only property.

1.17.1.6 TPackageMng Class
TPackageMng is a global registration object for components, property and component editors, actions and so on.

Class Hierarchy

TPackageMng = class ;

File

ed_RegComps

Description

TPackageMng is used to control and registration designer objects such as: components, property and component editors,
actions ...

This class performs loading packages, registration packages (calls Register method of each unit in the package),
reading/saving its state from the registry, registration of frames, customizing palette and packages list.

Notes

Do not create (see page 250) objects of this class. Use global variable PackageMng (see page 258) to access
registration information.

Members

TPackageMng Methods

TPackageMng Methods Description

 AddComponent (see page 250) Adds new component information.

 AddPackage (see page 250) Loads package (usually *.bpl file).

 BeginUpdate (see page 250) Suspends visual palette updating.

 Create (see page 250) Creates and initializes global PackageMng (see page 258) object.

 CreateFrame (see page 251) Display dialog to add new frame to the application.

 CustomizePackages (see page 251) Display dialog to customize loaded package list.

 CustomizePalette (see page 251) Display dialog to customize component palette.

 DeleteComponent (see page 251) Deletes (unregisters) component information from manager.

 Destroy (see page 251) Destroys global PackageMng (see page 258) object.

 EndUpdate (see page 252) Re-enables visual palette updating.

 FindClass (see page 252) Looks for registration information for the specified component class.

 FindClassName (see page 252) Looks for registration information for the specified component class name.

 FindClassNameIdx (see page 252) Looks for registration information for the specified component class name.

 FindPackage (see page 252) Looks for registration information for the specified package name.

 GetCustomModule (see page 252) Returns Custom Module object for specified Root.

 IsNoIcon (see page 253) Checks whether components of this class should not be displayed.

 LoadPaleteFromIni (see page 253) Loads component palette settings from INI file.

1.17 ed_RegComps Namespace EControl Form Designer Pro Classes

248

1

 ReadRegInfo (see page 253) Reads information about installed packages and component palette from the
registry. Returns True if reading was successful.

 RegisterFrame (see page 253) Registers frame class.

 RemoveEmptyPages (see page 253) Removes all empty pages from component palette.

 RemovePackage (see page 254) Removes all registration information associated with the package.

 RenamePage (see page 254) Renames component panel page.

 ResetPalette (see page 254) Resets component palette to its initial configuration.

 SavePaletteToIni (see page 254) Saves component palette settings to INI file.

 SaveRegInfo (see page 254) Saves information about installed packages and component palette in the
registry. Returns True if saving was successful.

 SetComponentOrder (see page 255) Moves component information to specified position in palette.

TPackageMng Properties

TPackageMng Properties Description

 AutoSave (see page 255) Specifies whether packages information should be saved automatically.

 ComponentCount (see page 255) Specifies number of registered component classes.

 Components (see page 255) Specifies indexed access to registered components.

 FrameInfos (see page 255) Specifies description list of registered component classes.

 Packages (see page 255) Specifies list of loaded packages.

 Pages (see page 256) Specifies list of palette pages.

 RegSubkey (see page 256) Specifies registry key to which packages information will be saved\loaded.

TPackageMng Events

TPackageMng Events Description

 OnRegisterComponent (see page 256) Occurs before component will be registered.

 OnRegisterComponentInfo (see page 256) Occurs when new component class is registered in component palette.

 OnUnRegisterComponentInfo (see page 256) Occurs when component information is unregistered, i.e. removed from
component palette.

Legend

Method

virtual

Property

read only

Event

TPackageMng Events

TPackageMng Events Description

 OnRegisterComponent (see page 256) Occurs before component will be registered.

 OnRegisterComponentInfo (see page 256) Occurs when new component class is registered in component palette.

 OnUnRegisterComponentInfo (see page 256) Occurs when component information is unregistered, i.e. removed from
component palette.

TPackageMng Methods

TPackageMng Methods Description

 AddComponent (see page 250) Adds new component information.

 AddPackage (see page 250) Loads package (usually *.bpl file).

 BeginUpdate (see page 250) Suspends visual palette updating.

 Create (see page 250) Creates and initializes global PackageMng (see page 258) object.

 CreateFrame (see page 251) Display dialog to add new frame to the application.

 CustomizePackages (see page 251) Display dialog to customize loaded package list.

 CustomizePalette (see page 251) Display dialog to customize component palette.

 DeleteComponent (see page 251) Deletes (unregisters) component information from manager.

 Destroy (see page 251) Destroys global PackageMng (see page 258) object.

 EndUpdate (see page 252) Re-enables visual palette updating.

 FindClass (see page 252) Looks for registration information for the specified component class.

 FindClassName (see page 252) Looks for registration information for the specified component class name.

 FindClassNameIdx (see page 252) Looks for registration information for the specified component class name.

 FindPackage (see page 252) Looks for registration information for the specified package name.

 GetCustomModule (see page 252) Returns Custom Module object for specified Root.

1.17 ed_RegComps Namespace EControl Form Designer Pro Classes

249

1

 IsNoIcon (see page 253) Checks whether components of this class should not be displayed.

 LoadPaleteFromIni (see page 253) Loads component palette settings from INI file.

 ReadRegInfo (see page 253) Reads information about installed packages and component palette from the
registry. Returns True if reading was successful.

 RegisterFrame (see page 253) Registers frame class.

 RemoveEmptyPages (see page 253) Removes all empty pages from component palette.

 RemovePackage (see page 254) Removes all registration information associated with the package.

 RenamePage (see page 254) Renames component panel page.

 ResetPalette (see page 254) Resets component palette to its initial configuration.

 SavePaletteToIni (see page 254) Saves component palette settings to INI file.

 SaveRegInfo (see page 254) Saves information about installed packages and component palette in the
registry. Returns True if saving was successful.

 SetComponentOrder (see page 255) Moves component information to specified position in palette.

TPackageMng Properties

TPackageMng Properties Description

 AutoSave (see page 255) Specifies whether packages information should be saved automatically.

 ComponentCount (see page 255) Specifies number of registered component classes.

 Components (see page 255) Specifies indexed access to registered components.

 FrameInfos (see page 255) Specifies description list of registered component classes.

 Packages (see page 255) Specifies list of loaded packages.

 Pages (see page 256) Specifies list of palette pages.

 RegSubkey (see page 256) Specifies registry key to which packages information will be saved\loaded.

1.17.1.6.1 TPackageMng Methods

1.17.1.6.1.1 TPackageMng.AddComponent Method

Adds new component information.

procedure AddComponent(Cmp: TComponentClassInfo);

1.17.1.6.1.2 TPackageMng.AddPackage Method

Loads package (usually *.bpl file).

function AddPackage(const Name: string): TPackageInfo ;

Description

AddPackage loads package, calls procedures Register and RuntimeRegister for each unit in a package. Thus, all
design-time objects are registered.

Function returns reference to the TPackageInfo (see page 246) object will be added.

1.17.1.6.1.3 TPackageMng.BeginUpdate Method

Suspends visual palette updating.

procedure BeginUpdate;

1.17.1.6.1.4 TPackageMng.Create Constructor

Creates and initializes global PackageMng (see page 258) object.

constructor Create;

Notes

Do not destroy (see page 251) this object! It will be destroyed automatically when program terminates.

1.17 ed_RegComps Namespace EControl Form Designer Pro Classes

250

1

1.17.1.6.1.5 TPackageMng.CreateFrame Method

Display dialog to add new frame to the application.

function CreateFrame(AOwner: TComponent): TCustomFrame;

Description

Displays "Frames (see page 242)" dialog, then creates instance of frame selected by user. Called by the designer when
user is going to insert new frame.

1.17.1.6.1.6 TPackageMng.CustomizePackages Method

Display dialog to customize loaded package list.

function CustomizePackages: Boolean;

Description

Displays "Packages (see page 255)" dialog. In this dialog user may install or uninstall any package.

1.17.1.6.1.7 TPackageMng.CustomizePalette Method

Display dialog to customize component palette.

function CustomizePalette: Boolean;

Description

Displays "Customize palette" dialog. In this dialog user may customize palette pages (modify, create (see page 250),
delete), hide/show any available component.

1.17.1.6.1.8 DeleteComponent Method

Deletes (unregisters) component information from manager.

Legend

Method

1.17.1.6.1.8.1 TPackageMng.DeleteComponent Method (TComponentClass)

Deletes (unregisters) component information from manager by component class reference.

procedure DeleteComponent(Cls: TComponentClass); overload ;

1.17.1.6.1.8.2 TPackageMng.DeleteComponent Method (TComponentClassInfo)

Deletes (unregisters) component information from manager by reference.

procedure DeleteComponent(Cmp: TComponentClassInfo); overload ;

1.17.1.6.1.8.3 TPackageMng.DeleteComponent Method (integer)

Deletes (unregisters) component information from manager by index.

procedure DeleteComponent(Index : integer); overload ;

1.17.1.6.1.9 TPackageMng.Destroy Destructor

Destroys global PackageMng (see page 258) object.

destructor Destroy; override ;

Notes

Do not destroy this object! It will be destroyed automatically when program terminates.

1.17 ed_RegComps Namespace EControl Form Designer Pro Classes

251

1

1.17.1.6.1.10 TPackageMng.EndUpdate Method

Re-enables visual palette updating.

procedure EndUpdate;

1.17.1.6.1.11 TPackageMng.FindClass Method

Looks for registration information for the specified component class.

function FindClass(AClass: TClass): TComponentClassInfo ;

Description

FindClass looks for TComponentClassInfo (see page 242) information for specfied class. If no such information has found
it returns nil .

1.17.1.6.1.12 TPackageMng.FindClassName Method

Looks for registration information for the specified component class name.

function FindClassName(AClassName: string): TComponentClassInfo ;

Description

FindClassName is similar to FindClass (see page 252) method but look for TComponentClassInfo (see page 242) info
via class type name.

If no such information has found it returns nil .

1.17.1.6.1.13 TPackageMng.FindClassNameIdx Method

Looks for registration information for the specified component class name.

function FindClassNameIdx(AClassName: string): integer;

Description

FindClassName (see page 252) is similar to FindClass (see page 252) method but looks for index of
TComponentClassInfo (see page 242) info via class type name.

If no such information has found it returns nil .

1.17.1.6.1.14 TPackageMng.FindPackage Method

Looks for registration information for the specified package name.

function FindPackage(AFileName: string): TPackageInfo ;

Description

Use FindPackage to find registration information for the specified package name.

If no such information has found it returns nil .

1.17.1.6.1.15 TPackageMng.GetCustomModule Method

Returns Custom Module object for specified Root.

function GetCustomModule(Root: TComponent; Designer: IDesigner): ICustomModule;

1.17 ed_RegComps Namespace EControl Form Designer Pro Classes

252

1

Description

1.17.1.6.1.16 TPackageMng.IsNoIcon Method

Checks whether components of this class should not be displayed.

function IsNoIcon(AClass: TClass): Boolean;

Description

For example, TMenuItem objects are not visible in designer. Such classes are registered using RegisterNoIcon function.

1.17.1.6.1.17 LoadPaleteFromIni Method

1.17.1.6.1.17.1 TPackageMng.LoadPaleteFromIni Method (TCustomIniFile)

Loads component palette settings from INI file.

procedure LoadPaleteFromIni(Ini: TCustomIniFile); overload ;

1.17.1.6.1.17.2 TPackageMng.LoadPaleteFromIni Method (string)

Loads component palette settings from INI file.

procedure LoadPaleteFromIni(const FileName: string); overload ;

Description

1.17.1.6.1.18 TPackageMng.ReadRegInfo Method

Reads information about installed packages and component palette from the registry. Returns True if reading was successful.

function ReadRegInfo(const RegKey: string = ''): Boolean;

Description

RegKey is a registry key.

RootKey is always HKEY_LOCAL_MACHINE.

1.17.1.6.1.19 TPackageMng.RegisterFrame Method

Registers frame class.

procedure RegisterFrame(AClass: TCustomFrameClass; AResource: TCustomFrame);

Description

All newly created frames in the designer will be initialized using AResource object.

The AClass parameter is a frame class is being registered.

The AResource parameter is a reference to object from which this frames is initialized.

1.17.1.6.1.20 TPackageMng.RemoveEmptyPages Method

Removes all empty pages from component palette.

procedure RemoveEmptyPages(All: Boolean = False);

1.17 ed_RegComps Namespace EControl Form Designer Pro Classes

253

1

Description

Removes all empty pages (without components) so component palette does not be jammed with useless elements.

1.17.1.6.1.21 TPackageMng.RemovePackage Method

Removes all registration information associated with the package.

procedure RemovePackage(pack: TPackageInfo);

Description

Package is not removed from memory. If you sure that this package is not use you may unload package using WIN API
FreeLibrary.

1.17.1.6.1.22 TPackageMng.RenamePage Method

Renames component panel page.

procedure RenamePage(const OldName: string ; const NewName: string);

Description

Use this method instead of changing Pages (see page 256) property. Each component class descriptor has Page
property, renaming page updates Pages (see page 256) property and changes Page property in component class
descriptors.

1.17.1.6.1.23 TPackageMng.ResetPalette Method

Resets component palette to its initial configuration.

procedure ResetPalette;

1.17.1.6.1.24 SavePaletteToIni Method

1.17.1.6.1.24.1 TPackageMng.SavePaletteToIni Method (TCustomIniFile)

Saves component palette settings to INI file.

procedure SavePaletteToIni(Ini: TCustomIniFile); overload ;

1.17.1.6.1.24.2 TPackageMng.SavePaletteToIni Method (string)

Saves component palette settings to INI file.

procedure SavePaletteToIni(const FileName: string); overload ;

Description

1.17.1.6.1.25 TPackageMng.SaveRegInfo Method

Saves information about installed packages and component palette in the registry. Returns True if saving was successful.

function SaveRegInfo(const RegKey: string = ''): Boolean;

Description

RegKey is a registry key.

RootKey is always HKEY_LOCAL_MACHINE.

1.17 ed_RegComps Namespace EControl Form Designer Pro Classes

254

1

1.17.1.6.1.26 TPackageMng.SetComponentOrder Method

Moves component information to specified position in palette.

procedure SetComponentOrder(Cmp: TComponentClassInfo ; Index : integer);

1.17.1.6.2 TPackageMng Properties

1.17.1.6.2.1 TPackageMng.AutoSave Property

Specifies whether packages information should be saved automatically.

property AutoSave: Boolean;

Description

1.17.1.6.2.2 TPackageMng.ComponentCount Property

Specifies number of registered component classes.

property ComponentCount: integer;

Description

Use ComponentCount to determine number of registered component classes.

Read-only property.

1.17.1.6.2.3 TPackageMng.Components Property

Specifies indexed access to registered components.

property Components [Index : integer]: TComponentClassInfo ;

Description

Use Components to access registered component via its Index. First registered component has Index = 0 and so on.

Read-only property.

1.17.1.6.2.4 TPackageMng.FrameInfos Property

Specifies description list of registered component classes.

property FrameInfos: TObjectList;

Description

Use FrameInfos to access description list of registered frames. Each element of list is an instance of TFrameInfo (see
page 245).

Read-only property.

1.17.1.6.2.5 TPackageMng.Packages Property

Specifies list of loaded packages.

property Packages: TObjectList;

1.17 ed_RegComps Namespace EControl Form Designer Pro Classes

255

1

Description

Read-only property

1.17.1.6.2.6 TPackageMng.Pages Property

Specifies list of palette pages.

property Pages: TStrings;

Description

Read Pages to use list of palette pages.

Write new value for Pages to change.

1.17.1.6.2.7 TPackageMng.RegSubkey Property

Specifies registry key to which packages information will be saved\loaded.

property RegSubkey: String ;

Description

1.17.1.6.3 TPackageMng Events

1.17.1.6.3.1 TPackageMng.OnRegisterComponent Event

Occurs before component will be registered.

property OnRegisterComponent: TComponentRegEvent ;

Description

Using this event you may filter components during loading packages.

The AClass parameter is the component class is being registered currently.

The Page parameter is the name of palette page component is being installed to. Change this property to customize output.

The Accept parameter determines whether a component is allowed to be registered.

1.17.1.6.3.2 TPackageMng.OnRegisterComponentInfo Event

Occurs when new component class is registered in component palette.

property OnRegisterComponentInfo: TComponentRegInfoEvent ;

1.17.1.6.3.3 TPackageMng.OnUnRegisterComponentInfo Event

Occurs when component information is unregistered, i.e. removed from component palette.

property OnUnRegisterComponentInfo: TComponentRegInfoEvent ;

1.17.2 Functions

The following table lists functions in this documentation.

1.17 ed_RegComps Namespace EControl Form Designer Pro Functions

256

1

Functions

Function Description

 DrawBtnIcon (see page 257) Draws component icon.

Legend

Method

1.17.2.1 ed_RegComps.DrawBtnIcon Function
procedure DrawBtnIcon(Canvas: TCanvas; ARect: TRect; Icon: TBitmap; Style: TIconBtnStyle);

File

ed_RegComps

Description

Draws component icon.

1.17.3 Structs, Records, Enums

The following table lists structs, records, enums in this documentation.

Enumerations

Enumeration Description

 TIconBtnStyle (see page 257) TIconBtnStyle determines style of the component icon rendering

Legend

Enumeration

1.17.3.1 ed_RegComps.TIconBtnStyle Enumeration
TIconBtnStyle determines style of the component icon rendering

TIconBtnStyle = (
 ibsNone,
 ibsPush,
 ibsFlat
);

File

ed_RegComps

Members

Members Description

ibsNone no frame will be added to button

ibsPush frame looks like standard button

ibsFlat frame has flat border

Description

TIconBtnStyle determines how component icons will be rendered on the component palette

• ibsNone - no frame will be added to button

• ibsPush - frame looks like standard button

• ibsFlat - frame has flat border

1.17 ed_RegComps Namespace EControl Form Designer Pro Types

257

1

1.17.4 Types

The following table lists types in this documentation.

Types

Type Description

TComponentRegEvent (see page 258) See TPackageMng.OnRegisterComponent Event (see page 256)

TComponentRegInfoEvent (see page 258) See TPackageMng.OnRegisterComponentInfo Event (see page 256)

1.17.4.1 ed_RegComps.TComponentRegEvent Type
TComponentRegEvent = procedure (AClass: TComponentClass; var Page: string ; var Accept:
Boolean) of object ;

File

ed_RegComps

Description

See TPackageMng.OnRegisterComponent Event (see page 256)

1.17.4.2 ed_RegComps.TComponentRegInfoEvent Type
See TPackageMng.OnRegisterComponentInfo Event (see page 256)

TComponentRegInfoEvent = procedure (AComponentClassInfo: TComponentClassInfo) of object ;

File

ed_RegComps

1.17.5 Variables

The following table lists variables in this documentation.

Variables

Variable Description

PackageMng (see page 258) Main registration object.

Runtime (see page 259) Specifies running mode of the package. Runtime is True when package is
loaded outside of Delphi IDE. You may use this variable to make some
features of property or component editors to be available only in EControl
Form Designer Pro.

1.17.5.1 ed_RegComps.PackageMng Variable
Main registration object.

PackageMng: TPackageMng ;

File

ed_RegComps

Description

Use this object to access registration information of registered design objects: component editors, property editors, custom

1.17 ed_RegComps Namespace EControl Form Designer Pro Variables

258

1

modules.

Use this object to install/uninstall packages and to customize component palette.

Do not create objects of TPackageMng (see page 248) class. Use global variable PackageMng to access registration
information.

1.17.5.2 ed_RegComps.Runtime Variable
Runtime: Boolean = False;

File

ed_RegComps

Description

Specifies running mode of the package. Runtime is True when package is loaded outside of Delphi IDE. You may use this
variable to make some features of property or component editors to be available only in EControl Form Designer Pro.

1.18 ed_RegMeth Namespace

1.18.1 Classes

The following table lists classes in this documentation.

Classes

Class Description

TDefaultMethodRegister (see page 259) Class for registration object methods in application.

1.18.1.1 TDefaultMethodRegister Class
Class for registration object methods in application.

Class Hierarchy

TDefaultMethodRegister = class ;

File

ed_RegMeth

Description

Class for methods registration. Global variable MethRegister (see page 267): TDefaultMethodRegister is used by the
Designer to assign method to procedural property (event).

To register method use AddMethod (see page 264) function.

But AddMethod (see page 264) is not comfortable to use, so class have list of overload helper-methods to simplify
registration:

1.18 ed_RegMeth Namespace EControl Form Designer Pro Classes

259

1

• Add (see page 261)(ev: TNotifyEvent)

• Add (see page 261)(ev: TMouseEvent)

• Add (see page 261)(ev: TKeyEvent)

• and so on

To simplify another types of method add (see page 261) helper function (see example)

Do not instance object of this class. Instead use global variable existing MethRegister (see page 267).

Example

See example (see page 10) how to register methods with and without helper function.

See demo application in Demo/reg_new_method_type/ too.

Members

TDefaultMethodRegister Fields

TDefaultMethodRegister Fields Description

 FInfos (see page 261) List to store PMethodInfo (see page 266) for registered methods

TDefaultMethodRegister Methods

TDefaultMethodRegister Methods Description

 Add (see page 261) Use of of the Add(...) methods to register existent procedure to be available in
object inspector at runtime.

 AddMethod (see page 264) Register's method for using in helper-functions

 Create (see page 264) Creates and initializes the MethRegister (see page 267) object

 Destroy (see page 264) Destroys MethRegister (see page 267) object

 GetMethodsNames (see page 264) Calls Proc for each registered method of the specified type TypeData

 RemoveObject (see page 265) Remove all entries of registered object methods

 ValidateMethod (see page 265) Looks for the method in registered methods list, then validates type of the
method.

TDefaultMethodRegister Properties

TDefaultMethodRegister Properties Description

 Count (see page 265) Specifies the number of items in the array of registered methods.

 Items (see page 265) Provides indexed access to the items in the PMethodInfo (see page 266)
collection.

Legend

Data Member

protected

Method

virtual

Property

read only

TDefaultMethodRegister Fields

TDefaultMethodRegister Fields Description

 FInfos (see page 261) List to store PMethodInfo (see page 266) for registered methods

TDefaultMethodRegister Methods

TDefaultMethodRegister Methods Description

 Add (see page 261) Use of of the Add(...) methods to register existent procedure to be available in
object inspector at runtime.

 AddMethod (see page 264) Register's method for using in helper-functions

 Create (see page 264) Creates and initializes the MethRegister (see page 267) object

 Destroy (see page 264) Destroys MethRegister (see page 267) object

 GetMethodsNames (see page 264) Calls Proc for each registered method of the specified type TypeData

1.18 ed_RegMeth Namespace EControl Form Designer Pro Classes

260

1

 RemoveObject (see page 265) Remove all entries of registered object methods

 ValidateMethod (see page 265) Looks for the method in registered methods list, then validates type of the
method.

TDefaultMethodRegister Properties

TDefaultMethodRegister Properties Description

 Count (see page 265) Specifies the number of items in the array of registered methods.

 Items (see page 265) Provides indexed access to the items in the PMethodInfo (see page 266)
collection.

1.18.1.1.1 TDefaultMethodRegister Fields

1.18.1.1.1.1 TDefaultMethodRegister.FInfos Field

List to store PMethodInfo (see page 266) for registered methods

FInfos: TList;

Description

This list is used internally to store PMethodInfo (see page 266) for registered methods.

1.18.1.1.2 TDefaultMethodRegister Methods

1.18.1.1.2.1 Add Method

Use of of the Add(...) methods to register existent procedure to be available in object inspector at runtime.

Legend

Method

1.18.1.1.2.1.1 TDefaultMethodRegister.Add Method (TCanResizeEvent)

Helper-method for TCanResizeEvent type registration

procedure Add(ev: TCanResizeEvent); overload ;

Description

Use this method to register methods of TCanResizeEvent type.

1.18.1.1.2.1.2 TDefaultMethodRegister.Add Method (TConstrainedResizeEvent)

Helper-method for TConstrainedResizeEvent type registration

procedure Add(ev: TConstrainedResizeEvent); overload ;

Description

Use this method to register methods of TConstrainedResizeEvent type.

1.18.1.1.2.1.3 TDefaultMethodRegister.Add Method (TContextPopupEvent)

Helper-method for TContextPopupEvent type registration

procedure Add(ev: TContextPopupEvent); overload ;

Description

Use this method to register methods of TContextPopupEvent type.

1.18.1.1.2.1.4 TDefaultMethodRegister.Add Method (TDockDropEvent)

Helper-method for TDockDropEvent type registration

1.18 ed_RegMeth Namespace EControl Form Designer Pro Classes

261

1

procedure Add(ev: TDockDropEvent); overload ;

Description

Use this method to register methods of TDockDropEvent type.

1.18.1.1.2.1.5 TDefaultMethodRegister.Add Method (TDockOverEvent)

Helper-method for TDockOverEvent type registration

procedure Add(ev: TDockOverEvent); overload ;

Description

Use this method to register methods of TDockOverEvent type.

1.18.1.1.2.1.6 TDefaultMethodRegister.Add Method (TDragDropEvent)

Helper-method for TDragDropEvent type registration

procedure Add(ev: TDragDropEvent); overload ;

Description

Use this method to register methods of TDragDropEvent type.

1.18.1.1.2.1.7 TDefaultMethodRegister.Add Method (TDragOverEvent)

Helper-method for TDragOverEvent type registration

procedure Add(ev: TDragOverEvent); overload ;

Description

Use this method to register methods of TDragOverEvent type.

1.18.1.1.2.1.8 TDefaultMethodRegister.Add Method (TEndDragEvent)

Helper-method for TEndDragEvent type registration

procedure Add(ev: TEndDragEvent); overload ;

Description

Use this method to register methods of TEndDragEvent type.

1.18.1.1.2.1.9 TDefaultMethodRegister.Add Method (TGetSiteInfoEvent)

Helper-method for TGetSiteInfoEvent type registration

procedure Add(ev: TGetSiteInfoEvent); overload ;

Description

Use this method to register methods of TGetSiteInfoEvent type.

1.18.1.1.2.1.10 TDefaultMethodRegister.Add Method (TKeyEvent)

Helper-method for TKeyEvent type registration

procedure Add(ev: TKeyEvent); overload ;

Description

Use this method to register methods of TKeyEvent type.

1.18.1.1.2.1.11 TDefaultMethodRegister.Add Method (TKeyPressEvent)

Helper-method for TKeyPressEvent type registration

procedure Add(ev: TKeyPressEvent); overload ;

1.18 ed_RegMeth Namespace EControl Form Designer Pro Classes

262

1

Description

Use this method to register methods of TKeyPressEvent type.

1.18.1.1.2.1.12 TDefaultMethodRegister.Add Method (TMouseEvent)

Helper-method for TMouseEvent type registration

procedure Add(ev: TMouseEvent); overload ;

Description

Use this method to register methods of TMouseEvent type.

1.18.1.1.2.1.13 TDefaultMethodRegister.Add Method (TMouseMoveEvent)

Helper-method for TMouseMoveEvent type registration

procedure Add(ev: TMouseMoveEvent); overload ;

Description

Use this method to register methods of TMouseMoveEvent type.

1.18.1.1.2.1.14 TDefaultMethodRegister.Add Method (TMouseWheelEvent)

Helper-method for TMouseWheelEvent type registration

procedure Add(ev: TMouseWheelEvent); overload ;

Description

Use this method to register methods of TMouseWheelEvent type.

1.18.1.1.2.1.15 TDefaultMethodRegister.Add Method (TMouseWheelUpDownEvent)

Helper-method for TMouseWheelUpDownEvent type registration

procedure Add(ev: TMouseWheelUpDownEvent); overload ;

Description

Use this method to register methods of TMouseWheelUpDownEvent type.

1.18.1.1.2.1.16 TDefaultMethodRegister.Add Method (TNotifyEvent)

Helper-method for TNotifyEvent type registration

procedure Add(ev: TNotifyEvent); overload ;

Description

Use this method to register methods of TNotifyEvent type.

1.18.1.1.2.1.17 TDefaultMethodRegister.Add Method (TStartDockEvent)

Helper-method for TStartDockEvent type registration

procedure Add(ev: TStartDockEvent); overload ;

Description

Use this method to register methods of TStartDockEvent type.

1.18.1.1.2.1.18 TDefaultMethodRegister.Add Method (TStartDragEvent)

Helper-method for TStartDragEvent type registration

procedure Add(ev: TStartDragEvent); overload ;

1.18 ed_RegMeth Namespace EControl Form Designer Pro Classes

263

1

Description

Use this method to register methods of TStartDragEvent type.

1.18.1.1.2.1.19 TDefaultMethodRegister.Add Method (TUnDockEvent)

Helper-method for TUnDockEvent type registration

procedure Add(ev: TUnDockEvent); overload ;

Description

Use this method to register methods of TUnDockEvent type.

1.18.1.1.2.2 AddMethod Method

1.18.1.1.2.2.1 TDefaultMethodRegister.AddMethod Method (PTypeData, Pointer, TObject)

Register's method for using in helper-functions

procedure AddMethod(TypeData: PTypeData; PProc: Pointer; Data: TObject); overload ;

Description

See example (see page 10) for details

1.18.1.1.2.2.2 TDefaultMethodRegister.AddMethod Method (PTypeData, TMethod)

Register's method for direct using

procedure AddMethod(TypeData: PTypeData; const method: TMethod); overload ;

Description

See example (see page 10) for details

1.18.1.1.2.3 TDefaultMethodRegister.Create Constructor

Creates and initializes the MethRegister (see page 267) object

constructor Create;

Description

Do not instance object of this class. Instead use global variable existing MethRegister (see page 267).

1.18.1.1.2.4 TDefaultMethodRegister.Destroy Destructor

Destroys MethRegister (see page 267) object

destructor Destroy; override ;

Description

Do not destroy MethRegister (see page 267) manually. It destroys automatically when application terminates.

1.18.1.1.2.5 TDefaultMethodRegister.GetMethodsNames Method

Calls Proc for each registered method of the specified type TypeData

procedure GetMethodsNames(TypeData: PTypeData; const Proc: TGetStrProc; ARoot: TObject);

Description

The TypeData parameter is PTypeData for specified method

The Proc parameter is a callback procedure for creating name of this method

The ARoot parameter is the owner object.

1.18 ed_RegMeth Namespace EControl Form Designer Pro Classes

264

1

1.18.1.1.2.6 TDefaultMethodRegister.RemoveObject Method

Remove all entries of registered object methods

procedure RemoveObject(ARoot: TObject);

Description

1.18.1.1.2.7 TDefaultMethodRegister.ValidateMethod Method

Looks for the method in registered methods list, then validates type of the method.

function ValidateMethod(TypeData: PTypeData; const method: TMethod): Boolean;

Description

Used for creating list of the appropriate methods.

1.18.1.1.3 TDefaultMethodRegister Properties

1.18.1.1.3.1 TDefaultMethodRegister.Count Property

Specifies the number of items in the array of registered methods.

property Count: integer;

Description

Read Count to determine the number of PMethodInfo (see page 266) entries in the array.

Read-only property

1.18.1.1.3.2 TDefaultMethodRegister.Items Property

Provides indexed access to the items in the PMethodInfo (see page 266) collection.

property Items [Index : integer]: PMethodInfo ;

Description

Use Items to access individual items in the collection.

1.18.2 Structs, Records, Enums

The following table lists structs, records, enums in this documentation.

Records

Record Description

 TMethodInfo (see page 265) Internal method information record.

Legend

Record

1.18.2.1 ed_RegMeth.TMethodInfo Record
TMethodInfo = record
 MethodType: PTypeData;

1.18 ed_RegMeth Namespace EControl Form Designer Pro Structs, Records, Enums

265

1

 Data: TObject;
 Code: pointer;
end ;

File

ed_RegMeth

Members

Members Description

MethodType: PTypeData; Pointer to type information of the method.

Data: TObject; Pointer to object instance.

Code: pointer; Pointer to method code.

Description

Internal method information record.

1.18.3 Types

The following table lists types in this documentation.

Types

Type Description

PMethod (see page 266) This is a Pointer to TMethod type

PMethodInfo (see page 266) PMethodInfo is a pointer to TMethodInfo (see page 265) type

1.18.3.1 ed_RegMeth.PMethod Type
This is a Pointer to TMethod type

PMethod = ^TMethod;

File

ed_RegMeth

Description

1.18.3.2 ed_RegMeth.PMethodInfo Type
PMethodInfo is a pointer to TMethodInfo (see page 265) type

PMethodInfo = ^ TMethodInfo ;

File

ed_RegMeth

Description

1.18.4 Variables

The following table lists variables in this documentation.

1.18 ed_RegMeth Namespace EControl Form Designer Pro Variables

266

1

Variables

Variable Description

MethRegister (see page 267) You can replace MethRegister with instance of your class, derived from
TDefaultMethodRegister (see page 259) to support more event types.

1.18.4.1 ed_RegMeth.MethRegister Variable
You can replace MethRegister with instance of your class, derived from TDefaultMethodRegister (see page 259) to
support more event types.

MethRegister: TDefaultMethodRegister ;

File

ed_RegMeth

1.19 ed_ObjTree Namespace

1.19.1 Classes

The following table lists classes in this documentation.

Classes

Class Description

TCustomDesignerObjTree (see page 267) Object TreeView displays a tree diagram of the visual and nonvisual
components you place on a form, data module, or frame.

TDesignerObjTree (see page 271) Object TreeView displays a tree diagram of the visual and nonvisual
components you place on a form, data module, or frame.

1.19.1.1 TCustomDesignerObjTree Class
Object TreeView displays a tree diagram of the visual and nonvisual components you place on a form, data module, or
frame.

Class Hierarchy

TCustomDesignerObjTree = class (TCustomTreeView, ISprigDesigner, IDesignNotification);

File

ed_ObjTree

Description

Object TreeView displays the components’ logical relationships, such as sibling, parent-child (such as a form to a check
box), and property relationships (such as a dataset to its FieldDefs properties).Some of these relationships are implicit, such
as a dataset component to its properties. You can create (see page 269) other relationships by dragging and dropping one
component on top of another, if they have the possibility of a relationship. Or you can drag and drop to change the parental
relationships between components.

1.19 ed_ObjTree Namespace EControl Form Designer Pro Classes

267

1

For example, you can drag:

• Related components that you can combine, such as a panel and a check box to make a parent-child relationship.

• Data sources from one table or dataset to another.

• Databases from one session to another.

• Datasets (such as tables and queries) from one database to another.

Some nodes in the tree diagram are shown with black-and-white icons. These nodes represent "implied" components.

Double-click the item to open component editor if there is any component editor associated with selected component.

When you right-click an item in the tree diagram, you'll see an abridged version of the component's context menu. To access
the full menu, right-click on the same component in the form, data module, or frame.

Members

TCustomDesignerObjTree Methods

TCustomDesignerObjTree Methods Description

 AddSprigAddItems (see page 269) Adds menu items for adding new elements.

 AddType (see page 269) Adds item of type specified at index.

 AddTypeCount (see page 269) Returns number of adding types.

 CanDelete (see page 269) Determines whether selected item maybe deleted.

 CanMove (see page 269) Determines whether item may be moved.

 Create (see page 269) Creates and initializes a TCustomDesignerObjTree instance.

 DeleteSelected (see page 270) Deletes selected items.

 Destroy (see page 270) Destroys an instance of TCustomDesignerObjTree.

 Loaded (see page 270) Initializes the component after the form file has been read into memory.

 Move (see page 270) Moves selected item up or down.

 Notification (see page 270) Forwards notification messages to all owned components.

TCustomDesignerObjTree Properties

TCustomDesignerObjTree Properties Description

 AddTypes (see page 271) Provides indexed access to types of added items.

 Designer (see page 271) Allows direct linking to particular designer. In this case object tree will work
with objects of the Designer.Root and will work even when designer is not
active.

 RootSprig (see page 271) References root sprig item.

TCustomDesignerObjTree Events

TCustomDesignerObjTree Events Description

 OnCreateSprigNode (see page 271) Called before creation node in object tree. Allows restrict sprigs to be shown
and allows changing node text.

Legend

Method

virtual

protected

Property

read only

Event

TCustomDesignerObjTree Events

TCustomDesignerObjTree Events Description

 OnCreateSprigNode (see page 271) Called before creation node in object tree. Allows restrict sprigs to be shown
and allows changing node text.

1.19 ed_ObjTree Namespace EControl Form Designer Pro Classes

268

1

TCustomDesignerObjTree Methods

TCustomDesignerObjTree Methods Description

 AddSprigAddItems (see page 269) Adds menu items for adding new elements.

 AddType (see page 269) Adds item of type specified at index.

 AddTypeCount (see page 269) Returns number of adding types.

 CanDelete (see page 269) Determines whether selected item maybe deleted.

 CanMove (see page 269) Determines whether item may be moved.

 Create (see page 269) Creates and initializes a TCustomDesignerObjTree instance.

 DeleteSelected (see page 270) Deletes selected items.

 Destroy (see page 270) Destroys an instance of TCustomDesignerObjTree.

 Loaded (see page 270) Initializes the component after the form file has been read into memory.

 Move (see page 270) Moves selected item up or down.

 Notification (see page 270) Forwards notification messages to all owned components.

TCustomDesignerObjTree Properties

TCustomDesignerObjTree Properties Description

 AddTypes (see page 271) Provides indexed access to types of added items.

 Designer (see page 271) Allows direct linking to particular designer. In this case object tree will work
with objects of the Designer.Root and will work even when designer is not
active.

 RootSprig (see page 271) References root sprig item.

1.19.1.1.1 TCustomDesignerObjTree Methods

1.19.1.1.1.1 TCustomDesignerObjTree.AddSprigAddItems Method

Adds menu items for adding new elements.

procedure AddSprigAddItems(Menu: TPopupMenu);

1.19.1.1.1.2 TCustomDesignerObjTree.AddType Method

Adds item of type specified at index.

procedure AddType(Index : Integer);

1.19.1.1.1.3 TCustomDesignerObjTree.AddTypeCount Method

Returns number of adding types.

function AddTypeCount: Integer;

1.19.1.1.1.4 TCustomDesignerObjTree.CanDelete Method

Determines whether selected item maybe deleted.

function CanDelete: Boolean;

1.19.1.1.1.5 TCustomDesignerObjTree.CanMove Method

Determines whether item may be moved.

function CanMove(Up: Boolean): Boolean;

1.19.1.1.1.6 TCustomDesignerObjTree.Create Constructor

Creates and initializes a TCustomDesignerObjTree instance.

constructor Create(AOwner: TComponent); override ;

Description

Use Create to programmatically instantiate a TCustomDesignerObjTree component. Components added in the form
designer are created automatically.

1.19 ed_ObjTree Namespace EControl Form Designer Pro Classes

269

1

AOwner is the component that is responsible for freeing the component instance. It becomes the value of the Owner
property.

1.19.1.1.1.7 TCustomDesignerObjTree.DeleteSelected Method

Deletes selected items.

procedure DeleteSelected; reintroduce ;

1.19.1.1.1.8 TCustomDesignerObjTree.Destroy Destructor

Destroys an instance of TCustomDesignerObjTree.

destructor Destroy; override ;

Description

Do not call Destroy directly. Call Free instead. Free verifies that the object reference is not nil before calling Destroy.

1.19.1.1.1.9 TCustomDesignerObjTree.Loaded Method

Initializes the component after the form file has been read into memory.

procedure Loaded; override ;

Description

Do not call the protected Loaded method. The streaming system calls this method after it loads the component’s form from a
stream.

When the streaming system loads a form or data module from its form file, it first constructs the form component by calling
its constructor, then reads its property values from the form file. After reading all the property values for all the components,
the streaming system calls the Loaded methods of each component in the order the components were created. This gives
the components a chance to initialize any data that depends on the values of other components or other parts of itself.

Notes

All references to sibling components are resolved by the time Loaded is called. Loaded is the first place that sibling pointers
can be used after being streamed in.

As implemented in TComponent, Loaded clears the csLoading flag in the ComponentState property, indicating that the
component is no longer loading.

Warning: Loaded may be called multiple times on inherited forms. It is called every time a level of inheritance is streamed
in. Do not allocate memory in an overridden Loaded method without first checking that the memory has not been allocated in
a previous call.

1.19.1.1.1.10 TCustomDesignerObjTree.Move Method

Moves selected item up or down.

procedure Move(Up: Boolean);

1.19.1.1.1.11 TCustomDesignerObjTree.Notification Method

Forwards notification messages to all owned components.

procedure Notification(AComponent: TComponent; Operation: TOperation); override ;

Description

Do not call the Notification method in an application. Notification is called automatically when the component specified by

1.19 ed_ObjTree Namespace EControl Form Designer Pro Classes

270

1

AComponent is about to be inserted or removed, as specified by Operation. By default, components pass along the
notification to their owned components, if any.

A component can, if needed, act on the notification that a component is being inserted or removed. For example, if a
component has object fields or properties that contain references to other components, it can check the notifications of
component removals and invalidate those references as needed.

Notes

Notification is not called for components that are freed implicitly (because their Owner is freed).

1.19.1.1.2 TCustomDesignerObjTree Properties

1.19.1.1.2.1 TCustomDesignerObjTree.AddTypes Property

Provides indexed access to types of added items.

property AddTypes [Index : Integer]: string ;

1.19.1.1.2.2 TCustomDesignerObjTree.Designer Property

Allows direct linking to particular designer. In this case object tree will work with objects of the Designer.Root and will work
even when designer is not active.

property Designer: TzCustomFormDesigner ;

1.19.1.1.2.3 TCustomDesignerObjTree.RootSprig Property

References root sprig item.

property RootSprig: TRootSprig;

1.19.1.1.3 TCustomDesignerObjTree Events

1.19.1.1.3.1 TCustomDesignerObjTree.OnCreateSprigNode Event

Called before creation node in object tree. Allows restrict sprigs to be shown and allows changing node text.

property OnCreateSprigNode: TCreateSprigNodeEvent ;

Notes

Works only in BDS 2005 and later versions.

1.19.1.2 TDesignerObjTree Class
Object TreeView displays a tree diagram of the visual and nonvisual components you place on a form, data module, or
frame.

Class Hierarchy

TDesignerObjTree = class (TCustomDesignerObjTree);

File

ed_ObjTree

1.19 ed_ObjTree Namespace EControl Form Designer Pro Classes

271

1

Description

Object TreeView displays the components’ logical relationships, such as sibling, parent-child (such as a form to a check
box), and property relationships (such as a dataset to its FieldDefs properties).Some of these relationships are implicit, such
as a dataset component to its properties. You can create (see page 277) other relationships by dragging and dropping one
component on top of another, if they have the possibility of a relationship. Or you can drag and drop to change the parental
relationships between components.

For example, you can drag:

• Related components that you can combine, such as a panel and a check box to make a parent-child relationship.

• Data sources from one table or dataset to another.

• Databases from one session to another.

• Datasets (such as tables and queries) from one database to another.

Some nodes in the tree diagram are shown with black-and-white icons. These nodes represent "implied" components.

Double-click the item to open component editor if there is any component editor associated with selected component.

When you right-click an item in the tree diagram, you'll see an abridged version of the component's context menu. To access
the full menu, right-click on the same component in the form, data module, or frame.

Members

TCustomDesignerObjTree Methods

TCustomDesignerObjTree Methods Description

 AddSprigAddItems (see page 269) Adds menu items for adding new elements.

 AddType (see page 269) Adds item of type specified at index.

 AddTypeCount (see page 269) Returns number of adding types.

 CanDelete (see page 269) Determines whether selected item maybe deleted.

 CanMove (see page 269) Determines whether item may be moved.

 Create (see page 269) Creates and initializes a TCustomDesignerObjTree instance.

 DeleteSelected (see page 270) Deletes selected items.

 Destroy (see page 270) Destroys an instance of TCustomDesignerObjTree.

 Loaded (see page 270) Initializes the component after the form file has been read into memory.

 Move (see page 270) Moves selected item up or down.

 Notification (see page 270) Forwards notification messages to all owned components.

TDesignerObjTree Class

TDesignerObjTree Class Description

 Create (see page 277) Creates and initializes a TDesignerObjTree instance.

TCustomDesignerObjTree Properties

TCustomDesignerObjTree Properties Description

 AddTypes (see page 271) Provides indexed access to types of added items.

 Designer (see page 271) Allows direct linking to particular designer. In this case object tree will work
with objects of the Designer.Root and will work even when designer is not
active.

 RootSprig (see page 271) References root sprig item.

TDesignerObjTree Class

TDesignerObjTree Class Description

 Align (see page 277) Determines how the control aligns within its container (parent control).

 Anchors (see page 277) Specifies how the control is anchored to its parent.

 AutoExpand (see page 278) Specifies whether the nodes in the tree view automatically expand and
collapse depending on the selection.

 BevelEdges (see page 278) Specifies which edges of the control are beveled.

1.19 ed_ObjTree Namespace EControl Form Designer Pro Classes

272

1

 BevelInner (see page 278) Specifies the cut of the inner bevel.

 BevelKind (see page 278) Specifies the control’s bevel style.

 BevelOuter (see page 279) Specifies the cut of the outer bevel.

 BevelWidth (see page 279) Specifies the width of the inner and outer bevels.

 BiDiMode (see page 279) Specifies the bi-directional mode for the control.

 BorderStyle (see page 279) Determines whether the tree view control has a border.

 BorderWidth (see page 279) Specifies the width of the control’s border.

 ChangeDelay (see page 280) Specifies the delay between when a node is selected and when the
OnChange event occurs.

 Color (see page 280) Specifies the background color of the control.

 Constraints (see page 280) Specifies the size constraints for the control.

 Ctl3D (see page 280) Determines whether a control has a three-dimensional (3-D) or
two-dimensional look.

 DragCursor (see page 280) Indicates the image used to represent the mouse pointer when the control is
being dragged.

 DragKind (see page 281) Specifies whether the control is being dragged normally or for docking.

 DragMode (see page 281) Determines how the control initiates drag-and-drop or drag-and-dock
operations.

 Enabled (see page 281) Controls whether the control responds to mouse, keyboard, and timer events.

 Font (see page 281) Controls the attributes of text written on or in the control.

 HideSelection (see page 281) Determines whether a selected node appears selected when the focus shifts
to another control.

 HotTrack (see page 281) Specifies whether list items are highlighted when the mouse passes over them.

 Images (see page 282) Determines which image list is associated with the tree view.

 Indent (see page 282) Specifies the amount of indentation in pixels when a list of child nodes is
expanded.

 Items (see page 282) Lists the individual nodes that appear in the tree view control.

 MultiSelect (see page 282) Determines whether the user can select more than one tree node at a time.

 MultiSelectStyle (see page 282) Determines how multiple node selections work.

 OnAddition (see page 283) Occurs when new node is added.

 OnAdvancedCustomDraw (see page 283) Occurs at discrete stages during the painting of the tree view control.

 OnAdvancedCustomDrawItem (see page 283) Occurs at discrete stages during the painting of tree view nodes.

 OnChange (see page 283) Occurs whenever the selection has changed from one node to another.

 OnChanging (see page 284) Occurs when the selection is about to change from one node to another.

 OnClick (see page 284) Occurs when the user clicks the control.

 OnCollapsed (see page 284) Occurs after a node has been collapsed.

 OnCollapsing (see page 284) Occurs when a node is about to be collapsed.

 OnCompare (see page 284) Occurs when two nodes must be compared during a sort of the nodes in the
tree view.

 OnContextPopup (see page 285) Occurs when the user right-clicks the control or otherwise invokes the popup
menu (such as using the keyboard).

 OnCreateNodeClass (see page 285) Occurs when a node in the treeview is about to be created.

 OnCreateSprigNode (see page 285) Called before creation node in object tree. Allows restrict sprigs to be shown
and allows changing node text.

 OnCustomDraw (see page 285) Occurs immediately prior to painting the tree view control.

 OnCustomDrawItem (see page 286) Occurs immediately prior to painting a node in a tree view control.

 OnDblClick (see page 286) Occurs when the user double-clicks the left mouse button when the mouse
pointer is over the control.

 OnDeletion (see page 286) Occurs when a node in the tree view is deleted.

 OnDragDrop (see page 286) Occurs when the user drops an object being dragged.

 OnDragOver (see page 286) Occurs when the user drags an object over a control.

 OnEdited (see page 287) Occurs after the user edits the Text property of a node.

 OnEditing (see page 287) Occurs when the user starts to edit the Text property of a node.

 OnEndDock (see page 287) Occurs when the dragging of an object ends, either by docking the object or by
canceling the dragging.

 OnEndDrag (see page 287) Occurs when the dragging of an object ends, either by dropping the object or
by canceling the dragging.

 OnEnter (see page 288) Occurs when a control receives the input focus.

 OnExit (see page 288) Occurs when the input focus shifts away from one control to another.

 OnExpanded (see page 288) Occurs after a node is expanded.

 OnExpanding (see page 288) Occurs when a node is about to be expanded.

 OnGetImageIndex (see page 288) Occurs when the tree view looks up the ImageIndex of a node.

1.19 ed_ObjTree Namespace EControl Form Designer Pro Classes

273

1

 OnGetSelectedIndex (see page 288) Occurs when the tree view looks up the SelectedIndex of a node.

 OnKeyDown (see page 289) Occurs when a user presses any key while the control has focus.

 OnKeyPress (see page 289) Occurs when key pressed.

 OnKeyUp (see page 289) Occurs when the user releases a key that has been pressed.

 OnMouseDown (see page 289) Occurs when the user presses a mouse button with the mouse pointer over a
control.

 OnMouseMove (see page 290) Occurs when the user moves the mouse pointer while the mouse pointer is
over a control.

 OnMouseUp (see page 290) Occurs when the user releases a mouse button that was pressed with the
mouse pointer over a component.

 OnStartDock (see page 290) Occurs when the user begins to drag a control with a DragKind of dkDock.

 OnStartDrag (see page 291) Occurs when the user begins to drag the control or an object it contains by
left-clicking on the control and holding the mouse button down.

 ParentBiDiMode (see page 291) Specifies whether the control uses its parent’s BiDiMode.

 ParentColor (see page 291) Determines where a control looks for its color information.

 ParentCtl3D (see page 291) Determines where a component looks to determine if it should appear three
dimensional.

 ParentFont (see page 291) Determines where a control looks for its font information.

 ParentShowHint (see page 291) Determines where a control looks to find out if its Help Hint should be shown.

 PopupMenu (see page 292) Identifies the pop-up menu associated with the control.

 ReadOnly (see page 292) Determines whether the user can edit the node labels.

 RightClickSelect (see page 292) Determines whether the Selected property returns nodes that are selected
using the right mouse button.

 RowSelect (see page 292) Specifies whether the entire row of the selected item is highlighted.

 ShowButtons (see page 292) Specifies whether to display plus (+) and minus (-) buttons to the left side of
each parent item.

 ShowHint (see page 293) Determines whether the control displays a Help Hint when the mouse pointer
rests momentarily on the control.

 ShowLines (see page 293) Specifies whether to display the lines that link child nodes to their
corresponding parent nodes.

 ShowRoot (see page 293) Specifies whether lines connecting top-level nodes are displayed.

 SortType (see page 293) Determines if and how the nodes in a tree view are automatically sorted.

 StateImages (see page 293) Determines which image list to use for state images.

 TabOrder (see page 293) Indicates the position of the control in its parent's tab order.

 TabStop (see page 293) Determines if the user can tab to a control.

 ToolTips (see page 294) Specifies whether the items in the tree view have tool tips.

 Visible (see page 294) Determines whether the component appears on screen.

TCustomDesignerObjTree Events

TCustomDesignerObjTree Events Description

 OnCreateSprigNode (see page 271) Called before creation node in object tree. Allows restrict sprigs to be shown
and allows changing node text.

Legend

Method

virtual

protected

Property

read only

Event

TCustomDesignerObjTree Events

TCustomDesignerObjTree Events Description

 OnCreateSprigNode (see page 271) Called before creation node in object tree. Allows restrict sprigs to be shown
and allows changing node text.

TCustomDesignerObjTree Methods

TCustomDesignerObjTree Methods Description

 AddSprigAddItems (see page 269) Adds menu items for adding new elements.

 AddType (see page 269) Adds item of type specified at index.

 AddTypeCount (see page 269) Returns number of adding types.

 CanDelete (see page 269) Determines whether selected item maybe deleted.

1.19 ed_ObjTree Namespace EControl Form Designer Pro Classes

274

1

 CanMove (see page 269) Determines whether item may be moved.

 Create (see page 269) Creates and initializes a TCustomDesignerObjTree instance.

 DeleteSelected (see page 270) Deletes selected items.

 Destroy (see page 270) Destroys an instance of TCustomDesignerObjTree.

 Loaded (see page 270) Initializes the component after the form file has been read into memory.

 Move (see page 270) Moves selected item up or down.

 Notification (see page 270) Forwards notification messages to all owned components.

TDesignerObjTree Class

TDesignerObjTree Class Description

 Create (see page 277) Creates and initializes a TDesignerObjTree instance.

TCustomDesignerObjTree Properties

TCustomDesignerObjTree Properties Description

 AddTypes (see page 271) Provides indexed access to types of added items.

 Designer (see page 271) Allows direct linking to particular designer. In this case object tree will work
with objects of the Designer.Root and will work even when designer is not
active.

 RootSprig (see page 271) References root sprig item.

TDesignerObjTree Class

TDesignerObjTree Class Description

 Align (see page 277) Determines how the control aligns within its container (parent control).

 Anchors (see page 277) Specifies how the control is anchored to its parent.

 AutoExpand (see page 278) Specifies whether the nodes in the tree view automatically expand and
collapse depending on the selection.

 BevelEdges (see page 278) Specifies which edges of the control are beveled.

 BevelInner (see page 278) Specifies the cut of the inner bevel.

 BevelKind (see page 278) Specifies the control’s bevel style.

 BevelOuter (see page 279) Specifies the cut of the outer bevel.

 BevelWidth (see page 279) Specifies the width of the inner and outer bevels.

 BiDiMode (see page 279) Specifies the bi-directional mode for the control.

 BorderStyle (see page 279) Determines whether the tree view control has a border.

 BorderWidth (see page 279) Specifies the width of the control’s border.

 ChangeDelay (see page 280) Specifies the delay between when a node is selected and when the
OnChange event occurs.

 Color (see page 280) Specifies the background color of the control.

 Constraints (see page 280) Specifies the size constraints for the control.

 Ctl3D (see page 280) Determines whether a control has a three-dimensional (3-D) or
two-dimensional look.

 DragCursor (see page 280) Indicates the image used to represent the mouse pointer when the control is
being dragged.

 DragKind (see page 281) Specifies whether the control is being dragged normally or for docking.

 DragMode (see page 281) Determines how the control initiates drag-and-drop or drag-and-dock
operations.

 Enabled (see page 281) Controls whether the control responds to mouse, keyboard, and timer events.

 Font (see page 281) Controls the attributes of text written on or in the control.

 HideSelection (see page 281) Determines whether a selected node appears selected when the focus shifts
to another control.

 HotTrack (see page 281) Specifies whether list items are highlighted when the mouse passes over them.

 Images (see page 282) Determines which image list is associated with the tree view.

 Indent (see page 282) Specifies the amount of indentation in pixels when a list of child nodes is
expanded.

 Items (see page 282) Lists the individual nodes that appear in the tree view control.

 MultiSelect (see page 282) Determines whether the user can select more than one tree node at a time.

 MultiSelectStyle (see page 282) Determines how multiple node selections work.

 OnAddition (see page 283) Occurs when new node is added.

 OnAdvancedCustomDraw (see page 283) Occurs at discrete stages during the painting of the tree view control.

 OnAdvancedCustomDrawItem (see page 283) Occurs at discrete stages during the painting of tree view nodes.

 OnChange (see page 283) Occurs whenever the selection has changed from one node to another.

 OnChanging (see page 284) Occurs when the selection is about to change from one node to another.

 OnClick (see page 284) Occurs when the user clicks the control.

1.19 ed_ObjTree Namespace EControl Form Designer Pro Classes

275

1

 OnCollapsed (see page 284) Occurs after a node has been collapsed.

 OnCollapsing (see page 284) Occurs when a node is about to be collapsed.

 OnCompare (see page 284) Occurs when two nodes must be compared during a sort of the nodes in the
tree view.

 OnContextPopup (see page 285) Occurs when the user right-clicks the control or otherwise invokes the popup
menu (such as using the keyboard).

 OnCreateNodeClass (see page 285) Occurs when a node in the treeview is about to be created.

 OnCreateSprigNode (see page 285) Called before creation node in object tree. Allows restrict sprigs to be shown
and allows changing node text.

 OnCustomDraw (see page 285) Occurs immediately prior to painting the tree view control.

 OnCustomDrawItem (see page 286) Occurs immediately prior to painting a node in a tree view control.

 OnDblClick (see page 286) Occurs when the user double-clicks the left mouse button when the mouse
pointer is over the control.

 OnDeletion (see page 286) Occurs when a node in the tree view is deleted.

 OnDragDrop (see page 286) Occurs when the user drops an object being dragged.

 OnDragOver (see page 286) Occurs when the user drags an object over a control.

 OnEdited (see page 287) Occurs after the user edits the Text property of a node.

 OnEditing (see page 287) Occurs when the user starts to edit the Text property of a node.

 OnEndDock (see page 287) Occurs when the dragging of an object ends, either by docking the object or by
canceling the dragging.

 OnEndDrag (see page 287) Occurs when the dragging of an object ends, either by dropping the object or
by canceling the dragging.

 OnEnter (see page 288) Occurs when a control receives the input focus.

 OnExit (see page 288) Occurs when the input focus shifts away from one control to another.

 OnExpanded (see page 288) Occurs after a node is expanded.

 OnExpanding (see page 288) Occurs when a node is about to be expanded.

 OnGetImageIndex (see page 288) Occurs when the tree view looks up the ImageIndex of a node.

 OnGetSelectedIndex (see page 288) Occurs when the tree view looks up the SelectedIndex of a node.

 OnKeyDown (see page 289) Occurs when a user presses any key while the control has focus.

 OnKeyPress (see page 289) Occurs when key pressed.

 OnKeyUp (see page 289) Occurs when the user releases a key that has been pressed.

 OnMouseDown (see page 289) Occurs when the user presses a mouse button with the mouse pointer over a
control.

 OnMouseMove (see page 290) Occurs when the user moves the mouse pointer while the mouse pointer is
over a control.

 OnMouseUp (see page 290) Occurs when the user releases a mouse button that was pressed with the
mouse pointer over a component.

 OnStartDock (see page 290) Occurs when the user begins to drag a control with a DragKind of dkDock.

 OnStartDrag (see page 291) Occurs when the user begins to drag the control or an object it contains by
left-clicking on the control and holding the mouse button down.

 ParentBiDiMode (see page 291) Specifies whether the control uses its parent’s BiDiMode.

 ParentColor (see page 291) Determines where a control looks for its color information.

 ParentCtl3D (see page 291) Determines where a component looks to determine if it should appear three
dimensional.

 ParentFont (see page 291) Determines where a control looks for its font information.

 ParentShowHint (see page 291) Determines where a control looks to find out if its Help Hint should be shown.

 PopupMenu (see page 292) Identifies the pop-up menu associated with the control.

 ReadOnly (see page 292) Determines whether the user can edit the node labels.

 RightClickSelect (see page 292) Determines whether the Selected property returns nodes that are selected
using the right mouse button.

 RowSelect (see page 292) Specifies whether the entire row of the selected item is highlighted.

 ShowButtons (see page 292) Specifies whether to display plus (+) and minus (-) buttons to the left side of
each parent item.

 ShowHint (see page 293) Determines whether the control displays a Help Hint when the mouse pointer
rests momentarily on the control.

 ShowLines (see page 293) Specifies whether to display the lines that link child nodes to their
corresponding parent nodes.

 ShowRoot (see page 293) Specifies whether lines connecting top-level nodes are displayed.

 SortType (see page 293) Determines if and how the nodes in a tree view are automatically sorted.

 StateImages (see page 293) Determines which image list to use for state images.

 TabOrder (see page 293) Indicates the position of the control in its parent's tab order.

 TabStop (see page 293) Determines if the user can tab to a control.

 ToolTips (see page 294) Specifies whether the items in the tree view have tool tips.

1.19 ed_ObjTree Namespace EControl Form Designer Pro Classes

276

1

 Visible (see page 294) Determines whether the component appears on screen.

1.19.1.2.1 TDesignerObjTree Methods

1.19.1.2.1.1 TDesignerObjTree.Create Constructor

Creates and initializes a TDesignerObjTree instance.

constructor Create(AOwner: TComponent); override ;

Description

Use Create to programmatically instantiate a TDesignerObjTree component. Components added in the form designer are
created automatically.

AOwner is the component that is responsible for freeing the component instance. It becomes the value of the Owner
property.

1.19.1.2.2 TDesignerObjTree Properties

1.19.1.2.2.1 TDesignerObjTree.Align Property

Determines how the control aligns within its container (parent control).

property Align;

Description

Use Align to align a control to the top, bottom, left, or right of a form or panel and have it remain there even if the size of the
form, panel, or component that contains the control changes. When the parent is resized, an aligned control also resizes so
that it continues to span the top, bottom, left, or right edge of the parent.

For example, to use a panel component with various controls on it as a tool palette, change the panel’s Align value to alLeft.
The value of alLeft for the Align property of the panel guarantees that the tool palette remains on the left side of the form and
always equals the client height of the form.

The default value of Align is alNone, which means a control remains where it is positioned on a form or panel.

Tip: If Align is set to alClient, the control fills the entire client area so that it is impossible to select the parent form by clicking
on it. In this case, select the parent by selecting the control on the form and pressing Esc, or by using the Object Inspector.

Any number of child components within a single parent can have the same Align value, in which case they stack up along
the edge of the parent. The child controls stack up in z-order. To adjust the order in which the controls stack up, drag the
controls into their desired positions.

Note: To cause a control to maintain a specified relationship with an edge of its parent, but not necessarily lie along one
edge of the parent, use the Anchors property instead.

1.19.1.2.2.2 TDesignerObjTree.Anchors Property

Specifies how the control is anchored to its parent.

property Anchors;

Description

Use Anchors to ensure that a control maintains its current position relative to an edge of its parent, even if the parent is

1.19 ed_ObjTree Namespace EControl Form Designer Pro Classes

277

1

resized. When its parent is resized, the control holds its position relative to the edges to which it is anchored.

If a control is anchored to opposite edges of its parent, the control stretches when its parent is resized. For example, if a
control has its Anchors property set to [akLeft, akRight], the control stretches when the width of its parent changes.

Anchors is enforced only when the parent is resized. Thus, for example, if a control is anchored to opposite edges of a form
at design time and the form is created in a maximized state, the control is not stretched because the form is not resized after
the control is created.

Note: If a control should maintain contact with three edges of its parent (hugging one side of the parent and stretching the
length of that side), use the Align property instead. Unlike Anchors, Align allows controls to adjust to changes in the size of
other aligned sibling controls as well as changes to the parent’s size.

1.19.1.2.2.3 TDesignerObjTree.AutoExpand Property

Specifies whether the nodes in the tree view automatically expand and collapse depending on the selection.

property AutoExpand;

Description

Set AutoExpand to true to cause the selected item to expand and the unselected items to collapse.

1.19.1.2.2.4 TDesignerObjTree.BevelEdges Property

Specifies which edges of the control are beveled.

property BevelEdges;

Description

Use BevelEdges to get or set which edges of the control are beveled. The BevelInner, BevelOuter, and BevelKind properties
determine the appearance of the specified edges.

1.19.1.2.2.5 TDesignerObjTree.BevelInner Property

Specifies the cut of the inner bevel.

property BevelInner;

Description

Use BevelInner to specify whether the inner bevel has a raised, lowered, or flat look.

The inner bevel appears immediately inside the outer bevel. If there is no outer bevel (BevelOuter is bvNone), the inner
bevel appears immediately inside the border.

1.19.1.2.2.6 TDesignerObjTree.BevelKind Property

Specifies the control’s bevel style.

property BevelKind;

Description

Use BevelKind to modify the appearance of a bevel. BevelKind influences how sharply the bevel stands out.

BevelKind, in combination with BevelWidth and the cut of the bevel specified by BevelInner or BevelOuter, can create a
variety of effects. Experiment with various combinations to get the look you want.

1.19 ed_ObjTree Namespace EControl Form Designer Pro Classes

278

1

1.19.1.2.2.7 TDesignerObjTree.BevelOuter Property

Specifies the cut of the outer bevel.

property BevelOuter;

Description

Use BevelInner to specify whether the outer bevel has a raised, lowered, or flat look.

The outer bevel appears immediately inside the border and outside the inner bevel.

1.19.1.2.2.8 TDesignerObjTree.BevelWidth Property

Specifies the width of the inner and outer bevels.

property BevelWidth;

Description

Use BevelWidth to specify the width, in pixels, of the inner and outer bevels.

1.19.1.2.2.9 TDesignerObjTree.BiDiMode Property

Specifies the bi-directional mode for the control.

property BiDiMode;

Description

Use BiDiMode to enable the control to adjust its appearance and behavior automatically when the application runs in a
locale that reads from right to left instead of left to right. The bi-directional mode controls the reading order for the text, the
placement of the vertical scroll bar, and whether the alignment is changed.

Alignment does not change for controls that are known to contain number, date, time, or currency values. For example, with
data aware controls, the alignment does not change for the following field types: ftSmallint, ftInteger, ftWord, ftFloat,
ftCurrency, ftBCD, ftDate, ftTime, ftDateTime, ftAutoInc.

1.19.1.2.2.10 TDesignerObjTree.BorderStyle Property

Determines whether the tree view control has a border.

property BorderStyle;

Description

Set BorderStyle to specify whether the tree view control should be outlined with a single-line border. These are the possible
values:

Value Meaning

bsNone No visible border

bsSingle Single-line border

1.19.1.2.2.11 TDesignerObjTree.BorderWidth Property

Specifies the width of the control’s border.

property BorderWidth;

Description

Use BorderWidth to get or set the width of the control’s border. Graphics or text drawn by the control is clipped to the area
within the border.

1.19 ed_ObjTree Namespace EControl Form Designer Pro Classes

279

1

1.19.1.2.2.12 TDesignerObjTree.ChangeDelay Property

Specifies the delay between when a node is selected and when the OnChange event occurs.

property ChangeDelay;

Description

Use ChangeDelay to get or set the delay, in milliseconds, between when a node is selected and when the OnChange event
occurs.

Set the ChangeDelay to 50 milliseconds to emulate the behavior of the tree-view control used in Windows Explorer.

1.19.1.2.2.13 TDesignerObjTree.Color Property

Specifies the background color of the control.

property Color;

Description

Use Color to read or change the background color of the control.

If a control's ParentColor property is true, then changing the Color property of the control's parent automatically changes the
Color property of the control. When the value of the Color property is changed, the control's ParentColor property is
automatically set to false.

1.19.1.2.2.14 TDesignerObjTree.Constraints Property

Specifies the size constraints for the control.

property Constraints;

Description

Use Constraints to specify the minimum and maximum width and height of the control. When Constraints contains maximum
or minimum values, the control cannot be resized to violate those constraints.

Warning: Do not set up constraints that conflict with the value of the Align or Anchors property. When these properties
conflict, the response of the control to resize attempts is not well-defined.

1.19.1.2.2.15 TDesignerObjTree.Ctl3D Property

Determines whether a control has a three-dimensional (3-D) or two-dimensional look.

property Ctl3D;

Description

Ctl3D is provided for backward compatibility. It is not used by 32-bit versions of Windows or NT4.0 and later.

On earlier platforms, Ctl3D controlled whether the control had a flat or beveled appearance.

1.19.1.2.2.16 TDesignerObjTree.DragCursor Property

Indicates the image used to represent the mouse pointer when the control is being dragged.

property DragCursor;

Description

Use the DragCursor property to change the cursor image presented when the control is being dragged.

Note: To make a custom cursor available for the DragCursor property, see the Cursor property.

1.19 ed_ObjTree Namespace EControl Form Designer Pro Classes

280

1

1.19.1.2.2.17 TDesignerObjTree.DragKind Property

Specifies whether the control is being dragged normally or for docking.

property DragKind;

Description

Use DragKind to get or set whether the control participates in drag-and-drop operations, or drag-and-dock operations.

1.19.1.2.2.18 TDesignerObjTree.DragMode Property

Determines how the control initiates drag-and-drop or drag-and-dock operations.

property DragMode;

Description

Use DragMode to control when the user can drag the control. Disable the drag-and-drop or drag-and-dock capability at
runtime by setting the DragMode property value to dmManual. Enable automatic dragging by setting DragMode to
dmAutomatic.

1.19.1.2.2.19 TDesignerObjTree.Enabled Property

Controls whether the control responds to mouse, keyboard, and timer events.

property Enabled;

Description

Use Enabled to change the availability of the control to the user. To disable a control, set Enabled to false. Disabled controls
appear dimmed. If Enabled is false, the control ignores mouse, keyboard, and timer events.

To re-enable a control, set Enabled to true. The control is no longer dimmed, and the user can use the control.

1.19.1.2.2.20 TDesignerObjTree.Font Property

Controls the attributes of text written on or in the control.

property Font;

Description

To change to a new font, specify a new TFont object. To modify a font, change the value of the Charset, Color, Height,
Name, Pitch, Size, or Style of the TFont object.

1.19.1.2.2.21 TDesignerObjTree.HideSelection Property

Determines whether a selected node appears selected when the focus shifts to another control.

property HideSelection;

Description

Use HideSelection to specify whether the user is given visual feedback about the current selection in the tree view when it
does not have focus. If true, the selected node is not visually distinct from other nodes until focus returns to the control. If
false, the node always appears selected.

1.19.1.2.2.22 TDesignerObjTree.HotTrack Property

Specifies whether list items are highlighted when the mouse passes over them.

property HotTrack;

Description

Set HotTrack to true to provide visual feedback about which item is under the mouse. Set HotTrack to false to suppress the

1.19 ed_ObjTree Namespace EControl Form Designer Pro Classes

281

1

visual feedback about which item is under the mouse.

1.19.1.2.2.23 TDesignerObjTree.Images Property

Determines which image list is associated with the tree view.

property Images;

Description

Use Images to provide a customized list of bitmaps that can be displayed to the left of a node’s label. Individual nodes
specify the image from this list that should appear by setting their ImageIndex property.

1.19.1.2.2.24 TDesignerObjTree.Indent Property

Specifies the amount of indentation in pixels when a list of child nodes is expanded.

property Indent;

Description

Use Indent to determine how far child nodes are indented from their parent nodes when the parent is expanded.

1.19.1.2.2.25 TDesignerObjTree.Items Property

Lists the individual nodes that appear in the tree view control.

property Items;

Description

Individual nodes in a tree view are TTreeNode objects. These individual nodes can be accessed by using the Items property
along with the item's index into the tree view. For example, to access the second item in the tree view, you could use the
following code.

MyTreeNode := TreeView1.Items[1];

When setting this property at design-time in the Object Inspector the Tree View Items Editor appears. Use the New Item and
New SubItem buttons to add items to the tree view. Use the Text property to modify what text is displayed in the label of the
item.

At run-time nodes can be added and inserted by using the TTreeNodes methods AddChildFirst, AddChild,
AddChildObjectFirst, AddChildObject, AddFirst, Add, AddObjectFirst, AddObject, and Insert.

1.19.1.2.2.26 TDesignerObjTree.MultiSelect Property

Determines whether the user can select more than one tree node at a time.

property MultiSelect;

Description

Set MultiSelect to specify whether users can select multiple nodes using the Control and Shift keys. A selection style must
also be chosen in MultiSelectStyle.

1.19.1.2.2.27 TDesignerObjTree.MultiSelectStyle Property

Determines how multiple node selections work.

property MultiSelectStyle;

1.19 ed_ObjTree Namespace EControl Form Designer Pro Classes

282

1

Description

MultiSelectStyle determines how multiple selections are made when MultiSelect is true. MultiSelectStyle must include at
least one of the following values.

Value Meaning

msControlSelect Clicking on any node with the Control key pressed toggles the selection of that node.

msShiftSelect Clicking on any node with the Shift key press selects that node, the last single node selected, and the
nodes in between. All other nodes are deselected.

msVisibleOnly Multiple selections with the Shift key do not include child nodes of collapsed nodes.

msSiblingOnly Selected nodes are restricted to a single set of siblings.

If msControlSelect or msShiftSelect are in effect, the last singly-selected node becomes the primary selection, referenced by
Selections[0]. The primary selection is the anchor for extended selections using the Shift key.

1.19.1.2.2.28 TDesignerObjTree.OnAddition Property

Occurs when new node is added.

property OnAddition;

Description

OnAddition occurs when a new node is added to the control.

1.19.1.2.2.29 TDesignerObjTree.OnAdvancedCustomDraw Property

Occurs at discrete stages during the painting of the tree view control.

property OnAdvancedCustomDraw;

Description

Write an OnAdvancedCustomDraw event handler to paint an owner-drawn tree view. Use the Canvas property as a drawing
surface when painting the image of the tree view.

To paint individual items, use the OnAdvancedCustomDrawItem or OnCustomDrawItem event instead.

Notes

OnAdvancedCustomDraw occurs at several stages during the paint process, not just immediately prior to the default
rendering. If you only need to use the cdPrePaint stage, it is more efficient to use the OnCustomDraw event.

1.19.1.2.2.30 TDesignerObjTree.OnAdvancedCustomDrawItem Property

Occurs at discrete stages during the painting of tree view nodes.

property OnAdvancedCustomDrawItem;

Description

Write an OnAdvancedCustomDrawItem event handler to customize the painting of individual items in the tree view.

Notes

OnAdvancedCustomDrawItem occurs at several stages during the paint process and allows you to suppress the default
painting of tree node images while still allowing the default painting of the node. If you only need to use the cdPrePaint stage
and do not want to suppress only the painting of tree node images, it is more efficient to use the OnCustomDrawItem event.

1.19.1.2.2.31 TDesignerObjTree.OnChange Property

Occurs whenever the selection has changed from one node to another.

1.19 ed_ObjTree Namespace EControl Form Designer Pro Classes

283

1

property OnChange;

Description

Write an OnChange event handler to take specific action when the selected node changes. The Sender parameter is the
tree view whose selected node changes, and the Node parameter is the newly selected node.

Notes

The OnChange event does not occur for nodes selected using the right mouse button when RightClickSelect is true. To
respond to changes in the value of the Selected property when RightClickSelect is true, use the OnMouseUp event.

1.19.1.2.2.32 TDesignerObjTree.OnChanging Property

Occurs when the selection is about to change from one node to another.

property OnChanging;

Description

Write an OnChanging event handler to selectively prevent selection from moving to specific nodes.

The TTVChangingEvent type points to a method that is called when the selection is about to be changed from one node to
another. Set AllowChange to false, to prevent selection from moving to a new node. The Node parameter specifies the node
that is about to be selected.

1.19.1.2.2.33 TDesignerObjTree.OnClick Property

Occurs when the user clicks the control.

property OnClick;

1.19.1.2.2.34 TDesignerObjTree.OnCollapsed Property

Occurs after a node has been collapsed.

property OnCollapsed;

Description

Write an OnCollapsed event handler to respond after a node in the tree view collapses. The Node parameter is the node
whose children are no longer visible.

1.19.1.2.2.35 TDesignerObjTree.OnCollapsing Property

Occurs when a node is about to be collapsed.

property OnCollapsing;

Description

The TTVCollapsingEvent type points to a method that is called when a node is about to be collapsed. Set the AllowCollapse
parameter to false to prevent the node specified by the Node parameter from being collapsed.

1.19.1.2.2.36 TDesignerObjTree.OnCompare Property

Occurs when two nodes must be compared during a sort of the nodes in the tree view.

property OnCompare;

Description

Write an OnCompare event handler to customize the sort order of the nodes in the tree view. Set the Compare parameter to
a value less than 0 if Node1 is less than Node2. Set Compare to 0 if Node1 is equivalent to Node2, and set Compare to a
value greater than 0 if Node1 is greater than Node2. If an OnCompare event handler is not provided, tree view nodes are
sorted alphabetically, based on their labels.

1.19 ed_ObjTree Namespace EControl Form Designer Pro Classes

284

1

1.19.1.2.2.37 TDesignerObjTree.OnContextPopup Property

Occurs when the user right-clicks the control or otherwise invokes the popup menu (such as using the keyboard).

property OnContextPopup;

Description

The OnContextPopup handler is called when the user uses the mouse or keyboard to request a popup menu. The
OnContextPopup event is generated by a WM_CONTEXTMENU message, which is itself generated by the user clicking the
right mouse button or by pressing SHIFT+F10 or the Applications key.

This event is especially useful when the control does not have an associated popup menu (the PopupMenu property is not
set) or if the AutoPopup property of the control’s associated popup menu is false. However, the OnContextPopup can also
be used to override the automatic context menu that appears when the control has an associated popup menu with an
AutoPopup property of true. In this last case, if the event handler displays its own menu, it should set the Handled parameter
to true to suppress the default context menu.

The handler’s MousePos parameter indicates the position of the mouse, in client coordinates.. If the event was not
generated by a mouse click, MousePos is (-1,-1).

Note: Parent controls receive an OnContextPopup event before their child controls. In addition, for many child controls, the
default window procedure causes the parent control to receive an OnContextPopup event after the child control. As a result,
when parent controls do not set Handled to true in an OnContextPopup event handler, the event handler may be called
multiple times for each context menu invocation.

1.19.1.2.2.38 TDesignerObjTree.OnCreateNodeClass Property

Occurs when a node in the treeview is about to be created.

property OnCreateNodeClass;

Description

OnCreateNodeClass occurs when a new node object is about to be created.

Sender is the tree view object that is about to add a new node.

NodeClass returns a class reference that is instantiated to create a new node object.

1.19.1.2.2.39 TDesignerObjTree.OnCreateSprigNode Property

Called before creation node in object tree. Allows restrict sprigs to be shown and allows changing node text.

property OnCreateSprigNode: TCreateSprigNodeEvent ;

Notes

Works only in BDS 2005 and later versions.

1.19.1.2.2.40 TDesignerObjTree.OnCustomDraw Property

Occurs immediately prior to painting the tree view control.

property OnCustomDraw;

1.19 ed_ObjTree Namespace EControl Form Designer Pro Classes

285

1

Description

Write an OnCustomDraw event handler to paint an owner-drawn tree view. Use the Canvas property as a drawing surface
when painting the image of the tree view.

To paint individual items, use the OnCustomDrawItem event instead.

Notes

OnCustomDraw only occurs prior to painting the tree view control. To customize the painting at other stages of the paint
process (such as after the default drawing), use OnAdvancedCustomDraw instead.

1.19.1.2.2.41 TDesignerObjTree.OnCustomDrawItem Property

Occurs immediately prior to painting a node in a tree view control.

property OnCustomDrawItem;

Description

Write an OnCustomDrawItem event handler to paint individual items in the tree view, or to provide a background to the item
before the default rendering of the item.

Notes

OnCustomDrawItem only occurs prior to painting individual tree items. To customize the painting of items at other stages of
the paint process (such as after the item is painted), use OnAdvancedCustomDrawItem instead.

1.19.1.2.2.42 TDesignerObjTree.OnDblClick Property

Occurs when the user double-clicks the left mouse button when the mouse pointer is over the control.

property OnDblClick;

Description

Use the OnDblClick event to respond to mouse double-clicks.

1.19.1.2.2.43 TDesignerObjTree.OnDeletion Property

Occurs when a node in the tree view is deleted.

property OnDeletion;

Description

Write an OnDeletion event handler to respond when a node is deleted from the tree view control.

1.19.1.2.2.44 TDesignerObjTree.OnDragDrop Property

Occurs when the user drops an object being dragged.

property OnDragDrop;

Description

Use the OnDragDrop event handler to specify what happens when the user drops an object. The Source parameter of the
OnDragDrop event is the object being dropped, and the Sender is the control the object is being dropped on. The X and Y
parameters are the coordinates of the mouse positioned over the control.

1.19.1.2.2.45 TDesignerObjTree.OnDragOver Property

Occurs when the user drags an object over a control.

property OnDragOver;

1.19 ed_ObjTree Namespace EControl Form Designer Pro Classes

286

1

Description

Use an OnDragOver event to signal that the control can accept a dragged object so the user can drop or dock it.

Within the OnDragOver event handler, change the Accept parameter to false to reject the dragged object. Leave Accept as
true to allow the user to drop or dock the dragged object on the control.

To change the shape of the cursor, indicating that the control can accept the dragged object, change the value of the
DragCursor property for the control before the OnDragOver event occurs.

The Source is the object being dragged, the Sender is the potential drop or dock site, and X and Y are screen coordinates in
pixels. The State parameter specifies how the dragged object is moving over the control.

Note: Within the OnDragOver event handler, the Accept parameter defaults to true. However, if an OnDragOver event
handler is not supplied, the control rejects the dragged object, as if the Accept parameter were changed to false.

1.19.1.2.2.46 TDesignerObjTree.OnEdited Property

Occurs after the user edits the Text property of a node.

property OnEdited;

Description

Write an OnEdited event handler to respond to changes the user makes to the node labels. The Node parameter is the node
whose label was edited. The S parameter is the new value of the node’s Text property. The node’s label can be changed in
an OnEdited event handler before the user’s edits are committed. This event can occur only if ReadOnly is set to false.

1.19.1.2.2.47 TDesignerObjTree.OnEditing Property

Occurs when the user starts to edit the Text property of a node.

property OnEditing;

Description

Write an OnEditing event handler to determine whether the user is allowed to edit the label of a specific node in the tree
view. Set the AllowEdit parameter to false to prevent the user from editing the node specified by the Node parameter. To
disallow editing of all nodes in the tree view, use the ReadOnly property instead.

1.19.1.2.2.48 TDesignerObjTree.OnEndDock Property

Occurs when the dragging of an object ends, either by docking the object or by canceling the dragging.

property OnEndDock;

Description

Use OnEndDock to specify actions or special processing that when a drag-and-dock operation stops.

1.19.1.2.2.49 TDesignerObjTree.OnEndDrag Property

Occurs when the dragging of an object ends, either by dropping the object or by canceling the dragging.

property OnEndDrag;

Description

Use the OnEndDrag event handler to specify any special processing that occurs when dragging stops.

1.19 ed_ObjTree Namespace EControl Form Designer Pro Classes

287

1

1.19.1.2.2.50 TDesignerObjTree.OnEnter Property

Occurs when a control receives the input focus.

property OnEnter;

Description

Use the OnEnter event handler to cause any special processing to occur when a control becomes active.

The OnEnter event does not occur when switching between forms or between another application and the application that
includes the control.

1.19.1.2.2.51 TDesignerObjTree.OnExit Property

Occurs when the input focus shifts away from one control to another.

property OnExit;

Description

Use the OnExit event handler to provide special processing when the control ceases to be active.

The OnExit event does not occur when switching between forms or between another application and your application.

1.19.1.2.2.52 TDesignerObjTree.OnExpanded Property

Occurs after a node is expanded.

property OnExpanded;

Description

Write an OnExpanded event handler to respond when a node in the tree view is expanded. The Node parameter specifies
the node whose children are now displayed to the user.

1.19.1.2.2.53 TDesignerObjTree.OnExpanding Property

Occurs when a node is about to be expanded.

property OnExpanding;

Description

Write an OnExpanding event handler to determine whether a node can be expanded. Set the AllowExpansion parameter to
false to prevent the node from expanding.

1.19.1.2.2.54 TDesignerObjTree.OnGetImageIndex Property

Occurs when the tree view looks up the ImageIndex of a node.

property OnGetImageIndex;

Description

Write an OnGetImageIndex event handler to change the image index for the particular node before it is drawn. For example,
the bitmap of a node can be changed to indicate a different state for the node.

1.19.1.2.2.55 TDesignerObjTree.OnGetSelectedIndex Property

Occurs when the tree view looks up the SelectedIndex of a node.

property OnGetSelectedIndex;

Description

Write an OnGetSelectedIndex event handler to change the selected image index of a node before it is drawn.

1.19 ed_ObjTree Namespace EControl Form Designer Pro Classes

288

1

1.19.1.2.2.56 TDesignerObjTree.OnKeyDown Property

Occurs when a user presses any key while the control has focus.

property OnKeyDown;

Description

Use the OnKeyDown event handler to specify special processing to occur when a key is pressed. The OnKeyDown handler
can respond to all keyboard keys, including function keys and keys combined with the Shift, Alt, and Ctrl keys, and pressed
mouse buttons.

The TKeyEvent type points to a method that handles keyboard events.

The Key parameter is the key on the keyboard. For non-alphanumeric keys, use virtual key codes to determine the key
pressed. For more information, see Virtual Key codes.

The Shift parameter indicates whether the Shift, Alt, or Ctrl keys are combined with the keystroke.

1.19.1.2.2.57 TDesignerObjTree.OnKeyPress Property

Occurs when key pressed.

property OnKeyPress;

Description

Use the OnKeyPress event handler to make something happen as a result of a single character key press.

The Key parameter in the OnKeyPress event handler is of type Char; therefore, the OnKeyPress event registers the ASCII
character of the key pressed. Keys that don't correspond to an ASCII Char value (Shift or F1, for example) don't generate an
OnKeyPress event. Key combinations (such as Shift+A), generate only one OnKeyPress event (for this example, Shift+A
results in a Key value of “A” if Caps Lock is off). To respond to non-ASCII keys or key combinations, use the OnKeyDown or
OnKeyUp event handlers.

1.19.1.2.2.58 TDesignerObjTree.OnKeyUp Property

Occurs when the user releases a key that has been pressed.

property OnKeyUp;

Description

Use the OnKeyUp event handler to provide special processing that occurs when a key is released. The OnKeyUp handler
can respond to all keyboard keys, including function keys and keys combined with the Shift, Alt, and Ctrl keys.

The TKeyEvent type points to a method that handles keyboard events. The Key parameter is the key on the keyboard. For
non-alphanumeric keys, you must use virtual key codes to determine the key pressed. For more information, see Virtual Key
codes.

The Shift parameter indicates whether the Shift, Alt, or Ctrl keys are combined with the keystroke.

1.19.1.2.2.59 TDesignerObjTree.OnMouseDown Property

Occurs when the user presses a mouse button with the mouse pointer over a control.

1.19 ed_ObjTree Namespace EControl Form Designer Pro Classes

289

1

property OnMouseDown;

Description

Use the OnMouseDown event handler to implement any special processing that should occur as a result of pressing a
mouse button.

The OnMouseDown event handler can respond to left, right, or center mouse button presses and shift key plus
mouse-button combinations. Shift keys are the Shift, Ctrl, and Alt keys. X and Y are the pixel coordinates of the mouse
pointer in the client area of the Sender.

1.19.1.2.2.60 TDesignerObjTree.OnMouseMove Property

Occurs when the user moves the mouse pointer while the mouse pointer is over a control.

property OnMouseMove;

Description

Use the OnMouseMove event handler to respond when the mouse pointer moves after the control has captured the mouse.

Use the Shift parameter of the OnMouseDown event handler, to determine to the state of the shift keys and mouse buttons.
Shift keys are the Shift, Ctrl, and Alt keys or shift key-mouse button combinations. X and Y are pixel coordinates of the new
location of the mouse pointer in the client area of the Sender.

1.19.1.2.2.61 TDesignerObjTree.OnMouseUp Property

Occurs when the user releases a mouse button that was pressed with the mouse pointer over a component.

property OnMouseUp;

Description

Use an OnMouseUp event handler to implement special processing when the user releases a mouse button.

The OnMouseUp event handler can respond to left, right, or center mouse button presses and shift key plus mouse-button
combinations. Shift keys are the Shift, Ctrl, and Alt keys. X and Y are the pixel coordinates of the mouse pointer in the client
area of the Sender.

1.19.1.2.2.62 TDesignerObjTree.OnStartDock Property

Occurs when the user begins to drag a control with a DragKind of dkDock.

property OnStartDock;

Description

Use the OnStartDock event handler to implement special processing when the user starts a drag-and-dock operation by
dragging the control.

The OnStartDock event handler can create a TDragDockObjectEx object for the DragObject parameter to specify the
appearance of the dragging rectangle and how the dragged control interacts with potential docking sites. If you return
TDragDockObjectEx as the drag object, there is no need to call the Free method for the DragObject when dragging is over.
If you use TDragDockObject, your application is responsible for freeing the drag object.

If the OnStartDock event handler sets the DragObject parameter to nil (Delphi) or NULL (C++), a TDragDockObject object is
automatically created.

1.19 ed_ObjTree Namespace EControl Form Designer Pro Classes

290

1

1.19.1.2.2.63 TDesignerObjTree.OnStartDrag Property

Occurs when the user begins to drag the control or an object it contains by left-clicking on the control and holding the mouse
button down.

property OnStartDrag;

Description

Use the OnStartDrag event handler to implement special processing when the user starts to drag the control or an object it
contains. OnStartDrag only occurs if DragKind is dkDrag.

Sender is the control that is about to be dragged, or that contains the object about to be dragged.

The OnStartDrag event handler can create a TDragControlObjectEx instance for the DragObject parameter to specify the
drag cursor, or, optionally, a drag image list. If you create a TDragControlObjectEx instance, there is no need to call the Free
method for the DragObject when dragging is over. If you create, instead, a TDragControlObject instance, your application is
responsible for freeing the drag object instance.

If the OnStartDrag event handler sets the DragObject parameter to nil (Delphi) or NULL (C++), a TDragControlObject object
is automatically created and dragging begins on the control itse

1.19.1.2.2.64 TDesignerObjTree.ParentBiDiMode Property

Specifies whether the control uses its parent’s BiDiMode.

property ParentBiDiMode;

1.19.1.2.2.65 TDesignerObjTree.ParentColor Property

Determines where a control looks for its color information.

property ParentColor;

1.19.1.2.2.66 TDesignerObjTree.ParentCtl3D Property

Determines where a component looks to determine if it should appear three dimensional.

property ParentCtl3D;

Description

ParentCtl3D is provided for backwards compatibility. It has no effect on 32-bit versions of Windows or NT 4.0 and later.

ParentCtl3D determines whether the control uses its parent’s Ctl3D property.

1.19.1.2.2.67 TDesignerObjTree.ParentFont Property

Determines where a control looks for its font information.

property ParentFont;

1.19.1.2.2.68 TDesignerObjTree.ParentShowHint Property

Determines where a control looks to find out if its Help Hint should be shown.

property ParentShowHint;

1.19 ed_ObjTree Namespace EControl Form Designer Pro Classes

291

1

1.19.1.2.2.69 TDesignerObjTree.PopupMenu Property

Identifies the pop-up menu associated with the control.

property PopupMenu;

Description

Assign a value to PopupMenu to make a pop-up menu appear when the user selects the control and clicks the right mouse
button. If the TPopupMenu’s AutoPopup property is true, the pop-up menu appears automatically. If the menu’s AutoPopup
property is false, display the menu with a call to its Popup method from the control’s OnContextPopup event handler.

1.19.1.2.2.70 TDesignerObjTree.ReadOnly Property

Determines whether the user can edit the node labels.

property ReadOnly ;

Description

Use ReadOnly to specify whether the user can edit the nodes of the tree view. If ReadOnly is true, the user can expand and
collapse nodes, but can’t edit their labels. If ReadOnly is false, the user can edit the labels as well. The default value is false.

1.19.1.2.2.71 TDesignerObjTree.RightClickSelect Property

Determines whether the Selected property returns nodes that are selected using the right mouse button.

property RightClickSelect;

Description

Use RightClickSelect to allow the Selected property to indicate nodes the user clicks with the right mouse button. If
RightClickSelect is true, the value of Selected is the value of the node last clicked with either the right or left mouse button. If
RightClickSelect is false, the value of Selected is the node last clicked using the left mouse button.

RightClickSelect affects only the value of the Selected property. It does not cause the tree view to highlight a new node if the
node is selected using the right mouse button.

Notes

RightClickSelect must be set to true before the user right-clicks the tree view for it to affect the value of the Selected property.

1.19.1.2.2.72 TDesignerObjTree.RowSelect Property

Specifies whether the entire row of the selected item is highlighted.

property RowSelect;

Description

Set RowSelect to true to cause the entire row of the selected item to be highlighted.

RowSelect is ignored if ShowLines is true.

1.19.1.2.2.73 TDesignerObjTree.ShowButtons Property

Specifies whether to display plus (+) and minus (-) buttons to the left side of each parent item.

property ShowButtons;

Description

If ShowButtons is true, a button will appear to the left of each parent item. The user can click the button to expand or
collapse the child items as an alternative to double-clicking the parent item.

1.19 ed_ObjTree Namespace EControl Form Designer Pro Classes

292

1

1.19.1.2.2.74 TDesignerObjTree.ShowHint Property

Determines whether the control displays a Help Hint when the mouse pointer rests momentarily on the control.

property ShowHint;

1.19.1.2.2.75 TDesignerObjTree.ShowLines Property

Specifies whether to display the lines that link child nodes to their corresponding parent nodes.

property ShowLines;

Description

If ShowLines is true, lines linking child nodes to their parent nodes are displayed. Nodes at the root of the hierarchy are not
automatically linked. To link nodes at the root, the ShowRoot property must also be set to true.

1.19.1.2.2.76 TDesignerObjTree.ShowRoot Property

Specifies whether lines connecting top-level nodes are displayed.

property ShowRoot;

Description

To show lines connecting top-level nodes to a single root, set the tree view's ShowRoot and ShowLines properties to true.

1.19.1.2.2.77 TDesignerObjTree.SortType Property

Determines if and how the nodes in a tree view are automatically sorted.

property SortType;

Description

Once a tree view is sorted, the original hierarchy is lost. That is, setting the SortType back to stNone will not restore the
original order of items. These are the possible values:

1.19.1.2.2.78 TDesignerObjTree.StateImages Property

Determines which image list to use for state images.

property StateImages;

Description

Use StateImages to provide a set of bitmaps that reflect the state of tree view nodes. The state image appears as an
additional image to the left of the item's icon.

1.19.1.2.2.79 TDesignerObjTree.TabOrder Property

Indicates the position of the control in its parent's tab order.

property TabOrder;

1.19.1.2.2.80 TDesignerObjTree.TabStop Property

Determines if the user can tab to a control.

property TabStop;

Description

Use the TabStop to allow or disallow access to the control using the Tab key.

If TabStop is true, the control is in the tab order. If TabStop is false, the control is not in the tab order and the user can't
press the Tab key to move to the control.

1.19 ed_ObjTree Namespace EControl Form Designer Pro Classes

293

1

1.19.1.2.2.81 TDesignerObjTree.ToolTips Property

Specifies whether the items in the tree view have tool tips.

property ToolTips;

Description

Set ToolTips to true to specify that items in the tree view control have tool tips (Help Hints).

Specify the ToolTip text in an OnHint event handler using the Hint property.

1.19.1.2.2.82 TDesignerObjTree.Visible Property

Determines whether the component appears on screen.

property Visible;

Description

Use the Visible property to control the visibility of the control at runtime. If Visible is true, the control appears. If Visible is
false, the control is not visible.

Calling the Show method sets the control's Visible property to true. Calling the Hide method sets it to false.

1.19.2 Functions

The following table lists functions in this documentation.

Functions

Function Description

 CreateGhostedImages (see page 294) Creates ghosted images and adds them to the image list.

Legend

Method

1.19.2.1 ed_ObjTree.CreateGhostedImages Function
Creates ghosted images and adds them to the image list.

procedure CreateGhostedImages(IL: TCustomImageList);

File

ed_ObjTree

1.19.3 Types

The following table lists types in this documentation.

Types

Type Description

TCreateSprigNodeEvent (see page 295) See TCustomDesignerObjTree.OnCreateSprigNode Event (see page 271)

1.19 ed_ObjTree Namespace EControl Form Designer Pro Types

294

1

1.19.3.1 ed_ObjTree.TCreateSprigNodeEvent Type
See TCustomDesignerObjTree.OnCreateSprigNode Event (see page 271)

TCreateSprigNodeEvent = procedure (Sender: TObject; Sprig: TSprig; var Text: string ; var
Accept: Boolean) of object ;

File

ed_ObjTree

1.20 ed_TextEdit Namespace

1.20.1 Classes

The following table lists classes in this documentation.

Classes

Class Description

TDsnInplaceEditor (see page 295) Design in-place editor control.

TInplaceComponentEditor (see page 302) Designer adapter for in-place text editing.

1.20.1.1 TDsnInplaceEditor Class
Design in-place editor control.

Class Hierarchy

TDsnInplaceEditor = class (TCustomEditEx);

File

ed_TextEdit

Description

This control is created and owned by designer (instance of TzFormDesigner). Properties and position of the in-place editor
are defined by using in-place adapters, objects derived from TInplaceComponentEditor (see page 302). In-place edit
control can not be accessed via designer, it is only passed in TInplaceComponentEditor.SetEditor (see page 304) method
to adjust editor properties.

Members

TUnicodeEdit Methods

TUnicodeEdit Methods Description

 Create (see page 108) Creates and initializes a TUnicodeEdit instance.

 Destroy (see page 108) Destroys an instance of TUnicodeEdit.

TBtnEdit Class

TBtnEdit Class Description

 AdjustClientRect (see page 73) Overrides the inherited method.

 ButtonClick (see page 73) Simulates a button click, as if the user had clicked the button.

1.20 ed_TextEdit Namespace EControl Form Designer Pro Classes

295

1

 Create (see page 73) Creates and initializes a TBtnEdit (see page 70) instance.

 CreateParams (see page 73) Overrides the inherited method.

 CreateWnd (see page 73) Overrides the inherited method.

 Destroy (see page 74) Destroys an instance of TBtnEdit (see page 70)

 EndTracking (see page 74) Called after finishing the mouse tracking

 KeyDown (see page 74) Overrides the inherited method.

 KeyPress (see page 74) Overrides the inherited method.

 MouseMove (see page 74) Overrides the inherited method.

 MouseUp (see page 75) Overrides the inherited method.

 Paint (see page 75) Overrides the base rendering method.

 PaintBtnGlyph (see page 75) Renders the image of the button.

 PaintStatus (see page 75) Paints status area. This method is called only if StatusWidth (see page 77)
is greater 0.

 PaintWindow (see page 75) Overrides the inherited method.

 PtInButton (see page 75) Checks if specified point is over the button

 StartTracking (see page 76) Calls immediately after user pushes the button.

 StopTracking (see page 76) Calls immediately after user releases the button.

 TrackButton (see page 76) Controls tracking button process.

TCustomEditEx Class

TCustomEditEx Class Description

 AcceptListValue (see page 82) Active pop-up window.

 ButtonClick (see page 82) Simulates a button click, as if the user had clicked the button.

 CloseUp (see page 82) Generates an OnCloseUp (see page 85) event and makes some other
actions.

 Create (see page 82) Creates and initializes a TBtnEdit instance.

 Destroy (see page 82) Destroys an instance of TBtnEdit

 DoDropDownKeys (see page 83) Works as a method dispatcher depending on parameter values.

 DropDown (see page 83) Generates an OnDropDown (see page 85) event.

 EndTracking (see page 83) Called after finishing the mouse tracking

 KeyPress (see page 83) Respond to keyboard input.

 MouseDown (see page 83) Overrides inherited method

 MouseMove (see page 83) Overrides the inherited method.

 PaintBtnGlyph (see page 84) Overrides inherited method

 StartTracking (see page 84) Overrides inherited property

TDsnInplaceEditor Class

TDsnInplaceEditor Class Description

 Close (see page 299) Closes in-place text editor.

 Create (see page 299) Creates and initializes a TBtnEdit instance.

 Destroy (see page 300) Destroys an instance of TDsnInplaceEditor.

 LoadText (see page 300) Loads text from adapter to edit control.

 SaveText (see page 300) Saves text from edit control to adapter.

TUnicodeEdit Properties

TUnicodeEdit Properties Description

 IsUnicode (see page 108) Specifies whether control is Unicode edit.

 SelTextW (see page 109) Specifies the selected portion of the edit control’s text (Unicode version).

 Text (see page 109) Specifies the text string that is displayed in the edit box (Ansi version).

 TextW (see page 109) Specifies the text string that is displayed in the edit box (Ansi version).

TBtnEdit Class

TBtnEdit Class Description

 Alignment (see page 76) Determines how the text is aligned within the editor control.

 ButtonVisible (see page 76) Specifies if button-like rectangle at the right edge of the control is visible.

 ButtonWidth (see page 77) Specifies width in pixels of the button.

 Canvas (see page 77) Provides access to the drawing surface of the TBtnEdit (see page 70).

 MultiLine (see page 77) Designates a multiline edit control. The default is single-line edit control.

 StatusWidth (see page 77) Specifies width of status area. If StatusWidth is equal to 0 - status area is not
processed.

1.20 ed_TextEdit Namespace EControl Form Designer Pro Classes

296

1

 WantReturns (see page 77) Determines whether the user can insert return characters into the text.

 WantTabs (see page 78) Determines whether the user can insert tab characters into the text.

 WordWrap (see page 78) Determines whether the edit control inserts soft carriage returns so text wraps
at the right margin.

TCustomEditEx Class

TCustomEditEx Class Description

 ActiveList (see page 84) Specifies current popup control.

 EditStyle (see page 84) Specifies edit style of the button

 ListAlign (see page 84) Specifies relative align of popup control.

 PickList (see page 84) Determines the drop-down list.

TDsnInplaceEditor Class

TDsnInplaceEditor Class Description

 Adapter (see page 300) Specifies associated in-place adapter.

 Alignment (see page 300) Determines how the text is aligned within the editor control.

 Color (see page 300) Specifies the background color of the control.

 IsUnicode (see page 301) Specifies whether control is Unicode edit.

 MultiLine (see page 301) Designates a multiline edit control. The default is single-line edit control.

 OnChange (see page 301) Occurs when the text for the edit control may have changed.

 OnExit (see page 301) Occurs when the input focus shifts away from one control to another.

 TextW (see page 301) Specifies the text string that is displayed in the edit box (Ansi version).

 WordWrap (see page 302) Determines whether the edit control inserts soft carriage returns so text wraps
at the right margin.

TBtnEdit Events

TBtnEdit Class

TBtnEdit Class Description

 OnButtonClick (see page 78) Occurs when the user clicks the button.

TCustomEditEx Class

TCustomEditEx Class Description

 OnAcceptListValue (see page 85) Occurs when the user makes right choice in the drop-down list.

 OnCloseUp (see page 85) Occurs when the drop-down list closes up due to some user action.

 OnDropDown (see page 85) Occurs when the user opens the drop-down list.

 OnMeasureWidth (see page 85) Occurs when width of controls needs to be calculated.

Legend

Constructor

virtual

protected

Property

read only

Event

TBtnEdit Events

TBtnEdit Class

TBtnEdit Class Description

 OnButtonClick (see page 78) Occurs when the user clicks the button.

TCustomEditEx Class

TCustomEditEx Class Description

 OnAcceptListValue (see page 85) Occurs when the user makes right choice in the drop-down list.

 OnCloseUp (see page 85) Occurs when the drop-down list closes up due to some user action.

 OnDropDown (see page 85) Occurs when the user opens the drop-down list.

 OnMeasureWidth (see page 85) Occurs when width of controls needs to be calculated.

1.20 ed_TextEdit Namespace EControl Form Designer Pro Classes

297

1

TUnicodeEdit Methods

TUnicodeEdit Methods Description

 Create (see page 108) Creates and initializes a TUnicodeEdit instance.

 Destroy (see page 108) Destroys an instance of TUnicodeEdit.

TBtnEdit Class

TBtnEdit Class Description

 AdjustClientRect (see page 73) Overrides the inherited method.

 ButtonClick (see page 73) Simulates a button click, as if the user had clicked the button.

 Create (see page 73) Creates and initializes a TBtnEdit (see page 70) instance.

 CreateParams (see page 73) Overrides the inherited method.

 CreateWnd (see page 73) Overrides the inherited method.

 Destroy (see page 74) Destroys an instance of TBtnEdit (see page 70)

 EndTracking (see page 74) Called after finishing the mouse tracking

 KeyDown (see page 74) Overrides the inherited method.

 KeyPress (see page 74) Overrides the inherited method.

 MouseMove (see page 74) Overrides the inherited method.

 MouseUp (see page 75) Overrides the inherited method.

 Paint (see page 75) Overrides the base rendering method.

 PaintBtnGlyph (see page 75) Renders the image of the button.

 PaintStatus (see page 75) Paints status area. This method is called only if StatusWidth (see page 77)
is greater 0.

 PaintWindow (see page 75) Overrides the inherited method.

 PtInButton (see page 75) Checks if specified point is over the button

 StartTracking (see page 76) Calls immediately after user pushes the button.

 StopTracking (see page 76) Calls immediately after user releases the button.

 TrackButton (see page 76) Controls tracking button process.

TCustomEditEx Class

TCustomEditEx Class Description

 AcceptListValue (see page 82) Active pop-up window.

 ButtonClick (see page 82) Simulates a button click, as if the user had clicked the button.

 CloseUp (see page 82) Generates an OnCloseUp (see page 85) event and makes some other
actions.

 Create (see page 82) Creates and initializes a TBtnEdit instance.

 Destroy (see page 82) Destroys an instance of TBtnEdit

 DoDropDownKeys (see page 83) Works as a method dispatcher depending on parameter values.

 DropDown (see page 83) Generates an OnDropDown (see page 85) event.

 EndTracking (see page 83) Called after finishing the mouse tracking

 KeyPress (see page 83) Respond to keyboard input.

 MouseDown (see page 83) Overrides inherited method

 MouseMove (see page 83) Overrides the inherited method.

 PaintBtnGlyph (see page 84) Overrides inherited method

 StartTracking (see page 84) Overrides inherited property

TDsnInplaceEditor Class

TDsnInplaceEditor Class Description

 Close (see page 299) Closes in-place text editor.

 Create (see page 299) Creates and initializes a TBtnEdit instance.

 Destroy (see page 300) Destroys an instance of TDsnInplaceEditor.

 LoadText (see page 300) Loads text from adapter to edit control.

 SaveText (see page 300) Saves text from edit control to adapter.

TUnicodeEdit Properties

TUnicodeEdit Properties Description

 IsUnicode (see page 108) Specifies whether control is Unicode edit.

 SelTextW (see page 109) Specifies the selected portion of the edit control’s text (Unicode version).

 Text (see page 109) Specifies the text string that is displayed in the edit box (Ansi version).

 TextW (see page 109) Specifies the text string that is displayed in the edit box (Ansi version).

1.20 ed_TextEdit Namespace EControl Form Designer Pro Classes

298

1

TBtnEdit Class

TBtnEdit Class Description

 Alignment (see page 76) Determines how the text is aligned within the editor control.

 ButtonVisible (see page 76) Specifies if button-like rectangle at the right edge of the control is visible.

 ButtonWidth (see page 77) Specifies width in pixels of the button.

 Canvas (see page 77) Provides access to the drawing surface of the TBtnEdit (see page 70).

 MultiLine (see page 77) Designates a multiline edit control. The default is single-line edit control.

 StatusWidth (see page 77) Specifies width of status area. If StatusWidth is equal to 0 - status area is not
processed.

 WantReturns (see page 77) Determines whether the user can insert return characters into the text.

 WantTabs (see page 78) Determines whether the user can insert tab characters into the text.

 WordWrap (see page 78) Determines whether the edit control inserts soft carriage returns so text wraps
at the right margin.

TCustomEditEx Class

TCustomEditEx Class Description

 ActiveList (see page 84) Specifies current popup control.

 EditStyle (see page 84) Specifies edit style of the button

 ListAlign (see page 84) Specifies relative align of popup control.

 PickList (see page 84) Determines the drop-down list.

TDsnInplaceEditor Class

TDsnInplaceEditor Class Description

 Adapter (see page 300) Specifies associated in-place adapter.

 Alignment (see page 300) Determines how the text is aligned within the editor control.

 Color (see page 300) Specifies the background color of the control.

 IsUnicode (see page 301) Specifies whether control is Unicode edit.

 MultiLine (see page 301) Designates a multiline edit control. The default is single-line edit control.

 OnChange (see page 301) Occurs when the text for the edit control may have changed.

 OnExit (see page 301) Occurs when the input focus shifts away from one control to another.

 TextW (see page 301) Specifies the text string that is displayed in the edit box (Ansi version).

 WordWrap (see page 302) Determines whether the edit control inserts soft carriage returns so text wraps
at the right margin.

1.20.1.1.1 TDsnInplaceEditor Methods

1.20.1.1.1.1 TDsnInplaceEditor.Close Method

Closes in-place text editor.

procedure Close(Accept: Boolean);

Description

If Accept is True edited text will be saved to control otherwise all not saved changes will be canceled.

1.20.1.1.1.2 TDsnInplaceEditor.Create Constructor

Creates and initializes a TBtnEdit instance.

constructor Create(Owner: TComponent); override ;

Description

Use Create to programmatically instantiate this type of a control.

Create

• Calls the inherited Create method

• Sets the width of the button calling GetSystemMetrics method with SM_CXVSCROLL parameter

• Sets ButtonVisible to false

1.20 ed_TextEdit Namespace EControl Form Designer Pro Classes

299

1

• Sets Alignment to taLeftJustify

• Sets MultiLine to true

• Creates Canvas object and sets its Control property to the control itself.

1.20.1.1.1.3 TDsnInplaceEditor.Destroy Destructor

Destroys an instance of TDsnInplaceEditor.

destructor Destroy; override ;

Description

Do not call Destroy directly. Call Free instead. Free verifies that the object reference is not nil before calling Destroy.

1.20.1.1.1.4 TDsnInplaceEditor.LoadText Method

Loads text from adapter to edit control.

procedure LoadText;

1.20.1.1.1.5 TDsnInplaceEditor.SaveText Method

Saves text from edit control to adapter.

procedure SaveText;

1.20.1.1.2 TDsnInplaceEditor Properties

1.20.1.1.2.1 TDsnInplaceEditor.Adapter Property

Specifies associated in-place adapter.

property Adapter: TInplaceComponentEditor ;

Description

Assigning new adapter will destroy (see page 300) previous adapter. Assigned adapter is managed by in-place editor, so it
has not be freed outside editor.

1.20.1.1.2.2 TDsnInplaceEditor.Alignment Property

Determines how the text is aligned within the editor control.

property Alignment: TAlignment;

Description

Use Alignment to change the way the text is formatted by the in-place editor control. Alignment can take one of the following
values:

Value Meaning

taLeftJustify Align text to the left side of the control

taCenter Center text horizontally in the control

taRightJustify Align text to the right side of the control

1.20.1.1.2.3 TDsnInplaceEditor.Color Property

Specifies the background color of the control.

property Color;

1.20 ed_TextEdit Namespace EControl Form Designer Pro Classes

300

1

Description

Use Color to read or change the background color of the control.

If a control's ParentColor property is true, then changing the Color property of the control's parent automatically changes the
Color property of the control. When the value of the Color property is changed, the control's ParentColor property is
automatically set to false.

1.20.1.1.2.4 TDsnInplaceEditor.IsUnicode Property

Specifies whether control is Unicode edit.

property IsUnicode: Boolean;

Description

Set IsUnicode to True to make edit control Unicode window. When control is Unicode TextW (see page 109) and
SelTextW (see page 109) properties should be used instead of Text and SelText properties.

1.20.1.1.2.5 TDsnInplaceEditor.MultiLine Property

Designates a multiline edit control. The default is single-line edit control.

property MultiLine: Boolean;

Description

When MultiLine is True TBtnEdit is equivalent to TMemo control, otherwise it is equivalent to TEdit control.

1.20.1.1.2.6 TDsnInplaceEditor.OnChange Property

Occurs when the text for the edit control may have changed.

property OnChange;

Description

Write an OnChange event handler to take specific action whenever the text for the edit control may have changed. Use the
Modified property to see if a change actually occurred. The Text property of the edit control will already be updated to reflect
any changes. This event provides the first opportunity to respond to modifications that the user types into the edit control.

1.20.1.1.2.7 TDsnInplaceEditor.OnExit Property

Occurs when the input focus shifts away from one control to another.

property OnExit;

Description

Use the OnExit event handler to provide special processing when the control ceases to be active.

The OnExit event does not occur when switching between forms or between another application and your application.

1.20.1.1.2.8 TDsnInplaceEditor.TextW Property

Specifies the text string that is displayed in the edit box (Ansi version).

property TextW: WideString;

Description

Use the TextW property to read the text of the edit box or specify a new string for the TextW value. By default, TextW is the
string specified in the Name property.

1.20 ed_TextEdit Namespace EControl Form Designer Pro Classes

301

1

Use this property when IsUnicode is True. Otherwise this property may corrupt string due to Ansi to Unicode conversion.

1.20.1.1.2.9 TDsnInplaceEditor.WordWrap Property

Determines whether the edit control inserts soft carriage returns so text wraps at the right margin.

property WordWrap: Boolean;

Description

Set WordWrap to true to make the edit control wrap text at the right margin so it fits in the client area. The wrapping is
cosmetic only. The text does not include any return characters that were not explicitly entered. Set WordWrap to false to
have the edit control show a separate line only where return characters were explicitly entered into the text.

Notes

There should be no use for a horizontal scroll bar if WordWrap is true.

1.20.1.2 TInplaceComponentEditor Class
Designer adapter for in-place text editing.

Class Hierarchy

TInplaceComponentEditor = class ;

File

ed_TextEdit

Description

TInplaceComponentEditor objects are created by designer to handle in-place text editing. Classes derived from
TInplaceComponentEditor defines editable text, rectangle of in-place editor and its properties.

One control may have several text regions, handling of this regions are provided by classes derived from this class.

After implementing new in-place editor adapter you have to register it using RegisterInplaceComponentEditor (see page
306).

Members

TInplaceComponentEditor Methods

TInplaceComponentEditor Methods Description

 Create (see page 303) Creates and initializes a TInplaceComponentEditor instance.

 GetBoundRect (see page 303) Returns bounding rectangle for in-place editor.

 GetText (see page 304) Returns control text to be edited.

 GetTextW (see page 304) Returns control Unicode text to be edited.

 HandlePos (see page 304) Specifies whether control text may be edited at specified position.

 IsAutoUpdate (see page 304) Specifies whether text has to be written on any change in in-place editor.

 IsUnicode (see page 304) Determines whether edited text is Unicode.

 SetEditor (see page 304) Adjusts in-place editor properties.

 SetHitPoint (see page 305) Called before activating in-place editor to define editing region.

 SetText (see page 305) Writes edited text to control.

 SetTextW (see page 305) Writes edited Unicode text to control.

TInplaceComponentEditor Properties

TInplaceComponentEditor Properties Description

 BoundRect (see page 305) Returns bounding rectangle for in-place editor.

 Control (see page 305) Control managed by in-place adapter.

 Text (see page 305) Returns control text to be edited.

 TextW (see page 306) Returns control Unicode text to be edited.

1.20 ed_TextEdit Namespace EControl Form Designer Pro Classes

302

1

Legend

Constructor

virtual

protected

Property

read only

TInplaceComponentEditor Methods

TInplaceComponentEditor Methods Description

 Create (see page 303) Creates and initializes a TInplaceComponentEditor instance.

 GetBoundRect (see page 303) Returns bounding rectangle for in-place editor.

 GetText (see page 304) Returns control text to be edited.

 GetTextW (see page 304) Returns control Unicode text to be edited.

 HandlePos (see page 304) Specifies whether control text may be edited at specified position.

 IsAutoUpdate (see page 304) Specifies whether text has to be written on any change in in-place editor.

 IsUnicode (see page 304) Determines whether edited text is Unicode.

 SetEditor (see page 304) Adjusts in-place editor properties.

 SetHitPoint (see page 305) Called before activating in-place editor to define editing region.

 SetText (see page 305) Writes edited text to control.

 SetTextW (see page 305) Writes edited Unicode text to control.

TInplaceComponentEditor Properties

TInplaceComponentEditor Properties Description

 BoundRect (see page 305) Returns bounding rectangle for in-place editor.

 Control (see page 305) Control managed by in-place adapter.

 Text (see page 305) Returns control text to be edited.

 TextW (see page 306) Returns control Unicode text to be edited.

1.20.1.2.1 TInplaceComponentEditor Methods

1.20.1.2.1.1 TInplaceComponentEditor.Create Constructor

Creates and initializes a TInplaceComponentEditor instance.

constructor Create(AControl: TControl); virtual ;

Description

Use Create to programmatically instantiate a TInplaceComponentEditor object.

TInplaceComponentEditor objects are created by designer to handle in-place text editing. Classes derived from
TInplaceComponentEditor defines editable text, rectangle of in-place editor and its properties.

One control may have several text regions, handling of this regions are provided by classes derived from this class.

After implementing new in-place editor adapter you have to register it using RegisterInplaceComponentEditor (see page
306).

1.20.1.2.1.2 TInplaceComponentEditor.GetBoundRect Method

Returns bounding rectangle for in-place editor.

function GetBoundRect: TRect; virtual ;

Description

Implement this method in derived classes to calculate position of in-place editor. If control has several editable regions
define particular region in SetHitPoint (see page 305) method and use it in GetBoundRect to return rectangle of the region.

1.20 ed_TextEdit Namespace EControl Form Designer Pro Classes

303

1

1.20.1.2.1.3 TInplaceComponentEditor.GetText Method

Returns control text to be edited.

function GetText: string ; virtual ;

Description

By default, GetText returns value of TControl.Caption. Implement this method in derived classes to return text associated
with particular text region defined by the SetHitPoint (see page 305) method.

1.20.1.2.1.4 TInplaceComponentEditor.GetTextW Method

Returns control Unicode text to be edited.

function GetTextW: WideString; virtual ;

Description

By default, GetTextW returns value of TControl.Caption. Implement this method in derived classes to return text associated
with particular text region defined by the SetHitPoint (see page 305) method.

1.20.1.2.1.5 TInplaceComponentEditor.HandlePos Method

Specifies whether control text may be edited at specified position.

function HandlePos(Pos: TPoint): Boolean; virtual ;

Description

Write this method to define ability to activate in-place editor at specified position. If Pos = Point(-1, -1), in-place editor is
activated by keyboard (user presses Enter key).

1.20.1.2.1.6 TInplaceComponentEditor.IsAutoUpdate Method

Specifies whether text has to be written on any change in in-place editor.

function IsAutoUpdate: Boolean; virtual ;

Description

If IsAutoUpdate returns True, any text input in in-place editor immediately saved to control, in-place editor bounds are
recalculated.

Otherwise text is written to control when editor looses focus or when user presses Enter key in editor.

By default, IsAutoUpdate returns False.

1.20.1.2.1.7 TInplaceComponentEditor.IsUnicode Method

Determines whether edited text is Unicode.

function IsUnicode: Boolean; virtual ;

1.20.1.2.1.8 TInplaceComponentEditor.SetEditor Method

Adjusts in-place editor properties.

procedure SetEditor(Editor: TDsnInplaceEditor); virtual ;

Description

Set properties of in-place editor control (TDsnInplaceEditor (see page 295)). Override this method to define particular
properties of in-place editor for current editing region.

Default settings:

procedure TInplaceComponentEditor.SetEditor(Editor: TDsnInplaceEditor);
begin

1.20 ed_TextEdit Namespace EControl Form Designer Pro Classes

304

1

 // Default settings
 Editor.Color := TControlAccess(Control).Color;
 Editor.Font := TControlAccess(Control).Font;
 Editor.MultiLine := False;
 Editor.WordWrap := False;
 Editor.Alignment := taLeftJustify;
 Editor.WantTabs := False;
end ;

1.20.1.2.1.9 TInplaceComponentEditor.SetHitPoint Method

Called before activating in-place editor to define editing region.

procedure SetHitPoint(Pos: TPoint); virtual ;

Description

Control (see page 305) may have many editable regions, for example, in list view column headers, item captions and
sub-items may be edited. This method allows to define edited region, save it in adapter and use in all other adapter methods.

1.20.1.2.1.10 TInplaceComponentEditor.SetText Method

Writes edited text to control.

procedure SetText(const Value: string); virtual ;

Description

By default, SetText writes value to TControl.Caption property. Override this method to write edited text to another destination.

1.20.1.2.1.11 TInplaceComponentEditor.SetTextW Method

Writes edited Unicode text to control.

procedure SetTextW(const Value: WideString); virtual ;

Description

By default, SetTextW writes value to TControl.Caption property. Override this method to write edited text to another
destination.

1.20.1.2.2 TInplaceComponentEditor Properties

1.20.1.2.2.1 TInplaceComponentEditor.BoundRect Property

Returns bounding rectangle for in-place editor.

property BoundRect: TRect;

Description

BoundRect returns rectangle of particular editable region defined in SetHitPoint (see page 305) method.

1.20.1.2.2.2 TInplaceComponentEditor.Control Property

Control managed by in-place adapter.

property Control: TControl;

Description

Reference to Control is passed in constructor.

1.20.1.2.2.3 TInplaceComponentEditor.Text Property

Returns control text to be edited.

1.20 ed_TextEdit Namespace EControl Form Designer Pro Classes

305

1

property Text: string ;

Description

By default, Text is associated with TControl.Caption property. Get and set methods of this property may be overridden in
derived classes to access other control texts.

1.20.1.2.2.4 TInplaceComponentEditor.TextW Property

Returns control Unicode text to be edited.

property TextW: WideString;

Description

By default, TextW is associated with TControl.Caption property. Get and set methods of this property may be overridden in
derived classes to access other control texts.

1.20.2 Functions

The following table lists functions in this documentation.

Functions

Function Description

 CreateImplEditor (see page 306) Creates in-place text adapter for specified Control.

 RegisterInplaceComponentEditor (see page 306) Registers in-place text adapter.

Legend

Method

1.20.2.1 ed_TextEdit.CreateImplEditor Function
function CreateImplEditor(Control: TControl): TInplaceComponentEditor ;

File

ed_TextEdit

Description

Creates in-place text adapter for specified Control.

1.20.2.2 ed_TextEdit.RegisterInplaceComponentEditor Function
Registers in-place text adapter.

procedure RegisterInplaceComponentEditor(ControlClass: TControlClass; EditorClass:
TInplaceComponentEditorClass);

File

ed_TextEdit

Description

Associates in-place text adapter EditorClass with the control class.

To disable in-place editing pass EditorClass = nil.

1.20 ed_TextEdit Namespace EControl Form Designer Pro Types

306

1

1.20.3 Types

The following table lists types in this documentation.

Types

Type Description

TInplaceComponentEditorClass (see page 307) TInplaceComponentEditor (see page 302) class reference.

1.20.3.1 ed_TextEdit.TInplaceComponentEditorClass Type
TInplaceComponentEditorClass = class of TInplaceComponentEditor ;

File

ed_TextEdit

Description

TInplaceComponentEditor (see page 302) class reference.

1.21 edActns Namespace

1.21.1 Classes

The following table lists classes in this documentation.

Classes

Class Description

TDesignerAction (see page 308) TDesignerAction is the base class for design actions meant to be used with
active designer

TdsnAlignmentDlg (see page 311) Opens the Alignment dialog box for the current designer

TdsnAlignToGrid (see page 313) Performs Align To Grid action for the active designer

TdsnBringToFront (see page 315) Performs Bring To Front action for the active designer

TdsnCopy (see page 316) Performs Copy to clipboard action for the active designer.

TdsnCreationOrderDlg (see page 317) Opens the Creation Order dialog box for the active designer.

TdsnCut (see page 318) Performs Cut To Clipboard action for the active designer.

TdsnDelete (see page 318) Performs Delete action for the current designer

TdsnDesignMode (see page 319) Performs switching design mode for the current form with the active designer

TdsnFlipChildren (see page 320) Performs Flip Children action for the selectedl controls.

TdsnFlipChildrenAll (see page 322) Performs Flip Children action for all controls.

TdsnGroupControls (see page 323) Group Controls action for the active designer.

TdsnLockControls (see page 325) Performs "Lock Controls" action for the active designer

TdsnPaste (see page 327) Perform Paste action for the current designer

TdsnRedo (see page 327) Repeat last undone operation.

TdsnScale (see page 327) Opens the Scale dialog box for the active designer

TDsnSelAction (see page 329) Base class of designer actions that require not empty selection

TdsnSelectAll (see page 330) Performs Select All action for the active designer

TdsnSendToBack (see page 330) Performs Send To Back action for the active designer

TdsnShowTabOrder (see page 332) Set show tab order design mode.

TdsnSizeDlg (see page 334) Opens the Size dialog box.

1.21 edActns Namespace EControl Form Designer Pro Classes

307

1

TdsnTabOrderDlg (see page 335) Opens the Edit Tab Order dialog box

TdsnTargetAction (see page 337) Designer target actions. Determines whether target is managed by designer.

TdsnTextEditMode (see page 337) Toggles TextEditMode of the active designer.

TdsnUndo (see page 338) Backs out last change in the undo buffer.

TdsnUngroupControls (see page 339) Ungroups selected controls.

1.21.1.1 TDesignerAction Class
TDesignerAction is the base class for design actions meant to be used with active designer

Class Hierarchy

TDesignerAction = class (TCustomAction);

File

edActns

Description

TDesignerAction introduces support for the for the specific behaviour of designer actions.

It publishes some properties of the TCustomAction to use in its descendants and overrides Update (see page 309) method
to interact with designer's Active property (disabling when there is no active designer).

Use it as a base class when deriving your own designer actions.

Members

TDesignerAction Methods

TDesignerAction Methods Description

 Update (see page 309) Indicates whether the action updates itself.

TDesignerAction Properties

TDesignerAction Properties Description

 Caption (see page 309) Represents the caption of client controls and menu items.

 Enabled (see page 309) Indicates whether client controls and menu items are enabled.

 HelpContext (see page 309) Indicates the help context ID for client controls and menu items.

 HelpKeyword (see page 310) Indicates the help keyword for client controls and menu items.

 HelpType (see page 310) Indicates the mechanism for client controls and menu items to use when
invoking help.

 Hint (see page 310) Indicates the Help hint for client controls and menu items.

 ImageIndex (see page 310) Indicates the ImageIndex property for client controls and menu items.

 OnExecute (see page 310) Occurs when the client event that is linked to it fires.

 OnHint (see page 310) Occurs when the mouse pauses over a client control or menu item.

 OnUpdate (see page 311) Occurs when the application is idle or when the action list updates.

 SecondaryShortCuts (see page 311) Specifies the short cuts (in addition to ShortCut (see page 311)) for
triggering clients.

 ShortCut (see page 311) Specifies the ShortCut property for client menu items.

 Visible (see page 311) Specifies the Visible property for client controls and menu items.

Legend

Method

virtual

Property

TDesignerAction Methods

TDesignerAction Methods Description

 Update (see page 309) Indicates whether the action updates itself.

1.21 edActns Namespace EControl Form Designer Pro Classes

308

1

TDesignerAction Properties

TDesignerAction Properties Description

 Caption (see page 309) Represents the caption of client controls and menu items.

 Enabled (see page 309) Indicates whether client controls and menu items are enabled.

 HelpContext (see page 309) Indicates the help context ID for client controls and menu items.

 HelpKeyword (see page 310) Indicates the help keyword for client controls and menu items.

 HelpType (see page 310) Indicates the mechanism for client controls and menu items to use when
invoking help.

 Hint (see page 310) Indicates the Help hint for client controls and menu items.

 ImageIndex (see page 310) Indicates the ImageIndex property for client controls and menu items.

 OnExecute (see page 310) Occurs when the client event that is linked to it fires.

 OnHint (see page 310) Occurs when the mouse pauses over a client control or menu item.

 OnUpdate (see page 311) Occurs when the application is idle or when the action list updates.

 SecondaryShortCuts (see page 311) Specifies the short cuts (in addition to ShortCut (see page 311)) for
triggering clients.

 ShortCut (see page 311) Specifies the ShortCut property for client menu items.

 Visible (see page 311) Specifies the Visible property for client controls and menu items.

1.21.1.1.1 TDesignerAction Methods

1.21.1.1.1.1 TDesignerAction.Update Method

Indicates whether the action updates itself.

function Update: Boolean; override ;

Description

The Update method sets Enable property and Result to True if there is active designer in DsnManager (see page 514).

1.21.1.1.2 TDesignerAction Properties

1.21.1.1.2.1 TDesignerAction.Caption Property

Represents the caption of client controls and menu items.

property Caption;

Description

This is inherited property.

See TCustomAction.Caption for details.

1.21.1.1.2.2 TDesignerAction.Enabled Property

Indicates whether client controls and menu items are enabled.

property Enabled;

Description

This is inherited property.

See TCustomAction.Enabled for details.

1.21.1.1.2.3 TDesignerAction.HelpContext Property

Indicates the help context ID for client controls and menu items.

property HelpContext;

1.21 edActns Namespace EControl Form Designer Pro Classes

309

1

Description

This is inherited property.

See TCustomAction.HelpContext for details.

1.21.1.1.2.4 TDesignerAction.HelpKeyword Property

Indicates the help keyword for client controls and menu items.

property HelpKeyword;

Description

This is inherited property.

See TCustomAction.HelpKeyword for details.

1.21.1.1.2.5 TDesignerAction.HelpType Property

Indicates the mechanism for client controls and menu items to use when invoking help.

property HelpType;

Description

This is inherited property.

See TCustomAction.HelpType for details.

1.21.1.1.2.6 TDesignerAction.Hint Property

Indicates the Help hint for client controls and menu items.

property Hint;

Description

This is inherited property.

See TCustomAction.Hint for details.

1.21.1.1.2.7 TDesignerAction.ImageIndex Property

Indicates the ImageIndex property for client controls and menu items.

property ImageIndex;

Description

This is inherited property.

See TCustomAction.ImageIndex for details.

1.21.1.1.2.8 TDesignerAction.OnExecute Property

Occurs when the client event that is linked to it fires.

property OnExecute;

Description

This is inherited property.

See TBasicAction.OnExecute for details.

1.21.1.1.2.9 TDesignerAction.OnHint Property

Occurs when the mouse pauses over a client control or menu item.

1.21 edActns Namespace EControl Form Designer Pro Classes

310

1

property OnHint;

Description

This is inherited property.

See TCustomAction.OnHint for details.

1.21.1.1.2.10 TDesignerAction.OnUpdate Property

Occurs when the application is idle or when the action list updates.

property OnUpdate;

Description

This is inherited property.

See TBasicAction.OnUpdate for details.

1.21.1.1.2.11 TDesignerAction.SecondaryShortCuts Property

Specifies the short cuts (in addition to ShortCut (see page 311)) for triggering clients.

property SecondaryShortCuts;

Description

This is inherited property.

See TCustomAction.SecondaryShortCuts for details.

1.21.1.1.2.12 TDesignerAction.ShortCut Property

Specifies the ShortCut property for client menu items.

property ShortCut;

Description

This is inherited property.

See TCustomAction.ShortCut for details.

1.21.1.1.2.13 TDesignerAction.Visible Property

Specifies the Visible property for client controls and menu items.

property Visible;

Description

This is inherited property.

See TCustomAction.Visible for details.

1.21.1.2 TdsnAlignmentDlg Class
Opens the Alignment dialog box for the current designer

Class Hierarchy

TdsnAlignmentDlg = class (TDsnSelAction);

File

edActns

1.21 edActns Namespace EControl Form Designer Pro Classes

311

1

Description

See TAlignmentDlg for details

Members

TDesignerAction Methods

TDesignerAction Methods Description

 Update (see page 309) Indicates whether the action updates itself.

TDsnSelAction Class

TDsnSelAction Class Description

 Update (see page 330) Checks if there are selected controls for the active designer

TdsnAlignmentDlg Class

TdsnAlignmentDlg Class Description

 Execute (see page 313) Invokes Alignment dialog and aligns selected components correspondingly for
the active designer

TDesignerAction Properties

TDesignerAction Properties Description

 Caption (see page 309) Represents the caption of client controls and menu items.

 Enabled (see page 309) Indicates whether client controls and menu items are enabled.

 HelpContext (see page 309) Indicates the help context ID for client controls and menu items.

 HelpKeyword (see page 310) Indicates the help keyword for client controls and menu items.

 HelpType (see page 310) Indicates the mechanism for client controls and menu items to use when
invoking help.

 Hint (see page 310) Indicates the Help hint for client controls and menu items.

 ImageIndex (see page 310) Indicates the ImageIndex property for client controls and menu items.

 OnExecute (see page 310) Occurs when the client event that is linked to it fires.

 OnHint (see page 310) Occurs when the mouse pauses over a client control or menu item.

 OnUpdate (see page 311) Occurs when the application is idle or when the action list updates.

 SecondaryShortCuts (see page 311) Specifies the short cuts (in addition to ShortCut (see page 311)) for
triggering clients.

 ShortCut (see page 311) Specifies the ShortCut property for client menu items.

 Visible (see page 311) Specifies the Visible property for client controls and menu items.

Legend

Method

virtual

Property

TDesignerAction Methods

TDesignerAction Methods Description

 Update (see page 309) Indicates whether the action updates itself.

TDsnSelAction Class

TDsnSelAction Class Description

 Update (see page 330) Checks if there are selected controls for the active designer

TdsnAlignmentDlg Class

TdsnAlignmentDlg Class Description

 Execute (see page 313) Invokes Alignment dialog and aligns selected components correspondingly for
the active designer

TDesignerAction Properties

TDesignerAction Properties Description

 Caption (see page 309) Represents the caption of client controls and menu items.

 Enabled (see page 309) Indicates whether client controls and menu items are enabled.

 HelpContext (see page 309) Indicates the help context ID for client controls and menu items.

 HelpKeyword (see page 310) Indicates the help keyword for client controls and menu items.

1.21 edActns Namespace EControl Form Designer Pro Classes

312

1

 HelpType (see page 310) Indicates the mechanism for client controls and menu items to use when
invoking help.

 Hint (see page 310) Indicates the Help hint for client controls and menu items.

 ImageIndex (see page 310) Indicates the ImageIndex property for client controls and menu items.

 OnExecute (see page 310) Occurs when the client event that is linked to it fires.

 OnHint (see page 310) Occurs when the mouse pauses over a client control or menu item.

 OnUpdate (see page 311) Occurs when the application is idle or when the action list updates.

 SecondaryShortCuts (see page 311) Specifies the short cuts (in addition to ShortCut (see page 311)) for
triggering clients.

 ShortCut (see page 311) Specifies the ShortCut property for client menu items.

 Visible (see page 311) Specifies the Visible property for client controls and menu items.

1.21.1.2.1 TdsnAlignmentDlg Methods

1.21.1.2.1.1 TdsnAlignmentDlg.Execute Method

Invokes Alignment dialog and aligns selected components correspondingly for the active designer

function Execute: Boolean; override ;

Description

1.21.1.3 TdsnAlignToGrid Class
Performs Align To Grid action for the active designer

Class Hierarchy

TdsnAlignToGrid = class (TDsnSelAction);

File

edActns

Description

Align to Grid command aligns the selected components to the closest grid point.

Members

TDesignerAction Methods

TDesignerAction Methods Description

 Update (see page 309) Indicates whether the action updates itself.

TDsnSelAction Class

TDsnSelAction Class Description

 Update (see page 330) Checks if there are selected controls for the active designer

TdsnAlignToGrid Class

TdsnAlignToGrid Class Description

 Execute (see page 314) Executes Align To Grid action for the active designer

TDesignerAction Properties

TDesignerAction Properties Description

 Caption (see page 309) Represents the caption of client controls and menu items.

 Enabled (see page 309) Indicates whether client controls and menu items are enabled.

 HelpContext (see page 309) Indicates the help context ID for client controls and menu items.

 HelpKeyword (see page 310) Indicates the help keyword for client controls and menu items.

1.21 edActns Namespace EControl Form Designer Pro Classes

313

1

 HelpType (see page 310) Indicates the mechanism for client controls and menu items to use when
invoking help.

 Hint (see page 310) Indicates the Help hint for client controls and menu items.

 ImageIndex (see page 310) Indicates the ImageIndex property for client controls and menu items.

 OnExecute (see page 310) Occurs when the client event that is linked to it fires.

 OnHint (see page 310) Occurs when the mouse pauses over a client control or menu item.

 OnUpdate (see page 311) Occurs when the application is idle or when the action list updates.

 SecondaryShortCuts (see page 311) Specifies the short cuts (in addition to ShortCut (see page 311)) for
triggering clients.

 ShortCut (see page 311) Specifies the ShortCut property for client menu items.

 Visible (see page 311) Specifies the Visible property for client controls and menu items.

Legend

Method

virtual

Property

TDesignerAction Methods

TDesignerAction Methods Description

 Update (see page 309) Indicates whether the action updates itself.

TDsnSelAction Class

TDsnSelAction Class Description

 Update (see page 330) Checks if there are selected controls for the active designer

TdsnAlignToGrid Class

TdsnAlignToGrid Class Description

 Execute (see page 314) Executes Align To Grid action for the active designer

TDesignerAction Properties

TDesignerAction Properties Description

 Caption (see page 309) Represents the caption of client controls and menu items.

 Enabled (see page 309) Indicates whether client controls and menu items are enabled.

 HelpContext (see page 309) Indicates the help context ID for client controls and menu items.

 HelpKeyword (see page 310) Indicates the help keyword for client controls and menu items.

 HelpType (see page 310) Indicates the mechanism for client controls and menu items to use when
invoking help.

 Hint (see page 310) Indicates the Help hint for client controls and menu items.

 ImageIndex (see page 310) Indicates the ImageIndex property for client controls and menu items.

 OnExecute (see page 310) Occurs when the client event that is linked to it fires.

 OnHint (see page 310) Occurs when the mouse pauses over a client control or menu item.

 OnUpdate (see page 311) Occurs when the application is idle or when the action list updates.

 SecondaryShortCuts (see page 311) Specifies the short cuts (in addition to ShortCut (see page 311)) for
triggering clients.

 ShortCut (see page 311) Specifies the ShortCut property for client menu items.

 Visible (see page 311) Specifies the Visible property for client controls and menu items.

1.21.1.3.1 TdsnAlignToGrid Methods

1.21.1.3.1.1 TdsnAlignToGrid.Execute Method

Executes Align To Grid action for the active designer

function Execute: Boolean; override ;

Description

Align to Grid command aligns the selected components to the closest grid point.

1.21 edActns Namespace EControl Form Designer Pro Classes

314

1

1.21.1.4 TdsnBringToFront Class
Performs Bring To Front action for the active designer

Class Hierarchy

TdsnBringToFront = class (TDsnSelAction);

File

edActns

Description

Bring to Front command moves a selected component in front of all other components on the form. This is called changing
the component's z-order.

Notes

The Bring to Front and Send to Back commands do not work if you are combining windowed and non-windowed controls.
For example, you cannot change the z-order of a label in relation to a button.

Members

TDesignerAction Methods

TDesignerAction Methods Description

 Update (see page 309) Indicates whether the action updates itself.

TDsnSelAction Class

TDsnSelAction Class Description

 Update (see page 330) Checks if there are selected controls for the active designer

TdsnBringToFront Class

TdsnBringToFront Class Description

 Execute (see page 316) Executes Bring To Front action for the active designer

TDesignerAction Properties

TDesignerAction Properties Description

 Caption (see page 309) Represents the caption of client controls and menu items.

 Enabled (see page 309) Indicates whether client controls and menu items are enabled.

 HelpContext (see page 309) Indicates the help context ID for client controls and menu items.

 HelpKeyword (see page 310) Indicates the help keyword for client controls and menu items.

 HelpType (see page 310) Indicates the mechanism for client controls and menu items to use when
invoking help.

 Hint (see page 310) Indicates the Help hint for client controls and menu items.

 ImageIndex (see page 310) Indicates the ImageIndex property for client controls and menu items.

 OnExecute (see page 310) Occurs when the client event that is linked to it fires.

 OnHint (see page 310) Occurs when the mouse pauses over a client control or menu item.

 OnUpdate (see page 311) Occurs when the application is idle or when the action list updates.

 SecondaryShortCuts (see page 311) Specifies the short cuts (in addition to ShortCut (see page 311)) for
triggering clients.

 ShortCut (see page 311) Specifies the ShortCut property for client menu items.

 Visible (see page 311) Specifies the Visible property for client controls and menu items.

Legend

Method

virtual

Property

1.21 edActns Namespace EControl Form Designer Pro Classes

315

1

TDesignerAction Methods

TDesignerAction Methods Description

 Update (see page 309) Indicates whether the action updates itself.

TDsnSelAction Class

TDsnSelAction Class Description

 Update (see page 330) Checks if there are selected controls for the active designer

TdsnBringToFront Class

TdsnBringToFront Class Description

 Execute (see page 316) Executes Bring To Front action for the active designer

TDesignerAction Properties

TDesignerAction Properties Description

 Caption (see page 309) Represents the caption of client controls and menu items.

 Enabled (see page 309) Indicates whether client controls and menu items are enabled.

 HelpContext (see page 309) Indicates the help context ID for client controls and menu items.

 HelpKeyword (see page 310) Indicates the help keyword for client controls and menu items.

 HelpType (see page 310) Indicates the mechanism for client controls and menu items to use when
invoking help.

 Hint (see page 310) Indicates the Help hint for client controls and menu items.

 ImageIndex (see page 310) Indicates the ImageIndex property for client controls and menu items.

 OnExecute (see page 310) Occurs when the client event that is linked to it fires.

 OnHint (see page 310) Occurs when the mouse pauses over a client control or menu item.

 OnUpdate (see page 311) Occurs when the application is idle or when the action list updates.

 SecondaryShortCuts (see page 311) Specifies the short cuts (in addition to ShortCut (see page 311)) for
triggering clients.

 ShortCut (see page 311) Specifies the ShortCut property for client menu items.

 Visible (see page 311) Specifies the Visible property for client controls and menu items.

1.21.1.4.1 TdsnBringToFront Methods

1.21.1.4.1.1 TdsnBringToFront.Execute Method

Executes Bring To Front action for the active designer

function Execute: Boolean; override ;

Description

Bring to Front command moves a selected component in front of all other components on the form. This is called changing
the component's z-order.

Notes

The Bring to Front and Send to Back commands do not work if you are combining windowed and non-windowed controls.
For example, you cannot change the z-order of a label in relation to a button.

1.21.1.5 TdsnCopy Class
Performs Copy to clipboard action for the active designer.

Class Hierarchy

TdsnCopy = class (TEditCopy);

File

edActns

1.21 edActns Namespace EControl Form Designer Pro Classes

316

1

Description

Copy command copies the selected components to the windows clipboard.

1.21.1.6 TdsnCreationOrderDlg Class
Opens the Creation Order dialog box for the active designer.

Class Hierarchy

TdsnCreationOrderDlg = class (TDesignerAction);

File

edActns

Description

This dialog box specifies the order in which your application will create nonvisual components.

Members

TDesignerAction Methods

TDesignerAction Methods Description

 Update (see page 309) Indicates whether the action updates itself.

TdsnCreationOrderDlg Class

TdsnCreationOrderDlg Class Description

 Execute (see page 318) Executes opening the Creation Order dialog box for the active designer.

TDesignerAction Properties

TDesignerAction Properties Description

 Caption (see page 309) Represents the caption of client controls and menu items.

 Enabled (see page 309) Indicates whether client controls and menu items are enabled.

 HelpContext (see page 309) Indicates the help context ID for client controls and menu items.

 HelpKeyword (see page 310) Indicates the help keyword for client controls and menu items.

 HelpType (see page 310) Indicates the mechanism for client controls and menu items to use when
invoking help.

 Hint (see page 310) Indicates the Help hint for client controls and menu items.

 ImageIndex (see page 310) Indicates the ImageIndex property for client controls and menu items.

 OnExecute (see page 310) Occurs when the client event that is linked to it fires.

 OnHint (see page 310) Occurs when the mouse pauses over a client control or menu item.

 OnUpdate (see page 311) Occurs when the application is idle or when the action list updates.

 SecondaryShortCuts (see page 311) Specifies the short cuts (in addition to ShortCut (see page 311)) for
triggering clients.

 ShortCut (see page 311) Specifies the ShortCut property for client menu items.

 Visible (see page 311) Specifies the Visible property for client controls and menu items.

Legend

Method

virtual

Property

TDesignerAction Methods

TDesignerAction Methods Description

 Update (see page 309) Indicates whether the action updates itself.

TdsnCreationOrderDlg Class

TdsnCreationOrderDlg Class Description

 Execute (see page 318) Executes opening the Creation Order dialog box for the active designer.

1.21 edActns Namespace EControl Form Designer Pro Classes

317

1

TDesignerAction Properties

TDesignerAction Properties Description

 Caption (see page 309) Represents the caption of client controls and menu items.

 Enabled (see page 309) Indicates whether client controls and menu items are enabled.

 HelpContext (see page 309) Indicates the help context ID for client controls and menu items.

 HelpKeyword (see page 310) Indicates the help keyword for client controls and menu items.

 HelpType (see page 310) Indicates the mechanism for client controls and menu items to use when
invoking help.

 Hint (see page 310) Indicates the Help hint for client controls and menu items.

 ImageIndex (see page 310) Indicates the ImageIndex property for client controls and menu items.

 OnExecute (see page 310) Occurs when the client event that is linked to it fires.

 OnHint (see page 310) Occurs when the mouse pauses over a client control or menu item.

 OnUpdate (see page 311) Occurs when the application is idle or when the action list updates.

 SecondaryShortCuts (see page 311) Specifies the short cuts (in addition to ShortCut (see page 311)) for
triggering clients.

 ShortCut (see page 311) Specifies the ShortCut property for client menu items.

 Visible (see page 311) Specifies the Visible property for client controls and menu items.

1.21.1.6.1 TdsnCreationOrderDlg Methods

1.21.1.6.1.1 TdsnCreationOrderDlg.Execute Method

Executes opening the Creation Order dialog box for the active designer.

function Execute: Boolean; override ;

Description

This dialog box specifies the order in which your application will create nonvisual components.

1.21.1.7 TdsnCut Class
Performs Cut To Clipboard action for the active designer.

Class Hierarchy

TdsnCut = class (TEditCut);

File

edActns

Description

Cut command cuts the selected components to the windows clipboard.

1.21.1.8 TdsnDelete Class
Performs Delete action for the current designer

Class Hierarchy

TdsnDelete = class (TEditDelete);

File

edActns

1.21 edActns Namespace EControl Form Designer Pro Classes

318

1

Description

Delete command deletes the selected components without copying to the clipboard

1.21.1.9 TdsnDesignMode Class
Performs switching design mode for the current form with the active designer

Class Hierarchy

TdsnDesignMode = class (TDesignerAction);

File

edActns

Description

This action switches current form between design and run-time mode.

Members

TDesignerAction Methods

TDesignerAction Methods Description

 Update (see page 309) Indicates whether the action updates itself.

TdsnDesignMode Class

TdsnDesignMode Class Description

 Execute (see page 320) Executes switching design mode for the current form with the active designer

 Update (see page 320) Indicates whether the action updates itself.

TDesignerAction Properties

TDesignerAction Properties Description

 Caption (see page 309) Represents the caption of client controls and menu items.

 Enabled (see page 309) Indicates whether client controls and menu items are enabled.

 HelpContext (see page 309) Indicates the help context ID for client controls and menu items.

 HelpKeyword (see page 310) Indicates the help keyword for client controls and menu items.

 HelpType (see page 310) Indicates the mechanism for client controls and menu items to use when
invoking help.

 Hint (see page 310) Indicates the Help hint for client controls and menu items.

 ImageIndex (see page 310) Indicates the ImageIndex property for client controls and menu items.

 OnExecute (see page 310) Occurs when the client event that is linked to it fires.

 OnHint (see page 310) Occurs when the mouse pauses over a client control or menu item.

 OnUpdate (see page 311) Occurs when the application is idle or when the action list updates.

 SecondaryShortCuts (see page 311) Specifies the short cuts (in addition to ShortCut (see page 311)) for
triggering clients.

 ShortCut (see page 311) Specifies the ShortCut property for client menu items.

 Visible (see page 311) Specifies the Visible property for client controls and menu items.

Legend

Method

virtual

Property

TDesignerAction Methods

TDesignerAction Methods Description

 Update (see page 309) Indicates whether the action updates itself.

1.21 edActns Namespace EControl Form Designer Pro Classes

319

1

TdsnDesignMode Class

TdsnDesignMode Class Description

 Execute (see page 320) Executes switching design mode for the current form with the active designer

 Update (see page 320) Indicates whether the action updates itself.

TDesignerAction Properties

TDesignerAction Properties Description

 Caption (see page 309) Represents the caption of client controls and menu items.

 Enabled (see page 309) Indicates whether client controls and menu items are enabled.

 HelpContext (see page 309) Indicates the help context ID for client controls and menu items.

 HelpKeyword (see page 310) Indicates the help keyword for client controls and menu items.

 HelpType (see page 310) Indicates the mechanism for client controls and menu items to use when
invoking help.

 Hint (see page 310) Indicates the Help hint for client controls and menu items.

 ImageIndex (see page 310) Indicates the ImageIndex property for client controls and menu items.

 OnExecute (see page 310) Occurs when the client event that is linked to it fires.

 OnHint (see page 310) Occurs when the mouse pauses over a client control or menu item.

 OnUpdate (see page 311) Occurs when the application is idle or when the action list updates.

 SecondaryShortCuts (see page 311) Specifies the short cuts (in addition to ShortCut (see page 311)) for
triggering clients.

 ShortCut (see page 311) Specifies the ShortCut property for client menu items.

 Visible (see page 311) Specifies the Visible property for client controls and menu items.

1.21.1.9.1 TdsnDesignMode Methods

1.21.1.9.1.1 TdsnDesignMode.Execute Method

Executes switching design mode for the current form with the active designer

function Execute: Boolean; override ;

Description

This action switches current form between design and run-time mode.

1.21.1.9.1.2 TdsnDesignMode.Update Method

Indicates whether the action updates itself.

function Update: Boolean; override ;

Description

The Update method sets Enable property and Result to True if there is active designer in DsnManager.

1.21.1.10 TdsnFlipChildren Class
Performs Flip Children action for the selectedl controls.

Class Hierarchy

TdsnFlipChildren = class (TDesignerAction);

File

edActns

Description

Flip Children allows you to reverse the layout of components in the current form to a right-to-left mirror image.

1.21 edActns Namespace EControl Form Designer Pro Classes

320

1

This lets developers quickly change a form created for an audience that reads left to right so that it appears natural in
environments where users read from right to left.

Members

TDesignerAction Methods

TDesignerAction Methods Description

 Update (see page 309) Indicates whether the action updates itself.

TdsnFlipChildren Class

TdsnFlipChildren Class Description

 Execute (see page 322) Executes Flip Children action for all controls.

TDesignerAction Properties

TDesignerAction Properties Description

 Caption (see page 309) Represents the caption of client controls and menu items.

 Enabled (see page 309) Indicates whether client controls and menu items are enabled.

 HelpContext (see page 309) Indicates the help context ID for client controls and menu items.

 HelpKeyword (see page 310) Indicates the help keyword for client controls and menu items.

 HelpType (see page 310) Indicates the mechanism for client controls and menu items to use when
invoking help.

 Hint (see page 310) Indicates the Help hint for client controls and menu items.

 ImageIndex (see page 310) Indicates the ImageIndex property for client controls and menu items.

 OnExecute (see page 310) Occurs when the client event that is linked to it fires.

 OnHint (see page 310) Occurs when the mouse pauses over a client control or menu item.

 OnUpdate (see page 311) Occurs when the application is idle or when the action list updates.

 SecondaryShortCuts (see page 311) Specifies the short cuts (in addition to ShortCut (see page 311)) for
triggering clients.

 ShortCut (see page 311) Specifies the ShortCut property for client menu items.

 Visible (see page 311) Specifies the Visible property for client controls and menu items.

Legend

Method

virtual

Property

TDesignerAction Methods

TDesignerAction Methods Description

 Update (see page 309) Indicates whether the action updates itself.

TdsnFlipChildren Class

TdsnFlipChildren Class Description

 Execute (see page 322) Executes Flip Children action for all controls.

TDesignerAction Properties

TDesignerAction Properties Description

 Caption (see page 309) Represents the caption of client controls and menu items.

 Enabled (see page 309) Indicates whether client controls and menu items are enabled.

 HelpContext (see page 309) Indicates the help context ID for client controls and menu items.

 HelpKeyword (see page 310) Indicates the help keyword for client controls and menu items.

 HelpType (see page 310) Indicates the mechanism for client controls and menu items to use when
invoking help.

 Hint (see page 310) Indicates the Help hint for client controls and menu items.

 ImageIndex (see page 310) Indicates the ImageIndex property for client controls and menu items.

 OnExecute (see page 310) Occurs when the client event that is linked to it fires.

 OnHint (see page 310) Occurs when the mouse pauses over a client control or menu item.

 OnUpdate (see page 311) Occurs when the application is idle or when the action list updates.

 SecondaryShortCuts (see page 311) Specifies the short cuts (in addition to ShortCut (see page 311)) for
triggering clients.

 ShortCut (see page 311) Specifies the ShortCut property for client menu items.

 Visible (see page 311) Specifies the Visible property for client controls and menu items.

1.21 edActns Namespace EControl Form Designer Pro Classes

321

1

1.21.1.10.1 TdsnFlipChildren Methods

1.21.1.10.1.1 TdsnFlipChildren.Execute Method

Executes Flip Children action for all controls.

function Execute: Boolean; override ;

Description

1.21.1.11 TdsnFlipChildrenAll Class
Performs Flip Children action for all controls.

Class Hierarchy

TdsnFlipChildrenAll = class (TDesignerAction);

File

edActns

Description

See TdsnFlipChildren (see page 320) for details

Members

TDesignerAction Methods

TDesignerAction Methods Description

 Update (see page 309) Indicates whether the action updates itself.

TdsnFlipChildrenAll Class

TdsnFlipChildrenAll Class Description

 Execute (see page 323) Executes Flip Children action for all controls.

TDesignerAction Properties

TDesignerAction Properties Description

 Caption (see page 309) Represents the caption of client controls and menu items.

 Enabled (see page 309) Indicates whether client controls and menu items are enabled.

 HelpContext (see page 309) Indicates the help context ID for client controls and menu items.

 HelpKeyword (see page 310) Indicates the help keyword for client controls and menu items.

 HelpType (see page 310) Indicates the mechanism for client controls and menu items to use when
invoking help.

 Hint (see page 310) Indicates the Help hint for client controls and menu items.

 ImageIndex (see page 310) Indicates the ImageIndex property for client controls and menu items.

 OnExecute (see page 310) Occurs when the client event that is linked to it fires.

 OnHint (see page 310) Occurs when the mouse pauses over a client control or menu item.

 OnUpdate (see page 311) Occurs when the application is idle or when the action list updates.

 SecondaryShortCuts (see page 311) Specifies the short cuts (in addition to ShortCut (see page 311)) for
triggering clients.

 ShortCut (see page 311) Specifies the ShortCut property for client menu items.

 Visible (see page 311) Specifies the Visible property for client controls and menu items.

Legend

Method

virtual

Property

1.21 edActns Namespace EControl Form Designer Pro Classes

322

1

TDesignerAction Methods

TDesignerAction Methods Description

 Update (see page 309) Indicates whether the action updates itself.

TdsnFlipChildrenAll Class

TdsnFlipChildrenAll Class Description

 Execute (see page 323) Executes Flip Children action for all controls.

TDesignerAction Properties

TDesignerAction Properties Description

 Caption (see page 309) Represents the caption of client controls and menu items.

 Enabled (see page 309) Indicates whether client controls and menu items are enabled.

 HelpContext (see page 309) Indicates the help context ID for client controls and menu items.

 HelpKeyword (see page 310) Indicates the help keyword for client controls and menu items.

 HelpType (see page 310) Indicates the mechanism for client controls and menu items to use when
invoking help.

 Hint (see page 310) Indicates the Help hint for client controls and menu items.

 ImageIndex (see page 310) Indicates the ImageIndex property for client controls and menu items.

 OnExecute (see page 310) Occurs when the client event that is linked to it fires.

 OnHint (see page 310) Occurs when the mouse pauses over a client control or menu item.

 OnUpdate (see page 311) Occurs when the application is idle or when the action list updates.

 SecondaryShortCuts (see page 311) Specifies the short cuts (in addition to ShortCut (see page 311)) for
triggering clients.

 ShortCut (see page 311) Specifies the ShortCut property for client menu items.

 Visible (see page 311) Specifies the Visible property for client controls and menu items.

1.21.1.11.1 TdsnFlipChildrenAll Methods

1.21.1.11.1.1 TdsnFlipChildrenAll.Execute Method

Executes Flip Children action for all controls.

function Execute: Boolean; override ;

Description

1.21.1.12 TdsnGroupControls Class
Group Controls action for the active designer.

Class Hierarchy

TdsnGroupControls = class (TDsnSelAction);

File

edActns

Description

The Group command groups the selected controls. Grouped controls are selected together, which makes group operations
easier.

Members

TDesignerAction Methods

TDesignerAction Methods Description

 Update (see page 309) Indicates whether the action updates itself.

1.21 edActns Namespace EControl Form Designer Pro Classes

323

1

TDsnSelAction Class

TDsnSelAction Class Description

 Update (see page 330) Checks if there are selected controls for the active designer

TdsnGroupControls Class

TdsnGroupControls Class Description

 Execute (see page 325) Executes Group Controls action for the active designer

 Update (see page 325) Checks if there are selected controls for the active designer

TDesignerAction Properties

TDesignerAction Properties Description

 Caption (see page 309) Represents the caption of client controls and menu items.

 Enabled (see page 309) Indicates whether client controls and menu items are enabled.

 HelpContext (see page 309) Indicates the help context ID for client controls and menu items.

 HelpKeyword (see page 310) Indicates the help keyword for client controls and menu items.

 HelpType (see page 310) Indicates the mechanism for client controls and menu items to use when
invoking help.

 Hint (see page 310) Indicates the Help hint for client controls and menu items.

 ImageIndex (see page 310) Indicates the ImageIndex property for client controls and menu items.

 OnExecute (see page 310) Occurs when the client event that is linked to it fires.

 OnHint (see page 310) Occurs when the mouse pauses over a client control or menu item.

 OnUpdate (see page 311) Occurs when the application is idle or when the action list updates.

 SecondaryShortCuts (see page 311) Specifies the short cuts (in addition to ShortCut (see page 311)) for
triggering clients.

 ShortCut (see page 311) Specifies the ShortCut property for client menu items.

 Visible (see page 311) Specifies the Visible property for client controls and menu items.

Legend

Method

virtual

Property

TDesignerAction Methods

TDesignerAction Methods Description

 Update (see page 309) Indicates whether the action updates itself.

TDsnSelAction Class

TDsnSelAction Class Description

 Update (see page 330) Checks if there are selected controls for the active designer

TdsnGroupControls Class

TdsnGroupControls Class Description

 Execute (see page 325) Executes Group Controls action for the active designer

 Update (see page 325) Checks if there are selected controls for the active designer

TDesignerAction Properties

TDesignerAction Properties Description

 Caption (see page 309) Represents the caption of client controls and menu items.

 Enabled (see page 309) Indicates whether client controls and menu items are enabled.

 HelpContext (see page 309) Indicates the help context ID for client controls and menu items.

 HelpKeyword (see page 310) Indicates the help keyword for client controls and menu items.

 HelpType (see page 310) Indicates the mechanism for client controls and menu items to use when
invoking help.

 Hint (see page 310) Indicates the Help hint for client controls and menu items.

 ImageIndex (see page 310) Indicates the ImageIndex property for client controls and menu items.

 OnExecute (see page 310) Occurs when the client event that is linked to it fires.

 OnHint (see page 310) Occurs when the mouse pauses over a client control or menu item.

 OnUpdate (see page 311) Occurs when the application is idle or when the action list updates.

 SecondaryShortCuts (see page 311) Specifies the short cuts (in addition to ShortCut (see page 311)) for
triggering clients.

1.21 edActns Namespace EControl Form Designer Pro Classes

324

1

 ShortCut (see page 311) Specifies the ShortCut property for client menu items.

 Visible (see page 311) Specifies the Visible property for client controls and menu items.

1.21.1.12.1 TdsnGroupControls Methods

1.21.1.12.1.1 TdsnGroupControls.Execute Method

Executes Group Controls action for the active designer

function Execute: Boolean; override ;

Description

The Group command groups the selected controls. Grouped controls are selected together, which makes group operations
easier.

1.21.1.12.1.2 TdsnGroupControls.Update Method

Checks if there are selected controls for the active designer

function Update: Boolean; override ;

Description

1.21.1.13 TdsnLockControls Class
Performs "Lock Controls" action for the active designer

Class Hierarchy

TdsnLockControls = class (TDesignerAction);

File

edActns

Description

The Lock command locks/unlocks the selected components to prevent them from changing properties

Members

TDesignerAction Methods

TDesignerAction Methods Description

 Update (see page 309) Indicates whether the action updates itself.

TdsnLockControls Class

TdsnLockControls Class Description

 Execute (see page 326) Executes Lock Controls action for the active designer

 Update (see page 326) Indicates whether the action updates itself.

TDesignerAction Properties

TDesignerAction Properties Description

 Caption (see page 309) Represents the caption of client controls and menu items.

 Enabled (see page 309) Indicates whether client controls and menu items are enabled.

 HelpContext (see page 309) Indicates the help context ID for client controls and menu items.

 HelpKeyword (see page 310) Indicates the help keyword for client controls and menu items.

 HelpType (see page 310) Indicates the mechanism for client controls and menu items to use when
invoking help.

 Hint (see page 310) Indicates the Help hint for client controls and menu items.

1.21 edActns Namespace EControl Form Designer Pro Classes

325

1

 ImageIndex (see page 310) Indicates the ImageIndex property for client controls and menu items.

 OnExecute (see page 310) Occurs when the client event that is linked to it fires.

 OnHint (see page 310) Occurs when the mouse pauses over a client control or menu item.

 OnUpdate (see page 311) Occurs when the application is idle or when the action list updates.

 SecondaryShortCuts (see page 311) Specifies the short cuts (in addition to ShortCut (see page 311)) for
triggering clients.

 ShortCut (see page 311) Specifies the ShortCut property for client menu items.

 Visible (see page 311) Specifies the Visible property for client controls and menu items.

Legend

Method

virtual

Property

TDesignerAction Methods

TDesignerAction Methods Description

 Update (see page 309) Indicates whether the action updates itself.

TdsnLockControls Class

TdsnLockControls Class Description

 Execute (see page 326) Executes Lock Controls action for the active designer

 Update (see page 326) Indicates whether the action updates itself.

TDesignerAction Properties

TDesignerAction Properties Description

 Caption (see page 309) Represents the caption of client controls and menu items.

 Enabled (see page 309) Indicates whether client controls and menu items are enabled.

 HelpContext (see page 309) Indicates the help context ID for client controls and menu items.

 HelpKeyword (see page 310) Indicates the help keyword for client controls and menu items.

 HelpType (see page 310) Indicates the mechanism for client controls and menu items to use when
invoking help.

 Hint (see page 310) Indicates the Help hint for client controls and menu items.

 ImageIndex (see page 310) Indicates the ImageIndex property for client controls and menu items.

 OnExecute (see page 310) Occurs when the client event that is linked to it fires.

 OnHint (see page 310) Occurs when the mouse pauses over a client control or menu item.

 OnUpdate (see page 311) Occurs when the application is idle or when the action list updates.

 SecondaryShortCuts (see page 311) Specifies the short cuts (in addition to ShortCut (see page 311)) for
triggering clients.

 ShortCut (see page 311) Specifies the ShortCut property for client menu items.

 Visible (see page 311) Specifies the Visible property for client controls and menu items.

1.21.1.13.1 TdsnLockControls Methods

1.21.1.13.1.1 TdsnLockControls.Execute Method

Executes Lock Controls action for the active designer

function Execute: Boolean; override ;

Description

The Lock command locks/unlocks the selected components to prevent them from changing properties

1.21.1.13.1.2 TdsnLockControls.Update Method

Indicates whether the action updates itself.

function Update: Boolean; override ;

Description

The Update method sets Enable property and Result to True if there is active designer in DsnManager.

1.21 edActns Namespace EControl Form Designer Pro Classes

326

1

1.21.1.14 TdsnPaste Class
Perform Paste action for the current designer

Class Hierarchy

TdsnPaste = class (TEditPaste);

File

edActns

Description

Paste command inserts the contents of the clipboard into the current form for the active designer

1.21.1.15 TdsnRedo Class
Repeat last undone operation.

Class Hierarchy

TdsnRedo = class (TdsnTargetAction);

File

edActns

1.21.1.16 TdsnScale Class
Opens the Scale dialog box for the active designer

Class Hierarchy

TdsnScale = class (TDesignerAction);

File

edActns

Description

Use this dialog box to proportionally resize all the components on the current form.

Members

TDesignerAction Methods

TDesignerAction Methods Description

 Update (see page 309) Indicates whether the action updates itself.

TdsnScale Class

TdsnScale Class Description

 Execute (see page 328) Opens the Scale dialog box for the active designer

TDesignerAction Properties

TDesignerAction Properties Description

 Caption (see page 309) Represents the caption of client controls and menu items.

 Enabled (see page 309) Indicates whether client controls and menu items are enabled.

1.21 edActns Namespace EControl Form Designer Pro Classes

327

1

 HelpContext (see page 309) Indicates the help context ID for client controls and menu items.

 HelpKeyword (see page 310) Indicates the help keyword for client controls and menu items.

 HelpType (see page 310) Indicates the mechanism for client controls and menu items to use when
invoking help.

 Hint (see page 310) Indicates the Help hint for client controls and menu items.

 ImageIndex (see page 310) Indicates the ImageIndex property for client controls and menu items.

 OnExecute (see page 310) Occurs when the client event that is linked to it fires.

 OnHint (see page 310) Occurs when the mouse pauses over a client control or menu item.

 OnUpdate (see page 311) Occurs when the application is idle or when the action list updates.

 SecondaryShortCuts (see page 311) Specifies the short cuts (in addition to ShortCut (see page 311)) for
triggering clients.

 ShortCut (see page 311) Specifies the ShortCut property for client menu items.

 Visible (see page 311) Specifies the Visible property for client controls and menu items.

Legend

Method

virtual

Property

TDesignerAction Methods

TDesignerAction Methods Description

 Update (see page 309) Indicates whether the action updates itself.

TdsnScale Class

TdsnScale Class Description

 Execute (see page 328) Opens the Scale dialog box for the active designer

TDesignerAction Properties

TDesignerAction Properties Description

 Caption (see page 309) Represents the caption of client controls and menu items.

 Enabled (see page 309) Indicates whether client controls and menu items are enabled.

 HelpContext (see page 309) Indicates the help context ID for client controls and menu items.

 HelpKeyword (see page 310) Indicates the help keyword for client controls and menu items.

 HelpType (see page 310) Indicates the mechanism for client controls and menu items to use when
invoking help.

 Hint (see page 310) Indicates the Help hint for client controls and menu items.

 ImageIndex (see page 310) Indicates the ImageIndex property for client controls and menu items.

 OnExecute (see page 310) Occurs when the client event that is linked to it fires.

 OnHint (see page 310) Occurs when the mouse pauses over a client control or menu item.

 OnUpdate (see page 311) Occurs when the application is idle or when the action list updates.

 SecondaryShortCuts (see page 311) Specifies the short cuts (in addition to ShortCut (see page 311)) for
triggering clients.

 ShortCut (see page 311) Specifies the ShortCut property for client menu items.

 Visible (see page 311) Specifies the Visible property for client controls and menu items.

1.21.1.16.1 TdsnScale Methods

1.21.1.16.1.1 TdsnScale.Execute Method

Opens the Scale dialog box for the active designer

function Execute: Boolean; override ;

Description

Use this dialog box to proportionally resize all the components on the current form.

1.21 edActns Namespace EControl Form Designer Pro Classes

328

1

1.21.1.17 TDsnSelAction Class
Base class of designer actions that require not empty selection

Class Hierarchy

TDsnSelAction = class (TDesignerAction);

File

edActns

Description

Members

TDesignerAction Methods

TDesignerAction Methods Description

 Update (see page 309) Indicates whether the action updates itself.

TDsnSelAction Class

TDsnSelAction Class Description

 Update (see page 330) Checks if there are selected controls for the active designer

TDesignerAction Properties

TDesignerAction Properties Description

 Caption (see page 309) Represents the caption of client controls and menu items.

 Enabled (see page 309) Indicates whether client controls and menu items are enabled.

 HelpContext (see page 309) Indicates the help context ID for client controls and menu items.

 HelpKeyword (see page 310) Indicates the help keyword for client controls and menu items.

 HelpType (see page 310) Indicates the mechanism for client controls and menu items to use when
invoking help.

 Hint (see page 310) Indicates the Help hint for client controls and menu items.

 ImageIndex (see page 310) Indicates the ImageIndex property for client controls and menu items.

 OnExecute (see page 310) Occurs when the client event that is linked to it fires.

 OnHint (see page 310) Occurs when the mouse pauses over a client control or menu item.

 OnUpdate (see page 311) Occurs when the application is idle or when the action list updates.

 SecondaryShortCuts (see page 311) Specifies the short cuts (in addition to ShortCut (see page 311)) for
triggering clients.

 ShortCut (see page 311) Specifies the ShortCut property for client menu items.

 Visible (see page 311) Specifies the Visible property for client controls and menu items.

Legend

Method

virtual

Property

TDesignerAction Methods

TDesignerAction Methods Description

 Update (see page 309) Indicates whether the action updates itself.

TDsnSelAction Class

TDsnSelAction Class Description

 Update (see page 330) Checks if there are selected controls for the active designer

TDesignerAction Properties

TDesignerAction Properties Description

 Caption (see page 309) Represents the caption of client controls and menu items.

1.21 edActns Namespace EControl Form Designer Pro Classes

329

1

 Enabled (see page 309) Indicates whether client controls and menu items are enabled.

 HelpContext (see page 309) Indicates the help context ID for client controls and menu items.

 HelpKeyword (see page 310) Indicates the help keyword for client controls and menu items.

 HelpType (see page 310) Indicates the mechanism for client controls and menu items to use when
invoking help.

 Hint (see page 310) Indicates the Help hint for client controls and menu items.

 ImageIndex (see page 310) Indicates the ImageIndex property for client controls and menu items.

 OnExecute (see page 310) Occurs when the client event that is linked to it fires.

 OnHint (see page 310) Occurs when the mouse pauses over a client control or menu item.

 OnUpdate (see page 311) Occurs when the application is idle or when the action list updates.

 SecondaryShortCuts (see page 311) Specifies the short cuts (in addition to ShortCut (see page 311)) for
triggering clients.

 ShortCut (see page 311) Specifies the ShortCut property for client menu items.

 Visible (see page 311) Specifies the Visible property for client controls and menu items.

1.21.1.17.1 TDsnSelAction Methods

1.21.1.17.1.1 TDsnSelAction.Update Method

Checks if there are selected controls for the active designer

function Update: Boolean; override ;

Description

1.21.1.18 TdsnSelectAll Class
Performs Select All action for the active designer

Class Hierarchy

TdsnSelectAll = class (TEditSelectAll);

File

edActns

Description

Select All command selects all the items in the active form.

1.21.1.19 TdsnSendToBack Class
Performs Send To Back action for the active designer

Class Hierarchy

TdsnSendToBack = class (TDsnSelAction);

File

edActns

Description

Description

Send To Back command moves a selected component behind all other components on the form.This is called changing the

1.21 edActns Namespace EControl Form Designer Pro Classes

330

1

component's z-order.

Notes

The Send to Back and Bring to Front commands do not work if you are combining windowed and non-windowed controls.
For example, you cannot change the z-order of a label in relation to a button.

Members

TDesignerAction Methods

TDesignerAction Methods Description

 Update (see page 309) Indicates whether the action updates itself.

TDsnSelAction Class

TDsnSelAction Class Description

 Update (see page 330) Checks if there are selected controls for the active designer

TdsnSendToBack Class

TdsnSendToBack Class Description

 Execute (see page 332) Executes Send To Back action for the active designer

TDesignerAction Properties

TDesignerAction Properties Description

 Caption (see page 309) Represents the caption of client controls and menu items.

 Enabled (see page 309) Indicates whether client controls and menu items are enabled.

 HelpContext (see page 309) Indicates the help context ID for client controls and menu items.

 HelpKeyword (see page 310) Indicates the help keyword for client controls and menu items.

 HelpType (see page 310) Indicates the mechanism for client controls and menu items to use when
invoking help.

 Hint (see page 310) Indicates the Help hint for client controls and menu items.

 ImageIndex (see page 310) Indicates the ImageIndex property for client controls and menu items.

 OnExecute (see page 310) Occurs when the client event that is linked to it fires.

 OnHint (see page 310) Occurs when the mouse pauses over a client control or menu item.

 OnUpdate (see page 311) Occurs when the application is idle or when the action list updates.

 SecondaryShortCuts (see page 311) Specifies the short cuts (in addition to ShortCut (see page 311)) for
triggering clients.

 ShortCut (see page 311) Specifies the ShortCut property for client menu items.

 Visible (see page 311) Specifies the Visible property for client controls and menu items.

Legend

Method

virtual

Property

TDesignerAction Methods

TDesignerAction Methods Description

 Update (see page 309) Indicates whether the action updates itself.

TDsnSelAction Class

TDsnSelAction Class Description

 Update (see page 330) Checks if there are selected controls for the active designer

TdsnSendToBack Class

TdsnSendToBack Class Description

 Execute (see page 332) Executes Send To Back action for the active designer

TDesignerAction Properties

TDesignerAction Properties Description

 Caption (see page 309) Represents the caption of client controls and menu items.

 Enabled (see page 309) Indicates whether client controls and menu items are enabled.

 HelpContext (see page 309) Indicates the help context ID for client controls and menu items.

 HelpKeyword (see page 310) Indicates the help keyword for client controls and menu items.

1.21 edActns Namespace EControl Form Designer Pro Classes

331

1

 HelpType (see page 310) Indicates the mechanism for client controls and menu items to use when
invoking help.

 Hint (see page 310) Indicates the Help hint for client controls and menu items.

 ImageIndex (see page 310) Indicates the ImageIndex property for client controls and menu items.

 OnExecute (see page 310) Occurs when the client event that is linked to it fires.

 OnHint (see page 310) Occurs when the mouse pauses over a client control or menu item.

 OnUpdate (see page 311) Occurs when the application is idle or when the action list updates.

 SecondaryShortCuts (see page 311) Specifies the short cuts (in addition to ShortCut (see page 311)) for
triggering clients.

 ShortCut (see page 311) Specifies the ShortCut property for client menu items.

 Visible (see page 311) Specifies the Visible property for client controls and menu items.

1.21.1.19.1 TdsnSendToBack Methods

1.21.1.19.1.1 TdsnSendToBack.Execute Method

Executes Send To Back action for the active designer

function Execute: Boolean; override ;

Description

1.21.1.20 TdsnShowTabOrder Class
Set show tab order design mode.

Class Hierarchy

TdsnShowTabOrder = class (TDesignerAction);

File

edActns

Description

Shows tab order icons over children controls of the selected control. Click on the controls changes their tab order.

Members

TDesignerAction Methods

TDesignerAction Methods Description

 Update (see page 309) Indicates whether the action updates itself.

TdsnShowTabOrder Class

TdsnShowTabOrder Class Description

 Execute (see page 333) Shows tab order icons over children controls of the selected control. Click on
the controls changes their tab order.

 Update (see page 333) Indicates whether the action updates itself.

TDesignerAction Properties

TDesignerAction Properties Description

 Caption (see page 309) Represents the caption of client controls and menu items.

 Enabled (see page 309) Indicates whether client controls and menu items are enabled.

 HelpContext (see page 309) Indicates the help context ID for client controls and menu items.

 HelpKeyword (see page 310) Indicates the help keyword for client controls and menu items.

 HelpType (see page 310) Indicates the mechanism for client controls and menu items to use when
invoking help.

 Hint (see page 310) Indicates the Help hint for client controls and menu items.

1.21 edActns Namespace EControl Form Designer Pro Classes

332

1

 ImageIndex (see page 310) Indicates the ImageIndex property for client controls and menu items.

 OnExecute (see page 310) Occurs when the client event that is linked to it fires.

 OnHint (see page 310) Occurs when the mouse pauses over a client control or menu item.

 OnUpdate (see page 311) Occurs when the application is idle or when the action list updates.

 SecondaryShortCuts (see page 311) Specifies the short cuts (in addition to ShortCut (see page 311)) for
triggering clients.

 ShortCut (see page 311) Specifies the ShortCut property for client menu items.

 Visible (see page 311) Specifies the Visible property for client controls and menu items.

Legend

Method

virtual

Property

TDesignerAction Methods

TDesignerAction Methods Description

 Update (see page 309) Indicates whether the action updates itself.

TdsnShowTabOrder Class

TdsnShowTabOrder Class Description

 Execute (see page 333) Shows tab order icons over children controls of the selected control. Click on
the controls changes their tab order.

 Update (see page 333) Indicates whether the action updates itself.

TDesignerAction Properties

TDesignerAction Properties Description

 Caption (see page 309) Represents the caption of client controls and menu items.

 Enabled (see page 309) Indicates whether client controls and menu items are enabled.

 HelpContext (see page 309) Indicates the help context ID for client controls and menu items.

 HelpKeyword (see page 310) Indicates the help keyword for client controls and menu items.

 HelpType (see page 310) Indicates the mechanism for client controls and menu items to use when
invoking help.

 Hint (see page 310) Indicates the Help hint for client controls and menu items.

 ImageIndex (see page 310) Indicates the ImageIndex property for client controls and menu items.

 OnExecute (see page 310) Occurs when the client event that is linked to it fires.

 OnHint (see page 310) Occurs when the mouse pauses over a client control or menu item.

 OnUpdate (see page 311) Occurs when the application is idle or when the action list updates.

 SecondaryShortCuts (see page 311) Specifies the short cuts (in addition to ShortCut (see page 311)) for
triggering clients.

 ShortCut (see page 311) Specifies the ShortCut property for client menu items.

 Visible (see page 311) Specifies the Visible property for client controls and menu items.

1.21.1.20.1 TdsnShowTabOrder Methods

1.21.1.20.1.1 TdsnShowTabOrder.Execute Method

Shows tab order icons over children controls of the selected control. Click on the controls changes their tab order.

function Execute: Boolean; override ;

1.21.1.20.1.2 TdsnShowTabOrder.Update Method

Indicates whether the action updates itself.

function Update: Boolean; override ;

Description

The Update method sets Enable property and Result to True if there is active designer in DsnManager.

1.21 edActns Namespace EControl Form Designer Pro Classes

333

1

1.21.1.21 TdsnSizeDlg Class
Opens the Size dialog box.

Class Hierarchy

TdsnSizeDlg = class (TDsnSelAction);

File

edActns

Description

Use this dialog box to resize multiple components to be exactly the same height or width.

Members

TDesignerAction Methods

TDesignerAction Methods Description

 Update (see page 309) Indicates whether the action updates itself.

TDsnSelAction Class

TDsnSelAction Class Description

 Update (see page 330) Checks if there are selected controls for the active designer

TdsnSizeDlg Class

TdsnSizeDlg Class Description

 Execute (see page 335) Opens the Size dialog box.

TDesignerAction Properties

TDesignerAction Properties Description

 Caption (see page 309) Represents the caption of client controls and menu items.

 Enabled (see page 309) Indicates whether client controls and menu items are enabled.

 HelpContext (see page 309) Indicates the help context ID for client controls and menu items.

 HelpKeyword (see page 310) Indicates the help keyword for client controls and menu items.

 HelpType (see page 310) Indicates the mechanism for client controls and menu items to use when
invoking help.

 Hint (see page 310) Indicates the Help hint for client controls and menu items.

 ImageIndex (see page 310) Indicates the ImageIndex property for client controls and menu items.

 OnExecute (see page 310) Occurs when the client event that is linked to it fires.

 OnHint (see page 310) Occurs when the mouse pauses over a client control or menu item.

 OnUpdate (see page 311) Occurs when the application is idle or when the action list updates.

 SecondaryShortCuts (see page 311) Specifies the short cuts (in addition to ShortCut (see page 311)) for
triggering clients.

 ShortCut (see page 311) Specifies the ShortCut property for client menu items.

 Visible (see page 311) Specifies the Visible property for client controls and menu items.

Legend

Method

virtual

Property

TDesignerAction Methods

TDesignerAction Methods Description

 Update (see page 309) Indicates whether the action updates itself.

TDsnSelAction Class

TDsnSelAction Class Description

 Update (see page 330) Checks if there are selected controls for the active designer

1.21 edActns Namespace EControl Form Designer Pro Classes

334

1

TdsnSizeDlg Class

TdsnSizeDlg Class Description

 Execute (see page 335) Opens the Size dialog box.

TDesignerAction Properties

TDesignerAction Properties Description

 Caption (see page 309) Represents the caption of client controls and menu items.

 Enabled (see page 309) Indicates whether client controls and menu items are enabled.

 HelpContext (see page 309) Indicates the help context ID for client controls and menu items.

 HelpKeyword (see page 310) Indicates the help keyword for client controls and menu items.

 HelpType (see page 310) Indicates the mechanism for client controls and menu items to use when
invoking help.

 Hint (see page 310) Indicates the Help hint for client controls and menu items.

 ImageIndex (see page 310) Indicates the ImageIndex property for client controls and menu items.

 OnExecute (see page 310) Occurs when the client event that is linked to it fires.

 OnHint (see page 310) Occurs when the mouse pauses over a client control or menu item.

 OnUpdate (see page 311) Occurs when the application is idle or when the action list updates.

 SecondaryShortCuts (see page 311) Specifies the short cuts (in addition to ShortCut (see page 311)) for
triggering clients.

 ShortCut (see page 311) Specifies the ShortCut property for client menu items.

 Visible (see page 311) Specifies the Visible property for client controls and menu items.

1.21.1.21.1 TdsnSizeDlg Methods

1.21.1.21.1.1 TdsnSizeDlg.Execute Method

Opens the Size dialog box.

function Execute: Boolean; override ;

Description

Use this dialog box to resize multiple components to be exactly the same height or width.

1.21.1.22 TdsnTabOrderDlg Class
Opens the Edit Tab Order dialog box

Class Hierarchy

TdsnTabOrderDlg = class (TDesignerAction);

File

edActns

Description

Use this dialog box to modify the tab order of the components on the form or within the selected component if that
component contains other components.

Members

TDesignerAction Methods

TDesignerAction Methods Description

 Update (see page 309) Indicates whether the action updates itself.

TdsnTabOrderDlg Class

TdsnTabOrderDlg Class Description

 Execute (see page 336) Opens the Edit Tab Order dialog box

1.21 edActns Namespace EControl Form Designer Pro Classes

335

1

TDesignerAction Properties

TDesignerAction Properties Description

 Caption (see page 309) Represents the caption of client controls and menu items.

 Enabled (see page 309) Indicates whether client controls and menu items are enabled.

 HelpContext (see page 309) Indicates the help context ID for client controls and menu items.

 HelpKeyword (see page 310) Indicates the help keyword for client controls and menu items.

 HelpType (see page 310) Indicates the mechanism for client controls and menu items to use when
invoking help.

 Hint (see page 310) Indicates the Help hint for client controls and menu items.

 ImageIndex (see page 310) Indicates the ImageIndex property for client controls and menu items.

 OnExecute (see page 310) Occurs when the client event that is linked to it fires.

 OnHint (see page 310) Occurs when the mouse pauses over a client control or menu item.

 OnUpdate (see page 311) Occurs when the application is idle or when the action list updates.

 SecondaryShortCuts (see page 311) Specifies the short cuts (in addition to ShortCut (see page 311)) for
triggering clients.

 ShortCut (see page 311) Specifies the ShortCut property for client menu items.

 Visible (see page 311) Specifies the Visible property for client controls and menu items.

Legend

Method

virtual

Property

TDesignerAction Methods

TDesignerAction Methods Description

 Update (see page 309) Indicates whether the action updates itself.

TdsnTabOrderDlg Class

TdsnTabOrderDlg Class Description

 Execute (see page 336) Opens the Edit Tab Order dialog box

TDesignerAction Properties

TDesignerAction Properties Description

 Caption (see page 309) Represents the caption of client controls and menu items.

 Enabled (see page 309) Indicates whether client controls and menu items are enabled.

 HelpContext (see page 309) Indicates the help context ID for client controls and menu items.

 HelpKeyword (see page 310) Indicates the help keyword for client controls and menu items.

 HelpType (see page 310) Indicates the mechanism for client controls and menu items to use when
invoking help.

 Hint (see page 310) Indicates the Help hint for client controls and menu items.

 ImageIndex (see page 310) Indicates the ImageIndex property for client controls and menu items.

 OnExecute (see page 310) Occurs when the client event that is linked to it fires.

 OnHint (see page 310) Occurs when the mouse pauses over a client control or menu item.

 OnUpdate (see page 311) Occurs when the application is idle or when the action list updates.

 SecondaryShortCuts (see page 311) Specifies the short cuts (in addition to ShortCut (see page 311)) for
triggering clients.

 ShortCut (see page 311) Specifies the ShortCut property for client menu items.

 Visible (see page 311) Specifies the Visible property for client controls and menu items.

1.21.1.22.1 TdsnTabOrderDlg Methods

1.21.1.22.1.1 TdsnTabOrderDlg.Execute Method

Opens the Edit Tab Order dialog box

function Execute: Boolean; override ;

Description

Use this dialog box to modify the tab order of the components on the form or within the selected component if that

1.21 edActns Namespace EControl Form Designer Pro Classes

336

1

component contains other components.

1.21.1.23 TdsnTargetAction Class
Designer target actions. Determines whether target is managed by designer.

Class Hierarchy

TdsnTargetAction = class (TAction);

File

edActns

1.21.1.24 TdsnTextEditMode Class
Toggles TextEditMode of the active designer.

Class Hierarchy

TdsnTextEditMode = class (TDesignerAction);

File

edActns

Description

Members

TDesignerAction Methods

TDesignerAction Methods Description

 Update (see page 309) Indicates whether the action updates itself.

TdsnTextEditMode Class

TdsnTextEditMode Class Description

 Execute (see page 338) Toggles TextEditMode of the active designer.

 Update (see page 338) Indicates whether the action updates itself.

TDesignerAction Properties

TDesignerAction Properties Description

 Caption (see page 309) Represents the caption of client controls and menu items.

 Enabled (see page 309) Indicates whether client controls and menu items are enabled.

 HelpContext (see page 309) Indicates the help context ID for client controls and menu items.

 HelpKeyword (see page 310) Indicates the help keyword for client controls and menu items.

 HelpType (see page 310) Indicates the mechanism for client controls and menu items to use when
invoking help.

 Hint (see page 310) Indicates the Help hint for client controls and menu items.

 ImageIndex (see page 310) Indicates the ImageIndex property for client controls and menu items.

 OnExecute (see page 310) Occurs when the client event that is linked to it fires.

 OnHint (see page 310) Occurs when the mouse pauses over a client control or menu item.

 OnUpdate (see page 311) Occurs when the application is idle or when the action list updates.

 SecondaryShortCuts (see page 311) Specifies the short cuts (in addition to ShortCut (see page 311)) for
triggering clients.

 ShortCut (see page 311) Specifies the ShortCut property for client menu items.

 Visible (see page 311) Specifies the Visible property for client controls and menu items.

1.21 edActns Namespace EControl Form Designer Pro Classes

337

1

Legend

Method

virtual

Property

TDesignerAction Methods

TDesignerAction Methods Description

 Update (see page 309) Indicates whether the action updates itself.

TdsnTextEditMode Class

TdsnTextEditMode Class Description

 Execute (see page 338) Toggles TextEditMode of the active designer.

 Update (see page 338) Indicates whether the action updates itself.

TDesignerAction Properties

TDesignerAction Properties Description

 Caption (see page 309) Represents the caption of client controls and menu items.

 Enabled (see page 309) Indicates whether client controls and menu items are enabled.

 HelpContext (see page 309) Indicates the help context ID for client controls and menu items.

 HelpKeyword (see page 310) Indicates the help keyword for client controls and menu items.

 HelpType (see page 310) Indicates the mechanism for client controls and menu items to use when
invoking help.

 Hint (see page 310) Indicates the Help hint for client controls and menu items.

 ImageIndex (see page 310) Indicates the ImageIndex property for client controls and menu items.

 OnExecute (see page 310) Occurs when the client event that is linked to it fires.

 OnHint (see page 310) Occurs when the mouse pauses over a client control or menu item.

 OnUpdate (see page 311) Occurs when the application is idle or when the action list updates.

 SecondaryShortCuts (see page 311) Specifies the short cuts (in addition to ShortCut (see page 311)) for
triggering clients.

 ShortCut (see page 311) Specifies the ShortCut property for client menu items.

 Visible (see page 311) Specifies the Visible property for client controls and menu items.

1.21.1.24.1 TdsnTextEditMode Methods

1.21.1.24.1.1 TdsnTextEditMode.Execute Method

Toggles TextEditMode of the active designer.

function Execute: Boolean; override ;

Description

1.21.1.24.1.2 TdsnTextEditMode.Update Method

Indicates whether the action updates itself.

function Update: Boolean; override ;

Description

The Update method sets Enable property and Result to True if there is active designer in DsnManager.

1.21.1.25 TdsnUndo Class
Backs out last change in the undo buffer.

Class Hierarchy

1.21 edActns Namespace EControl Form Designer Pro Classes

338

1

TdsnUndo = class (TEditUndo);

File

edActns

Description

1.21.1.26 TdsnUngroupControls Class
Ungroups selected controls.

Class Hierarchy

TdsnUngroupControls = class (TDsnSelAction);

File

edActns

Description

The Ungroup command removes all groups to which the selected controls belong.

Members

TDesignerAction Methods

TDesignerAction Methods Description

 Update (see page 309) Indicates whether the action updates itself.

TDsnSelAction Class

TDsnSelAction Class Description

 Update (see page 330) Checks if there are selected controls for the active designer

TdsnUngroupControls Class

TdsnUngroupControls Class Description

 Execute (see page 340) Executes Ungroup Controls action for the active designer

TDesignerAction Properties

TDesignerAction Properties Description

 Caption (see page 309) Represents the caption of client controls and menu items.

 Enabled (see page 309) Indicates whether client controls and menu items are enabled.

 HelpContext (see page 309) Indicates the help context ID for client controls and menu items.

 HelpKeyword (see page 310) Indicates the help keyword for client controls and menu items.

 HelpType (see page 310) Indicates the mechanism for client controls and menu items to use when
invoking help.

 Hint (see page 310) Indicates the Help hint for client controls and menu items.

 ImageIndex (see page 310) Indicates the ImageIndex property for client controls and menu items.

 OnExecute (see page 310) Occurs when the client event that is linked to it fires.

 OnHint (see page 310) Occurs when the mouse pauses over a client control or menu item.

 OnUpdate (see page 311) Occurs when the application is idle or when the action list updates.

 SecondaryShortCuts (see page 311) Specifies the short cuts (in addition to ShortCut (see page 311)) for
triggering clients.

 ShortCut (see page 311) Specifies the ShortCut property for client menu items.

 Visible (see page 311) Specifies the Visible property for client controls and menu items.

Legend

Method

virtual

Property

1.21 edActns Namespace EControl Form Designer Pro Classes

339

1

TDesignerAction Methods

TDesignerAction Methods Description

 Update (see page 309) Indicates whether the action updates itself.

TDsnSelAction Class

TDsnSelAction Class Description

 Update (see page 330) Checks if there are selected controls for the active designer

TdsnUngroupControls Class

TdsnUngroupControls Class Description

 Execute (see page 340) Executes Ungroup Controls action for the active designer

TDesignerAction Properties

TDesignerAction Properties Description

 Caption (see page 309) Represents the caption of client controls and menu items.

 Enabled (see page 309) Indicates whether client controls and menu items are enabled.

 HelpContext (see page 309) Indicates the help context ID for client controls and menu items.

 HelpKeyword (see page 310) Indicates the help keyword for client controls and menu items.

 HelpType (see page 310) Indicates the mechanism for client controls and menu items to use when
invoking help.

 Hint (see page 310) Indicates the Help hint for client controls and menu items.

 ImageIndex (see page 310) Indicates the ImageIndex property for client controls and menu items.

 OnExecute (see page 310) Occurs when the client event that is linked to it fires.

 OnHint (see page 310) Occurs when the mouse pauses over a client control or menu item.

 OnUpdate (see page 311) Occurs when the application is idle or when the action list updates.

 SecondaryShortCuts (see page 311) Specifies the short cuts (in addition to ShortCut (see page 311)) for
triggering clients.

 ShortCut (see page 311) Specifies the ShortCut property for client menu items.

 Visible (see page 311) Specifies the Visible property for client controls and menu items.

1.21.1.26.1 TdsnUngroupControls Methods

1.21.1.26.1.1 TdsnUngroupControls.Execute Method

Executes Ungroup Controls action for the active designer

function Execute: Boolean; override ;

Description

The Ungroup command removes all groups to which the selected controls belong.

1.22 edcCmbCombo Namespace

1.22.1 Classes

The following table lists classes in this documentation.

Classes

Class Description

TComponentCombo (see page 341) TComponentCombo represents object inspector's combo box. It contains all
components in the form (data module, ...), that is designed by the active
designer

1.22 edcCmbCombo Namespace EControl Form Designer Pro Classes

340

1

1.22.1.1 TComponentCombo Class
TComponentCombo represents object inspector's combo box. It contains all components in the form (data module, ...), that
is designed by the active designer

Class Hierarchy

TComponentCombo = class (TCustomComboBox, IDesignNotification);

File

edcCmbCombo

Description

TComponentCombo used for maintaining list of components owned by designed window.

Members

TComponentCombo Methods

TComponentCombo Methods Description

 Change (see page 344) Determines component's name picked in the list and selects appropriate
components on the designed form.

 Create (see page 344) Creates and initializes a TComponentCombo instance.

 Destroy (see page 345) Destroys an instance of TComponentCombo.

 DoAddObject (see page 345) Adds object to drop-down list.

 FillObjList (see page 345) Fills combo box items.

 Notification (see page 345) Forwards notification messages to all owned components.

 SetSelection (see page 345) Sets selection.

 UpdateObjectList (see page 345) Update items.

TComponentCombo Properties

TComponentCombo Properties Description

 Align (see page 346) Determines how the control aligns within its container (parent control).

 Anchors (see page 346) Specifies how the control is anchored to its parent.

 AutoCloseUp (see page 347) Specifies whether the drop-down closes up automatically when the user
selects an item.

 AutoDropDown (see page 347) Specifies whether the drop-down list drops down automatically in response to
user keystrokes.

 AutoHint (see page 347) Specifies whether combobox automatically updates it's Hint property.

 BiDiMode (see page 347) Specifies the bi-directional mode for the control.

 ClassNameColor (see page 347) Specifies font color for component's class names.

 ClassNameDelim (see page 348) Specifies delimiter between component name and its class name

 Color (see page 348) Specifies the background color of the control.

 Constraints (see page 348) Specifies the size constraints for the control.

 Ctl3D (see page 348) Determines whether a control has a three-dimensional (3-D) or
two-dimensional look.

 Designer (see page 348) Allows direct linking to the particular designer. Component combo can work
also with inactive designer.

 DragCursor (see page 348) Indicates the image used to represent the mouse pointer when the control is
being dragged.

 DragKind (see page 349) Specifies whether the control is being dragged normally or for docking.

 DragMode (see page 349) Determines how the control initiates drag-and-drop or drag-and-dock
operations.

 DropDownCount (see page 349) Specifies the maximum number of items displayed in the drop-down list.

 DropDownWidth (see page 349) Specifies the width, in pixels, of the drop-down list.

 Enabled (see page 349) Controls whether the control responds to mouse, keyboard, and timer events.

 Font (see page 350) Controls the attributes of text written on or in the control.

 ImeMode (see page 350) Determines the behavior of the input method editor (IME).

1.22 edcCmbCombo Namespace EControl Form Designer Pro Classes

341

1

 ImeName (see page 350) Specifies the input method editor (IME) to use for converting keyboard input to
Asian language characters.

 IncludeContainer (see page 350) Specifies if root component (for example, Form) will be added to the list.

 ItemHeight (see page 350) Specifies the height, in pixels, of the items in the drop-down list.

 MaxLength (see page 351) Specifies the maximum number of characters the user can type into the edit
portion.

 NameColor (see page 351) Specifies font color for component names portion in the list.

 OnClick (see page 351) Occurs when the user clicks the control.

 OnCloseUp (see page 351) Occurs when the drop-down list closes up due to some user action.

 OnContextPopup (see page 351) Occurs when the user right-clicks the control or otherwise invokes the popup
menu (such as using the keyboard).

 OnDblClick (see page 352) Occurs when the user double-clicks the left mouse button when the mouse
pointer is over the control.

 OnDragDrop (see page 352) Occurs when the user drops an object being dragged.

 OnDragOver (see page 352) Occurs when the user drags an object over a control.

 OnDrawItem (see page 353) Occurs when an item in an owner-draw combo box needs to be displayed.

 OnDropDown (see page 353) Occurs when the user opens the drop-down list by clicking the arrow at the
right of the control.

 OnEndDock (see page 353) Occurs when the dragging of an object ends, either by docking the object or by
canceling the dragging.

 OnEndDrag (see page 353) Occurs when the dragging of an object ends, either by dropping the object or
by canceling the dragging.

 OnEnter (see page 353) Occurs when a control receives the input focus.

 OnExit (see page 354) Occurs when the input focus shifts away from one control to another.

 OnKeyDown (see page 354) Occurs when a user presses any key while the control has focus.

 OnKeyPress (see page 354) Occurs when key pressed.

 OnKeyUp (see page 354) Occurs when the user releases a key that has been pressed.

 OnMeasureItem (see page 355) Occurs when an item in a csOwnerDrawVariable combo box needs to be
redisplayed.

 OnSelect (see page 355) Occurs when the user selects an item in the list.

 OnStartDock (see page 355) Occurs when the user begins to drag a control with a DragKind of dkDock.

 OnStartDrag (see page 355) Occurs when the user begins to drag the control or an object it contains by
left-clicking on the control and holding the mouse button down.

 ParentBiDiMode (see page 356) Specifies whether the control uses its parent’s BiDiMode.

 ParentColor (see page 356) Determines where a control looks for its color information.

 ParentCtl3D (see page 356) Determines where a component looks to determine if it should appear three
dimensional.

 ParentFont (see page 356) Determines where a control looks for its font information.

 ParentShowHint (see page 356) Determines where a control looks to find out if its Help Hint should be shown.

 PopupMenu (see page 356) Identifies the pop-up menu associated with the control.

 ShowClassName (see page 356) Specifies whether class names will be displayed in the items

 ShowComponents (see page 357) Determines if only TControl descendants will be shown in the list

 ShowHint (see page 357) Determines whether the control displays a Help Hint when the mouse pointer
rests momentarily on the control.

 Sorted (see page 357) Determines whether the list portion of the combo box is alphabetized.

 TabOrder (see page 357) Indicates the position of the control in its parent's tab order.

 TabStop (see page 357) Determines if the user can tab to a control.

 Text (see page 357) Specifies the text string that is displayed in the edit box.

 Visible (see page 358) Determines whether the component appears on screen.

TComponentCombo Events

TComponentCombo Events Description

 OnCanAddObject (see page 358) Occurs to defined whether object Obj can be added to drop-down list.

 OnGetClassName (see page 358) Allows replacing displayed class name.

 OnGetComponents (see page 358) Called during updating item list.

 OnSelChanged (see page 358) Called when selected item (object) has bin changed by selecting from
drop-down list.

Legend

Method

protected

virtual

1.22 edcCmbCombo Namespace EControl Form Designer Pro Classes

342

1

Property

Event

TComponentCombo Events

TComponentCombo Events Description

 OnCanAddObject (see page 358) Occurs to defined whether object Obj can be added to drop-down list.

 OnGetClassName (see page 358) Allows replacing displayed class name.

 OnGetComponents (see page 358) Called during updating item list.

 OnSelChanged (see page 358) Called when selected item (object) has bin changed by selecting from
drop-down list.

TComponentCombo Methods

TComponentCombo Methods Description

 Change (see page 344) Determines component's name picked in the list and selects appropriate
components on the designed form.

 Create (see page 344) Creates and initializes a TComponentCombo instance.

 Destroy (see page 345) Destroys an instance of TComponentCombo.

 DoAddObject (see page 345) Adds object to drop-down list.

 FillObjList (see page 345) Fills combo box items.

 Notification (see page 345) Forwards notification messages to all owned components.

 SetSelection (see page 345) Sets selection.

 UpdateObjectList (see page 345) Update items.

TComponentCombo Properties

TComponentCombo Properties Description

 Align (see page 346) Determines how the control aligns within its container (parent control).

 Anchors (see page 346) Specifies how the control is anchored to its parent.

 AutoCloseUp (see page 347) Specifies whether the drop-down closes up automatically when the user
selects an item.

 AutoDropDown (see page 347) Specifies whether the drop-down list drops down automatically in response to
user keystrokes.

 AutoHint (see page 347) Specifies whether combobox automatically updates it's Hint property.

 BiDiMode (see page 347) Specifies the bi-directional mode for the control.

 ClassNameColor (see page 347) Specifies font color for component's class names.

 ClassNameDelim (see page 348) Specifies delimiter between component name and its class name

 Color (see page 348) Specifies the background color of the control.

 Constraints (see page 348) Specifies the size constraints for the control.

 Ctl3D (see page 348) Determines whether a control has a three-dimensional (3-D) or
two-dimensional look.

 Designer (see page 348) Allows direct linking to the particular designer. Component combo can work
also with inactive designer.

 DragCursor (see page 348) Indicates the image used to represent the mouse pointer when the control is
being dragged.

 DragKind (see page 349) Specifies whether the control is being dragged normally or for docking.

 DragMode (see page 349) Determines how the control initiates drag-and-drop or drag-and-dock
operations.

 DropDownCount (see page 349) Specifies the maximum number of items displayed in the drop-down list.

 DropDownWidth (see page 349) Specifies the width, in pixels, of the drop-down list.

 Enabled (see page 349) Controls whether the control responds to mouse, keyboard, and timer events.

 Font (see page 350) Controls the attributes of text written on or in the control.

 ImeMode (see page 350) Determines the behavior of the input method editor (IME).

 ImeName (see page 350) Specifies the input method editor (IME) to use for converting keyboard input to
Asian language characters.

 IncludeContainer (see page 350) Specifies if root component (for example, Form) will be added to the list.

 ItemHeight (see page 350) Specifies the height, in pixels, of the items in the drop-down list.

 MaxLength (see page 351) Specifies the maximum number of characters the user can type into the edit
portion.

 NameColor (see page 351) Specifies font color for component names portion in the list.

 OnClick (see page 351) Occurs when the user clicks the control.

 OnCloseUp (see page 351) Occurs when the drop-down list closes up due to some user action.

 OnContextPopup (see page 351) Occurs when the user right-clicks the control or otherwise invokes the popup
menu (such as using the keyboard).

1.22 edcCmbCombo Namespace EControl Form Designer Pro Classes

343

1

 OnDblClick (see page 352) Occurs when the user double-clicks the left mouse button when the mouse
pointer is over the control.

 OnDragDrop (see page 352) Occurs when the user drops an object being dragged.

 OnDragOver (see page 352) Occurs when the user drags an object over a control.

 OnDrawItem (see page 353) Occurs when an item in an owner-draw combo box needs to be displayed.

 OnDropDown (see page 353) Occurs when the user opens the drop-down list by clicking the arrow at the
right of the control.

 OnEndDock (see page 353) Occurs when the dragging of an object ends, either by docking the object or by
canceling the dragging.

 OnEndDrag (see page 353) Occurs when the dragging of an object ends, either by dropping the object or
by canceling the dragging.

 OnEnter (see page 353) Occurs when a control receives the input focus.

 OnExit (see page 354) Occurs when the input focus shifts away from one control to another.

 OnKeyDown (see page 354) Occurs when a user presses any key while the control has focus.

 OnKeyPress (see page 354) Occurs when key pressed.

 OnKeyUp (see page 354) Occurs when the user releases a key that has been pressed.

 OnMeasureItem (see page 355) Occurs when an item in a csOwnerDrawVariable combo box needs to be
redisplayed.

 OnSelect (see page 355) Occurs when the user selects an item in the list.

 OnStartDock (see page 355) Occurs when the user begins to drag a control with a DragKind of dkDock.

 OnStartDrag (see page 355) Occurs when the user begins to drag the control or an object it contains by
left-clicking on the control and holding the mouse button down.

 ParentBiDiMode (see page 356) Specifies whether the control uses its parent’s BiDiMode.

 ParentColor (see page 356) Determines where a control looks for its color information.

 ParentCtl3D (see page 356) Determines where a component looks to determine if it should appear three
dimensional.

 ParentFont (see page 356) Determines where a control looks for its font information.

 ParentShowHint (see page 356) Determines where a control looks to find out if its Help Hint should be shown.

 PopupMenu (see page 356) Identifies the pop-up menu associated with the control.

 ShowClassName (see page 356) Specifies whether class names will be displayed in the items

 ShowComponents (see page 357) Determines if only TControl descendants will be shown in the list

 ShowHint (see page 357) Determines whether the control displays a Help Hint when the mouse pointer
rests momentarily on the control.

 Sorted (see page 357) Determines whether the list portion of the combo box is alphabetized.

 TabOrder (see page 357) Indicates the position of the control in its parent's tab order.

 TabStop (see page 357) Determines if the user can tab to a control.

 Text (see page 357) Specifies the text string that is displayed in the edit box.

 Visible (see page 358) Determines whether the component appears on screen.

1.22.1.1.1 TComponentCombo Methods

1.22.1.1.1.1 TComponentCombo.Change Method

Determines component's name picked in the list and selects appropriate components on the designed form.

procedure Change; override ;

1.22.1.1.1.2 TComponentCombo.Create Constructor

Creates and initializes a TComponentCombo instance.

constructor Create(AOwner: TComponent); override ;

Description

Use Create to programmatically instantiate a TComponentCombo component. Components added in the form designer are
created automatically.

AOwner is the component that is responsible for freeing the component instance. It becomes the value of the Owner
property.

1.22 edcCmbCombo Namespace EControl Form Designer Pro Classes

344

1

1.22.1.1.1.3 TComponentCombo.Destroy Destructor

Destroys an instance of TComponentCombo.

destructor Destroy; override ;

Description

Do not call Destroy directly. Call Free instead. Free verifies that the object reference is not nil before calling Destroy.

1.22.1.1.1.4 TComponentCombo.DoAddObject Method

Adds object to drop-down list.

procedure DoAddObject(Obj: TObject); dynamic ;

1.22.1.1.1.5 TComponentCombo.FillObjList Method

Fills combo box items.

procedure FillObjList;

Description

Adds all object that can be selected to list. Object reference is saved in Items.Objects[] members.

1.22.1.1.1.6 TComponentCombo.Notification Method

Forwards notification messages to all owned components.

procedure Notification(AComponent: TComponent; Operation: TOperation); override ;

Description

Do not call the Notification method in an application. Notification is called automatically when the component specified by
AComponent is about to be inserted or removed, as specified by Operation. By default, components pass along the
notification to their owned components, if any.

A component can, if needed, act on the notification that a component is being inserted or removed. For example, if a
component has object fields or properties that contain references to other components, it can check the notifications of
component removals and invalidate those references as needed.

Notes

Notification is not called for components that are freed implicitly (because their Owner is freed).

1.22.1.1.1.7 TComponentCombo.SetSelection Method

Sets selection.

procedure SetSelection(SelCount: integer; SelObj: TPersistent);

Description

Uses SelObj to select appropriate item in list if SelCount is 1, otherwise displays number of selected items.

1.22.1.1.1.8 TComponentCombo.UpdateObjectList Method

Update items.

procedure UpdateObjectList; virtual ;

Description

May be changed by derived classes. By default it calls FillObjList (see page 345).

1.22 edcCmbCombo Namespace EControl Form Designer Pro Classes

345

1

1.22.1.1.2 TComponentCombo Properties

1.22.1.1.2.1 TComponentCombo.Align Property

Determines how the control aligns within its container (parent control).

property Align;

Description

Use Align to align a control to the top, bottom, left, or right of a form or panel and have it remain there even if the size of the
form, panel, or component that contains the control changes. When the parent is resized, an aligned control also resizes so
that it continues to span the top, bottom, left, or right edge of the parent.

For example, to use a panel component with various controls on it as a tool palette, change the panel’s Align value to alLeft.
The value of alLeft for the Align property of the panel guarantees that the tool palette remains on the left side of the form and
always equals the client height of the form.

The default value of Align is alNone, which means a control remains where it is positioned on a form or panel.

Tip: If Align is set to alClient, the control fills the entire client area so that it is impossible to select the parent form by clicking
on it. In this case, select the parent by selecting the control on the form and pressing Esc, or by using the Object Inspector.

Any number of child components within a single parent can have the same Align value, in which case they stack up along
the edge of the parent. The child controls stack up in z-order. To adjust the order in which the controls stack up, drag the
controls into their desired positions.

Note: To cause a control to maintain a specified relationship with an edge of its parent, but not necessarily lie along one
edge of the parent, use the Anchors property instead.

1.22.1.1.2.2 TComponentCombo.Anchors Property

Specifies how the control is anchored to its parent.

property Anchors;

Description

Use Anchors to ensure that a control maintains its current position relative to an edge of its parent, even if the parent is
resized. When its parent is resized, the control holds its position relative to the edges to which it is anchored.

If a control is anchored to opposite edges of its parent, the control stretches when its parent is resized. For example, if a
control has its Anchors property set to [akLeft, akRight], the control stretches when the width of its parent changes.

Anchors is enforced only when the parent is resized. Thus, for example, if a control is anchored to opposite edges of a form
at design time and the form is created in a maximized state, the control is not stretched because the form is not resized after
the control is created.

Note: If a control should maintain contact with three edges of its parent (hugging one side of the parent and stretching the
length of that side), use the Align property instead. Unlike Anchors, Align allows controls to adjust to changes in the size of
other aligned sibling controls as well as changes to the parent’s size.

1.22 edcCmbCombo Namespace EControl Form Designer Pro Classes

346

1

1.22.1.1.2.3 TComponentCombo.AutoCloseUp Property

Specifies whether the drop-down closes up automatically when the user selects an item.

property AutoCloseUp;

Description

When AutoCloseUp is true, the drop-down closes up automatically when the user selects an item.

1.22.1.1.2.4 TComponentCombo.AutoDropDown Property

Specifies whether the drop-down list drops down automatically in response to user keystrokes.

property AutoDropDown;

Description

When AutoDropDown is true, the combo box automatically drops down its list when the user starts typing a string while the
combo box has focus.

When AutoDropDown is false, the user must explicitly use the drop-down button to drop down the combo box list.

1.22.1.1.2.5 TComponentCombo.AutoHint Property

Specifies whether combobox automatically updates it's Hint property.

property AutoHint: Boolean;

Description

When AutoHint is True TComponentCombo (see page 341) changes Hint property each time selected object changed.

Hint format:

[Object Path] : [Object Class Name]

1.22.1.1.2.6 TComponentCombo.BiDiMode Property

Specifies the bi-directional mode for the control.

property BiDiMode;

Description

Use BiDiMode to enable the control to adjust its appearance and behavior automatically when the application runs in a
locale that reads from right to left instead of left to right. The bi-directional mode controls the reading order for the text, the
placement of the vertical scroll bar, and whether the alignment is changed.

Alignment does not change for controls that are known to contain number, date, time, or currency values. For example, with
data aware controls, the alignment does not change for the following field types: ftSmallint, ftInteger, ftWord, ftFloat,
ftCurrency, ftBCD, ftDate, ftTime, ftDateTime, ftAutoInc.

1.22.1.1.2.7 TComponentCombo.ClassNameColor Property

Specifies font color for component's class names.

property ClassNameColor: TColor;

Description

Set this property to change (see page 344) font color for component's class names in the list.

Default value is clGrayText.

1.22 edcCmbCombo Namespace EControl Form Designer Pro Classes

347

1

1.22.1.1.2.8 TComponentCombo.ClassNameDelim Property

Specifies delimiter between component name and its class name

property ClassNameDelim: string ;

Description

Set this property to specify delimiter string between component name and its class name.

Default value is ': '

1.22.1.1.2.9 TComponentCombo.Color Property

Specifies the background color of the control.

property Color;

Description

Use Color to read or change the background color of the control.

If a control's ParentColor property is true, then changing the Color property of the control's parent automatically changes the
Color property of the control. When the value of the Color property is changed, the control's ParentColor property is
automatically set to false.

1.22.1.1.2.10 TComponentCombo.Constraints Property

Specifies the size constraints for the control.

property Constraints;

Description

Use Constraints to specify the minimum and maximum width and height of the control. When Constraints contains maximum
or minimum values, the control cannot be resized to violate those constraints.

Warning: Do not set up constraints that conflict with the value of the Align or Anchors property. When these properties
conflict, the response of the control to resize attempts is not well-defined.

1.22.1.1.2.11 TComponentCombo.Ctl3D Property

Determines whether a control has a three-dimensional (3-D) or two-dimensional look.

property Ctl3D;

Description

Ctl3D is provided for backward compatibility. It is not used by 32-bit versions of Windows or NT4.0 and later.

On earlier platforms, Ctl3D controlled whether the control had a flat or beveled appearance.

1.22.1.1.2.12 TComponentCombo.Designer Property

Allows direct linking to the particular designer. Component combo can work also with inactive designer.

property Designer: TzFormDesigner ;

1.22.1.1.2.13 TComponentCombo.DragCursor Property

Indicates the image used to represent the mouse pointer when the control is being dragged.

property DragCursor;

Description

Use the DragCursor property to change the cursor image presented when the control is being dragged.

1.22 edcCmbCombo Namespace EControl Form Designer Pro Classes

348

1

Note: To make a custom cursor available for the DragCursor property, see the Cursor property.

1.22.1.1.2.14 TComponentCombo.DragKind Property

Specifies whether the control is being dragged normally or for docking.

property DragKind;

Description

Use DragKind to get or set whether the control participates in drag-and-drop operations, or drag-and-dock operations.

1.22.1.1.2.15 TComponentCombo.DragMode Property

Determines how the control initiates drag-and-drop or drag-and-dock operations.

property DragMode;

Description

Use DragMode to control when the user can drag the control. Disable the drag-and-drop or drag-and-dock capability at
runtime by setting the DragMode property value to dmManual. Enable automatic dragging by setting DragMode to
dmAutomatic.

1.22.1.1.2.16 TComponentCombo.DropDownCount Property

Specifies the maximum number of items displayed in the drop-down list.

property DropDownCount;

Description

By default, the drop-down list is long enough to contain eight items without requiring the user to scroll to see them all. To
make the drop-down list smaller or larger, specify a number larger or smaller than eight as the DropDownCount value.

If the DropDownCount value is larger than the number of items in the Items property, the drop-down list will be just large
enough to hold all the possible choices and no more. If the DropDownCount value is smaller then the number of item in the
Items property, the drop down list will display a scroll bar.

1.22.1.1.2.17 TComponentCombo.DropDownWidth Property

Specifies the width, in pixels, of the drop-down list.

property DropDownWidth: integer;

Description

Use DropDownWidth to customize the width of the drop-down list. If DropDownWidth is 0 (the default), the drop-down list is
the same width as the combo box.

1.22.1.1.2.18 TComponentCombo.Enabled Property

Controls whether the control responds to mouse, keyboard, and timer events.

property Enabled;

Description

Use Enabled to change the availability of the control to the user. To disable a control, set Enabled to false. Disabled controls
appear dimmed. If Enabled is false, the control ignores mouse, keyboard, and timer events.

To re-enable a control, set Enabled to true. The control is no longer dimmed, and the user can use the control.

1.22 edcCmbCombo Namespace EControl Form Designer Pro Classes

349

1

1.22.1.1.2.19 TComponentCombo.Font Property

Controls the attributes of text written on or in the control.

property Font;

Description

To change to a new font, specify a new TFont object. To modify a font, change the value of the Charset, Color, Height,
Name, Pitch, Size, or Style of the TFont object.

1.22.1.1.2.20 TComponentCombo.ImeMode Property

Determines the behavior of the input method editor (IME).

property ImeMode;

Description

Set ImeMode to configure the way an IME processes user keystrokes. An IME is a front-end input processor for Asian
language characters. The IME hooks all keyboard input, converts it to Asian characters in a conversion window, and sends
the converted characters or strings on to the application.

ImeMode allows a control to influence the type of conversion performed by the IME so that it is appropriate for the input
expected by the control. For example, a control that only accepts numeric input might specify an ImeMode of imClose, as no
conversion is necessary for numeric input.

1.22.1.1.2.21 TComponentCombo.ImeName Property

Specifies the input method editor (IME) to use for converting keyboard input to Asian language characters.

property ImeName;

Description

Set ImeName to specify which IME to use for converting keystrokes. An IME is a front-end input processor for Asian
language characters. The IME hooks all keyboard input, converts it to Asian characters in a conversion window, and sends
the converted characters or strings on to the application.

ImeName must specify one of the IMEs that has been installed through the Windows control panel. The property inspector
provides a drop-down list of all currently installed IMEs on the system. At runtime, applications can obtain a list of currently
installed IMEs from the global Screen variable.

If ImeName specifies an unavailable IME, the IME that was active when the application started is used instead. No exception
is generated.

1.22.1.1.2.22 TComponentCombo.IncludeContainer Property

Specifies if root component (for example, Form) will be added to the list.

property IncludeContainer: Boolean;

Description

If IncludeContainer is True, root component will be added to the list.

1.22.1.1.2.23 TComponentCombo.ItemHeight Property

Specifies the height, in pixels, of the items in the drop-down list.

property ItemHeight;

1.22 edcCmbCombo Namespace EControl Form Designer Pro Classes

350

1

Description

Use ItemHeight to specify the height needed to draw the items in the list when Style is set to csOwnerDrawFixed. If Style is
csOwnerDrawVariable, ItemHeight is the default height for drawing list items. When Style is csOwnerDrawVariable,
ItemHeight can be overridden by an OnMeasureItem event handler. If Style is set to any other value, the ItemHeight property
is inoperative.

1.22.1.1.2.24 TComponentCombo.MaxLength Property

Specifies the maximum number of characters the user can type into the edit portion.

property MaxLength;

Description

Use MaxLength to limit the length of the items in the combo box. MaxLength limits the length of the string in the edit portion
of the combo box. If MaxLength is less than the length of the current value of the Text property, this string is truncated.

If MaxLength is -1, there is no limit to the length of the strings that can appear in the combo box.

1.22.1.1.2.25 TComponentCombo.NameColor Property

Specifies font color for component names portion in the list.

property NameColor: TColor;

Description

Set this property to change (see page 344) font color for component names in the list.

Default value is clWindowText.

1.22.1.1.2.26 TComponentCombo.OnClick Property

Occurs when the user clicks the control.

property OnClick;

1.22.1.1.2.27 TComponentCombo.OnCloseUp Property

Occurs when the drop-down list closes up due to some user action.

property OnCloseUp;

Description

Write an OnCloseUp event handler to implement special processing that needs to occur when the drop-down list closes up.
For example, an OnCloseUp event handler can check whether the user changed the selected item while the list was
dropped down and respond accordingly.

1.22.1.1.2.28 TComponentCombo.OnContextPopup Property

Occurs when the user right-clicks the control or otherwise invokes the popup menu (such as using the keyboard).

property OnContextPopup;

Description

The OnContextPopup handler is called when the user uses the mouse or keyboard to request a popup menu. The
OnContextPopup event is generated by a WM_CONTEXTMENU message, which is itself generated by the user clicking the
right mouse button or by pressing SHIFT+F10 or the Applications key.

This event is especially useful when the control does not have an associated popup menu (the PopupMenu property is not

1.22 edcCmbCombo Namespace EControl Form Designer Pro Classes

351

1

set) or if the AutoPopup property of the control’s associated popup menu is false. However, the OnContextPopup can also
be used to override the automatic context menu that appears when the control has an associated popup menu with an
AutoPopup property of true. In this last case, if the event handler displays its own menu, it should set the Handled parameter
to true to suppress the default context menu.

The handler’s MousePos parameter indicates the position of the mouse, in client coordinates.. If the event was not
generated by a mouse click, MousePos is (-1,-1).

Note: Parent controls receive an OnContextPopup event before their child controls. In addition, for many child controls, the
default window procedure causes the parent control to receive an OnContextPopup event after the child control. As a result,
when parent controls do not set Handled to true in an OnContextPopup event handler, the event handler may be called
multiple times for each context menu invocation.

1.22.1.1.2.29 TComponentCombo.OnDblClick Property

Occurs when the user double-clicks the left mouse button when the mouse pointer is over the control.

property OnDblClick;

Description

Use the OnDblClick event to respond to mouse double-clicks.

1.22.1.1.2.30 TComponentCombo.OnDragDrop Property

Occurs when the user drops an object being dragged.

property OnDragDrop;

Description

Use the OnDragDrop event handler to specify what happens when the user drops an object. The Source parameter of the
OnDragDrop event is the object being dropped, and the Sender is the control the object is being dropped on. The X and Y
parameters are the coordinates of the mouse positioned over the control.

1.22.1.1.2.31 TComponentCombo.OnDragOver Property

Occurs when the user drags an object over a control.

property OnDragOver;

Description

Use an OnDragOver event to signal that the control can accept a dragged object so the user can drop or dock it.

Within the OnDragOver event handler, change the Accept parameter to false to reject the dragged object. Leave Accept as
true to allow the user to drop or dock the dragged object on the control.

To change the shape of the cursor, indicating that the control can accept the dragged object, change the value of the
DragCursor property for the control before the OnDragOver event occurs.

The Source is the object being dragged, the Sender is the potential drop or dock site, and X and Y are screen coordinates in
pixels. The State parameter specifies how the dragged object is moving over the control.

Note: Within the OnDragOver event handler, the Accept parameter defaults to true. However, if an OnDragOver event

1.22 edcCmbCombo Namespace EControl Form Designer Pro Classes

352

1

handler is not supplied, the control rejects the dragged object, as if the Accept parameter were changed to false.

1.22.1.1.2.32 TComponentCombo.OnDrawItem Property

Occurs when an item in an owner-draw combo box needs to be displayed.

property OnDrawItem;

Description

Write an OnDrawItem event handler to draw the items in the drop-down list of an owner-draw combo box. An OnDrawItem
event handler can add graphic elements to the list items, or replace the list item text by graphics.

Draw the items on the Canvas using the coordinates provided by the Rect parameter. OnDrawItem occurs only if Style is set
to csOwnerDrawFixed or csOwnerDrawVariable.

If an OnDrawItem event handler is not provided, the combo box fills the Rect parameter with the current brush and writes the
text value of the item specified by the Index parameter.

1.22.1.1.2.33 TComponentCombo.OnDropDown Property

Occurs when the user opens the drop-down list by clicking the arrow at the right of the control.

property OnDropDown;

Description

Write an OnDropDown event handler to implement special processing that needs to occur only when the drop-down list is
activated.

Notes

OnDropDown never occurs if the combo box does not include any items.

1.22.1.1.2.34 TComponentCombo.OnEndDock Property

Occurs when the dragging of an object ends, either by docking the object or by canceling the dragging.

property OnEndDock;

Description

Use OnEndDock to specify actions or special processing that when a drag-and-dock operation stops.

1.22.1.1.2.35 TComponentCombo.OnEndDrag Property

Occurs when the dragging of an object ends, either by dropping the object or by canceling the dragging.

property OnEndDrag;

Description

Use the OnEndDrag event handler to specify any special processing that occurs when dragging stops.

1.22.1.1.2.36 TComponentCombo.OnEnter Property

Occurs when a control receives the input focus.

property OnEnter;

Description

Use the OnEnter event handler to cause any special processing to occur when a control becomes active.

The OnEnter event does not occur when switching between forms or between another application and the application that

1.22 edcCmbCombo Namespace EControl Form Designer Pro Classes

353

1

includes the control.

1.22.1.1.2.37 TComponentCombo.OnExit Property

Occurs when the input focus shifts away from one control to another.

property OnExit;

Description

Use the OnExit event handler to provide special processing when the control ceases to be active.

The OnExit event does not occur when switching between forms or between another application and your application.

1.22.1.1.2.38 TComponentCombo.OnKeyDown Property

Occurs when a user presses any key while the control has focus.

property OnKeyDown;

Description

Use the OnKeyDown event handler to specify special processing to occur when a key is pressed. The OnKeyDown handler
can respond to all keyboard keys, including function keys and keys combined with the Shift, Alt, and Ctrl keys, and pressed
mouse buttons.

The TKeyEvent type points to a method that handles keyboard events.

The Key parameter is the key on the keyboard. For non-alphanumeric keys, use virtual key codes to determine the key
pressed. For more information, see Virtual Key codes.

The Shift parameter indicates whether the Shift, Alt, or Ctrl keys are combined with the keystroke.

1.22.1.1.2.39 TComponentCombo.OnKeyPress Property

Occurs when key pressed.

property OnKeyPress;

Description

Use the OnKeyPress event handler to make something happen as a result of a single character key press.

The Key parameter in the OnKeyPress event handler is of type Char; therefore, the OnKeyPress event registers the ASCII
character of the key pressed. Keys that don't correspond to an ASCII Char value (Shift or F1, for example) don't generate an
OnKeyPress event. Key combinations (such as Shift+A), generate only one OnKeyPress event (for this example, Shift+A
results in a Key value of “A” if Caps Lock is off). To respond to non-ASCII keys or key combinations, use the OnKeyDown or
OnKeyUp event handlers.

1.22.1.1.2.40 TComponentCombo.OnKeyUp Property

Occurs when the user releases a key that has been pressed.

property OnKeyUp;

Description

Use the OnKeyUp event handler to provide special processing that occurs when a key is released. The OnKeyUp handler
can respond to all keyboard keys, including function keys and keys combined with the Shift, Alt, and Ctrl keys.

1.22 edcCmbCombo Namespace EControl Form Designer Pro Classes

354

1

The TKeyEvent type points to a method that handles keyboard events. The Key parameter is the key on the keyboard. For
non-alphanumeric keys, you must use virtual key codes to determine the key pressed. For more information, see Virtual Key
codes.

The Shift parameter indicates whether the Shift, Alt, or Ctrl keys are combined with the keystroke.

1.22.1.1.2.41 TComponentCombo.OnMeasureItem Property

Occurs when an item in a csOwnerDrawVariable combo box needs to be redisplayed.

property OnMeasureItem;

Description

When Style is set to csOwnerDrawVariable, the OnMeasureItem event precedes OnDrawItem. Write an OnMeasureItem
event handler to specify the height, in pixels, needed to draw an item in the drop-down list.

1.22.1.1.2.42 TComponentCombo.OnSelect Property

Occurs when the user selects an item in the list.

property OnSelect;

Description

Write an OnSelect event handler to respond when the user selects a new item in the list.

1.22.1.1.2.43 TComponentCombo.OnStartDock Property

Occurs when the user begins to drag a control with a DragKind of dkDock.

property OnStartDock;

Description

Use the OnStartDock event handler to implement special processing when the user starts a drag-and-dock operation by
dragging the control.

The OnStartDock event handler can create a TDragDockObjectEx object for the DragObject parameter to specify the
appearance of the dragging rectangle and how the dragged control interacts with potential docking sites. If you return
TDragDockObjectEx as the drag object, there is no need to call the Free method for the DragObject when dragging is over.
If you use TDragDockObject, your application is responsible for freeing the drag object.

If the OnStartDock event handler sets the DragObject parameter to nil (Delphi) or NULL (C++), a TDragDockObject object is
automatically created.

1.22.1.1.2.44 TComponentCombo.OnStartDrag Property

Occurs when the user begins to drag the control or an object it contains by left-clicking on the control and holding the mouse
button down.

property OnStartDrag;

Description

Use the OnStartDrag event handler to implement special processing when the user starts to drag the control or an object it
contains. OnStartDrag only occurs if DragKind is dkDrag.

Sender is the control that is about to be dragged, or that contains the object about to be dragged.

1.22 edcCmbCombo Namespace EControl Form Designer Pro Classes

355

1

The OnStartDrag event handler can create a TDragControlObjectEx instance for the DragObject parameter to specify the
drag cursor, or, optionally, a drag image list. If you create a TDragControlObjectEx instance, there is no need to call the Free
method for the DragObject when dragging is over. If you create, instead, a TDragControlObject instance, your application is
responsible for freeing the drag object instance.

If the OnStartDrag event handler sets the DragObject parameter to nil (Delphi) or NULL (C++), a TDragControlObject object
is automatically created and dragging begins on the control itse

1.22.1.1.2.45 TComponentCombo.ParentBiDiMode Property

Specifies whether the control uses its parent’s BiDiMode.

property ParentBiDiMode;

1.22.1.1.2.46 TComponentCombo.ParentColor Property

Determines where a control looks for its color information.

property ParentColor;

1.22.1.1.2.47 TComponentCombo.ParentCtl3D Property

Determines where a component looks to determine if it should appear three dimensional.

property ParentCtl3D;

Description

ParentCtl3D is provided for backwards compatibility. It has no effect on 32-bit versions of Windows or NT 4.0 and later.

ParentCtl3D determines whether the control uses its parent’s Ctl3D property.

1.22.1.1.2.48 TComponentCombo.ParentFont Property

Determines where a control looks for its font information.

property ParentFont;

1.22.1.1.2.49 TComponentCombo.ParentShowHint Property

Determines where a control looks to find out if its Help Hint should be shown.

property ParentShowHint;

1.22.1.1.2.50 TComponentCombo.PopupMenu Property

Identifies the pop-up menu associated with the control.

property PopupMenu;

Description

Assign a value to PopupMenu to make a pop-up menu appear when the user selects the control and clicks the right mouse
button. If the TPopupMenu’s AutoPopup property is true, the pop-up menu appears automatically. If the menu’s AutoPopup
property is false, display the menu with a call to its Popup method from the control’s OnContextPopup event handler.

1.22.1.1.2.51 TComponentCombo.ShowClassName Property

Specifies whether class names will be displayed in the items

property ShowClassName: Boolean;

1.22 edcCmbCombo Namespace EControl Form Designer Pro Classes

356

1

Description

Default value is True.

1.22.1.1.2.52 TComponentCombo.ShowComponents Property

Determines if only TControl descendants will be shown in the list

property ShowComponents: Boolean;

Description

If ShowComponents is False, only controls (derived from TControl) will be shown in the list

Default value is True

1.22.1.1.2.53 TComponentCombo.ShowHint Property

Determines whether the control displays a Help Hint when the mouse pointer rests momentarily on the control.

property ShowHint;

1.22.1.1.2.54 TComponentCombo.Sorted Property

Determines whether the list portion of the combo box is alphabetized.

property Sorted;

Description

Set Sorted to true to sort the items in the Items list alphabetically. New items added to the list while Sorted is true are
inserted in the correct alphabetical position.

When Sorted is changed from false to true, the original order of the items is lost. Setting Sorted back to false does not
restore the original order.

1.22.1.1.2.55 TComponentCombo.TabOrder Property

Indicates the position of the control in its parent's tab order.

property TabOrder;

1.22.1.1.2.56 TComponentCombo.TabStop Property

Determines if the user can tab to a control.

property TabStop;

Description

Use the TabStop to allow or disallow access to the control using the Tab key.

If TabStop is true, the control is in the tab order. If TabStop is false, the control is not in the tab order and the user can't
press the Tab key to move to the control.

1.22.1.1.2.57 TComponentCombo.Text Property

Specifies the text string that is displayed in the edit box.

property Text;

Description

Use the Text property to read the text of the combo box or specify a new string for the Text value. By default, Text is the
string specified in the Name property.

1.22 edcCmbCombo Namespace EControl Form Designer Pro Classes

357

1

Notes

Setting Text to a string in the drop-down list causes that item to be selected. However, the value is considered a match only
if it matches in a case-sensitive manner.

1.22.1.1.2.58 TComponentCombo.Visible Property

Determines whether the component appears on screen.

property Visible;

Description

Use the Visible property to control the visibility of the control at runtime. If Visible is true, the control appears. If Visible is
false, the control is not visible.

Calling the Show method sets the control's Visible property to true. Calling the Hide method sets it to false.

1.22.1.1.3 TComponentCombo Events

1.22.1.1.3.1 TComponentCombo.OnCanAddObject Event

Occurs to defined whether object Obj can be added to drop-down list.

property OnCanAddObject: TCanAddObjectEvent ;

1.22.1.1.3.2 TComponentCombo.OnGetClassName Event

Allows replacing displayed class name.

property OnGetClassName: TGetClassNameEvent ;

1.22.1.1.3.3 TComponentCombo.OnGetComponents Event

Called during updating item list.

property OnGetComponents: TGetComponentsEvent ;

Description

Write OnGetComponents handler to add additional items (objects) to combo-box. Additional object may not be owned by
designed form.

1.22.1.1.3.4 TComponentCombo.OnSelChanged Event

Called when selected item (object) has bin changed by selecting from drop-down list.

property OnSelChanged: TSelChangedEvent ;

Description

Write OnSelChanged handler to process selection of custom objects added using OnGetComponents (see page 358)
event handler. If selected object is not owned by designed form Designer (see page 348) will not be able to select this
object, so you should process selection manually.

1.22.2 Types

The following table lists types in this documentation.

1.22 edcCmbCombo Namespace EControl Form Designer Pro Types

358

1

Types

Type Description

TCanAddObjectEvent (see page 359) See TComponentCombo.OnCanAddObject (see page 358).

TGetClassNameEvent (see page 359) See TComponentCombo.OnGetClassName Event (see page 358)

TGetComponentsEvent (see page 359) See TComponentCombo.OnGetComponents (see page 358).

TSelChangedEvent (see page 359) See TComponentCombo.OnSelChanged (see page 358)

1.22.2.1 edcCmbCombo.TCanAddObjectEvent Type
See TComponentCombo.OnCanAddObject (see page 358).

TCanAddObjectEvent = procedure (Sender: TObject; Obj: TPersistent; var CanAdd: Boolean) of
object ;

File

edcCmbCombo

1.22.2.2 edcCmbCombo.TGetClassNameEvent Type
See TComponentCombo.OnGetClassName Event (see page 358)

TGetClassNameEvent = procedure (Sender: TObject; Obj: TPersistent; var ClsName: string) of
object ;

File

edcCmbCombo

1.22.2.3 edcCmbCombo.TGetComponentsEvent Type
See TComponentCombo.OnGetComponents (see page 358).

TGetComponentsEvent = procedure (Sender: TObject; List: TList) of object ;

File

edcCmbCombo

1.22.2.4 edcCmbCombo.TSelChangedEvent Type
See TComponentCombo.OnSelChanged (see page 358)

TSelChangedEvent = procedure (Sender: TObject; SelObj: TPersistent) of object ;

File

edcCmbCombo

1.23 edcCompPal Namespace

1.23 edcCompPal Namespace EControl Form Designer Pro Classes

359

1

1.23.1 Classes

The following table lists classes in this documentation.

Classes

Class Description

TPalettePanel (see page 360) TPalettePanel is the panel to represent button panel with icons, where each
icon represents installed component.

TPaletteTab (see page 377) TPaletteTab is the container with tabs corresponding to component palette
pages

1.23.1.1 TPalettePanel Class
TPalettePanel is the panel to represent button panel with icons, where each icon represents installed component.

Class Hierarchy

TPalettePanel = class (TCustomBtnPanel , IClassSelector);

File

edcCompPal

Description

This panel displays components of the specified Page (see page 376) with behavior similar to component' panel in the
Delphi IDE.

Members

TCustomBtnPanel Methods

TCustomBtnPanel Methods Description

 ButtonAtPos (see page 22) Returns the index of the button indicated by the coordinates of a point on the
panel.

 ButtonClick (see page 22) Generates an OnButtonClick (see page 27) event.

 ButtonRect (see page 22) Indicates the rectangle occupied by the particular button.

 CanAutoSize (see page 23) Specifies whether the TCustomBtnPanel (see page 20) sizes itself
automatically to accommodate its contents.

 Create (see page 23) Creates and initializes a TCustomBtnPanel instance.

 Destroy (see page 23) Destroys an instance of TCustomBtnPanel.

 DrawButton (see page 23) Generates an OnDrawButton (see page 27) event.

 GetButtonHint (see page 24) Returns hint text for the particular button.

 InvalidateButtons (see page 24) Repaints just pushed and released buttons.

 Loaded (see page 24) Finally initializes the TCustomBtnPanel (see page 20) after it is loaded from
a stream.

 MouseDown (see page 24) Calls ButtonClick (see page 22) method.

 Paint (see page 24) Renders the image of a TCustomBtnPanel (see page 20).

IClassSelector Interface

IClassSelector Interface Description

 ClsChanged (see page 511) Called when selected in component palette component class was changed.

 ClsPalChanged (see page 512) Called when component palette was changed.

TPalettePanel Class

TPalettePanel Class Description

 ButtonClick (see page 364) Generates an OnButtonClick event.

 Create (see page 365) Creates and initializes a TPalettePanel instance.

1.23 edcCompPal Namespace EControl Form Designer Pro Classes

360

1

 Destroy (see page 365) Destroys an instance of TPalettePanel.

 DrawButton (see page 365) Generates an OnDrawButton event.

 GetButtonHint (see page 365) Returns hint text for the particular button.

 UpdateList (see page 366) Updates icons on the palette component

TCustomBtnPanel Properties

TCustomBtnPanel Properties Description

 AutoSize (see page 25) Specifies whether the TCustomBtnPanel (see page 20) sizes itself
automatically to accommodate its contents. This is inherited property from
TControl.

 ButtonCount (see page 25) Indicates the number of buttons in the array.

 ButtonHeight (see page 25) Specifies the height of the buttons in array.

 ButtonWidth (see page 25) Specifies the width of the buttons in array.

 Caption (see page 25) Specifies a text string that identifies the control to the user. This is inherited
property from TControl.

 DownButton (see page 26) Specifies index of pressed button.

 Flat (see page 26) Dictates whether the button should have a 2D look instead of the usual 3D
look.

 HintProps (see page 26) Provide properties to adjust hints processing.

 Margins (see page 26) Specifies positioning of button array

 Orientation (see page 26) Specifies whether the panel's array of button is horizontal or vertical.

 RowCount (see page 27) Indicates the number of button rows in the panel.

 Transparent (see page 27) Specifies whether the background of the button is transparent.

TPalettePanel Class

TPalettePanel Class Description

 Align (see page 366) Determines how the control aligns within its container (parent control).

 Anchors (see page 366) Specifies how the control is anchored to its parent.

 AutoSize (see page 367) Specifies whether the TCustomBtnPanel sizes itself automatically to
accommodate its contents. This is inherited property from TControl.

 BevelInner (see page 367) Specifies the cut of the inner bevel.

 BevelOuter (see page 367) Specifies the cut of the outer bevel.

 BevelWidth (see page 367) Determines the width, in pixels, of both the inner and outer bevels of a panel.

 BiDiMode (see page 368) Specifies the bi-directional mode for the control.

 BorderStyle (see page 368) Determines the style of the line drawn around the perimeter of the panel
control.

 BorderWidth (see page 368) Specifies the distance, in pixels, between the outer and inner bevels.

 ButtonHeight (see page 368) Specifies the height of the buttons in array.

 ButtonWidth (see page 369) Specifies the width of the buttons in array.

 Color (see page 369) Specifies the background color of the control.

 Constraints (see page 369) Specifies the size constraints for the control.

 Ctl3D (see page 369) Determines whether a control has a three-dimensional (3-D) or
two-dimensional look.

 DownButton (see page 370) Specifies index of pressed button.

 DragCursor (see page 370) Indicates the image used to represent the mouse pointer when the control is
being dragged.

 DragImageType (see page 370) Specifies drag image when dragging component on form.

 DragKind (see page 370) Specifies whether the control is being dragged normally or for docking.

 DragMode (see page 370) Determines how the control initiates drag-and-drop or drag-and-dock
operations.

 Enabled (see page 370) Controls whether the control responds to mouse, keyboard, and timer events.

 Flat (see page 371) Dictates whether the button should have a 2D look instead of the usual 3D
look.

 Font (see page 371) Controls the attributes of text written on or in the control.

 HintProps (see page 371) Provide properties to adjust hints processing.

 Margins (see page 371) Specifies positioning of button array

 OnButtonClick (see page 371) Occurs when the user clicks the button on the underlying panel.

 OnCanResize (see page 372) Occurs when an attempt is made to resize the control.

 OnClick (see page 372) Occurs when the user clicks the control.

 OnConstrainedResize (see page 372) Adjust resize constraints.

 OnContextPopup (see page 372) Occurs when the user right-clicks the control or otherwise invokes the popup
menu (such as using the keyboard).

1.23 edcCompPal Namespace EControl Form Designer Pro Classes

361

1

 OnDblClick (see page 373) Occurs when the user double-clicks the left mouse button when the mouse
pointer is over the control.

 OnDragDrop (see page 373) Occurs when the user drops an object being dragged.

 OnDragOver (see page 373) Occurs when the user drags an object over a control.

 OnEndDrag (see page 374) Occurs when the dragging of an object ends, either by dropping the object or
by canceling the dragging.

 OnEnter (see page 374) Occurs when a control receives the input focus.

 OnExit (see page 374) Occurs when the input focus shifts away from one control to another.

 OnMouseDown (see page 374) Occurs when the user presses a mouse button with the mouse pointer over a
control.

 OnMouseMove (see page 374) Occurs when the user moves the mouse pointer while the mouse pointer is
over a control.

 OnMouseUp (see page 375) Occurs when the user releases a mouse button that was pressed with the
mouse pointer over a component.

 OnResize (see page 375) Occurs immediately after the control is resized.

 OnStartDrag (see page 375) Occurs when the user begins to drag the control or an object it contains by
left-clicking on the control and holding the mouse button down.

 Orientation (see page 375) Specifies whether the panel's array of button is horizontal or vertical.

 Page (see page 376) Component's palette page name

 ParentBiDiMode (see page 376) Specifies whether the control uses its parent’s BiDiMode.

 ParentColor (see page 376) Determines where a control looks for its color information.

 ParentCtl3D (see page 376) Determines where a component looks to determine if it should appear three
dimensional.

 ParentFont (see page 376) Determines where a control looks for its font information.

 ParentShowHint (see page 376) Determines where a control looks to find out if its Help Hint should be shown.

 PopupMenu (see page 376) Identifies the pop-up menu associated with the control.

 RowCount (see page 376) Indicates the number of button rows in the panel.

 ShowHint (see page 377) Determines whether the control displays a Help Hint when the mouse pointer
rests momentarily on the control.

 TabOrder (see page 377) Indicates the position of the control in its parent's tab order.

 TabStop (see page 377) Determines if the user can tab to a control.

 Transparent (see page 377) Specifies whether the background of the button is transparent.

 Visible (see page 377) Determines whether the component appears on screen.

TCustomBtnPanel Events

TCustomBtnPanel Events Description

 OnButtonClick (see page 27) Occurs when the user clicks the button on the underlying panel.

 OnDrawButton (see page 27) Occurs when a particular button on the panel needs to be drawn.

 OnGetButtonHint (see page 28) Occurs before hint window will be displayed.

Legend

Method

protected

virtual

Property

Event

TCustomBtnPanel Events

TCustomBtnPanel Events Description

 OnButtonClick (see page 27) Occurs when the user clicks the button on the underlying panel.

 OnDrawButton (see page 27) Occurs when a particular button on the panel needs to be drawn.

 OnGetButtonHint (see page 28) Occurs before hint window will be displayed.

TCustomBtnPanel Methods

TCustomBtnPanel Methods Description

 ButtonAtPos (see page 22) Returns the index of the button indicated by the coordinates of a point on the
panel.

 ButtonClick (see page 22) Generates an OnButtonClick (see page 27) event.

 ButtonRect (see page 22) Indicates the rectangle occupied by the particular button.

 CanAutoSize (see page 23) Specifies whether the TCustomBtnPanel (see page 20) sizes itself
automatically to accommodate its contents.

 Create (see page 23) Creates and initializes a TCustomBtnPanel instance.

1.23 edcCompPal Namespace EControl Form Designer Pro Classes

362

1

 Destroy (see page 23) Destroys an instance of TCustomBtnPanel.

 DrawButton (see page 23) Generates an OnDrawButton (see page 27) event.

 GetButtonHint (see page 24) Returns hint text for the particular button.

 InvalidateButtons (see page 24) Repaints just pushed and released buttons.

 Loaded (see page 24) Finally initializes the TCustomBtnPanel (see page 20) after it is loaded from
a stream.

 MouseDown (see page 24) Calls ButtonClick (see page 22) method.

 Paint (see page 24) Renders the image of a TCustomBtnPanel (see page 20).

IClassSelector Interface

IClassSelector Interface Description

 ClsChanged (see page 511) Called when selected in component palette component class was changed.

 ClsPalChanged (see page 512) Called when component palette was changed.

TPalettePanel Class

TPalettePanel Class Description

 ButtonClick (see page 364) Generates an OnButtonClick event.

 Create (see page 365) Creates and initializes a TPalettePanel instance.

 Destroy (see page 365) Destroys an instance of TPalettePanel.

 DrawButton (see page 365) Generates an OnDrawButton event.

 GetButtonHint (see page 365) Returns hint text for the particular button.

 UpdateList (see page 366) Updates icons on the palette component

TCustomBtnPanel Properties

TCustomBtnPanel Properties Description

 AutoSize (see page 25) Specifies whether the TCustomBtnPanel (see page 20) sizes itself
automatically to accommodate its contents. This is inherited property from
TControl.

 ButtonCount (see page 25) Indicates the number of buttons in the array.

 ButtonHeight (see page 25) Specifies the height of the buttons in array.

 ButtonWidth (see page 25) Specifies the width of the buttons in array.

 Caption (see page 25) Specifies a text string that identifies the control to the user. This is inherited
property from TControl.

 DownButton (see page 26) Specifies index of pressed button.

 Flat (see page 26) Dictates whether the button should have a 2D look instead of the usual 3D
look.

 HintProps (see page 26) Provide properties to adjust hints processing.

 Margins (see page 26) Specifies positioning of button array

 Orientation (see page 26) Specifies whether the panel's array of button is horizontal or vertical.

 RowCount (see page 27) Indicates the number of button rows in the panel.

 Transparent (see page 27) Specifies whether the background of the button is transparent.

TPalettePanel Class

TPalettePanel Class Description

 Align (see page 366) Determines how the control aligns within its container (parent control).

 Anchors (see page 366) Specifies how the control is anchored to its parent.

 AutoSize (see page 367) Specifies whether the TCustomBtnPanel sizes itself automatically to
accommodate its contents. This is inherited property from TControl.

 BevelInner (see page 367) Specifies the cut of the inner bevel.

 BevelOuter (see page 367) Specifies the cut of the outer bevel.

 BevelWidth (see page 367) Determines the width, in pixels, of both the inner and outer bevels of a panel.

 BiDiMode (see page 368) Specifies the bi-directional mode for the control.

 BorderStyle (see page 368) Determines the style of the line drawn around the perimeter of the panel
control.

 BorderWidth (see page 368) Specifies the distance, in pixels, between the outer and inner bevels.

 ButtonHeight (see page 368) Specifies the height of the buttons in array.

 ButtonWidth (see page 369) Specifies the width of the buttons in array.

 Color (see page 369) Specifies the background color of the control.

 Constraints (see page 369) Specifies the size constraints for the control.

 Ctl3D (see page 369) Determines whether a control has a three-dimensional (3-D) or
two-dimensional look.

1.23 edcCompPal Namespace EControl Form Designer Pro Classes

363

1

 DownButton (see page 370) Specifies index of pressed button.

 DragCursor (see page 370) Indicates the image used to represent the mouse pointer when the control is
being dragged.

 DragImageType (see page 370) Specifies drag image when dragging component on form.

 DragKind (see page 370) Specifies whether the control is being dragged normally or for docking.

 DragMode (see page 370) Determines how the control initiates drag-and-drop or drag-and-dock
operations.

 Enabled (see page 370) Controls whether the control responds to mouse, keyboard, and timer events.

 Flat (see page 371) Dictates whether the button should have a 2D look instead of the usual 3D
look.

 Font (see page 371) Controls the attributes of text written on or in the control.

 HintProps (see page 371) Provide properties to adjust hints processing.

 Margins (see page 371) Specifies positioning of button array

 OnButtonClick (see page 371) Occurs when the user clicks the button on the underlying panel.

 OnCanResize (see page 372) Occurs when an attempt is made to resize the control.

 OnClick (see page 372) Occurs when the user clicks the control.

 OnConstrainedResize (see page 372) Adjust resize constraints.

 OnContextPopup (see page 372) Occurs when the user right-clicks the control or otherwise invokes the popup
menu (such as using the keyboard).

 OnDblClick (see page 373) Occurs when the user double-clicks the left mouse button when the mouse
pointer is over the control.

 OnDragDrop (see page 373) Occurs when the user drops an object being dragged.

 OnDragOver (see page 373) Occurs when the user drags an object over a control.

 OnEndDrag (see page 374) Occurs when the dragging of an object ends, either by dropping the object or
by canceling the dragging.

 OnEnter (see page 374) Occurs when a control receives the input focus.

 OnExit (see page 374) Occurs when the input focus shifts away from one control to another.

 OnMouseDown (see page 374) Occurs when the user presses a mouse button with the mouse pointer over a
control.

 OnMouseMove (see page 374) Occurs when the user moves the mouse pointer while the mouse pointer is
over a control.

 OnMouseUp (see page 375) Occurs when the user releases a mouse button that was pressed with the
mouse pointer over a component.

 OnResize (see page 375) Occurs immediately after the control is resized.

 OnStartDrag (see page 375) Occurs when the user begins to drag the control or an object it contains by
left-clicking on the control and holding the mouse button down.

 Orientation (see page 375) Specifies whether the panel's array of button is horizontal or vertical.

 Page (see page 376) Component's palette page name

 ParentBiDiMode (see page 376) Specifies whether the control uses its parent’s BiDiMode.

 ParentColor (see page 376) Determines where a control looks for its color information.

 ParentCtl3D (see page 376) Determines where a component looks to determine if it should appear three
dimensional.

 ParentFont (see page 376) Determines where a control looks for its font information.

 ParentShowHint (see page 376) Determines where a control looks to find out if its Help Hint should be shown.

 PopupMenu (see page 376) Identifies the pop-up menu associated with the control.

 RowCount (see page 376) Indicates the number of button rows in the panel.

 ShowHint (see page 377) Determines whether the control displays a Help Hint when the mouse pointer
rests momentarily on the control.

 TabOrder (see page 377) Indicates the position of the control in its parent's tab order.

 TabStop (see page 377) Determines if the user can tab to a control.

 Transparent (see page 377) Specifies whether the background of the button is transparent.

 Visible (see page 377) Determines whether the component appears on screen.

1.23.1.1.1 TPalettePanel Methods

1.23.1.1.1.1 TPalettePanel.ButtonClick Method

Generates an OnButtonClick event.

procedure ButtonClick(AButton: integer; Shift: TShiftState); override ;

1.23 edcCompPal Namespace EControl Form Designer Pro Classes

364

1

Description

ButtonClick is called automatically when user presses mouse button with the mouse pointer over the particular button. Then
it generates an OnButtonClick event.

The AButton parameter indicates index of corresponding button.

The Shift parameter indicates which shift keys (Shift, Ctrl, or Alt) were down when the user pressed the mouse button.

Override this method to add class-specific processing when the button clicks.

Example

See (see page 10) how descendant of TCustomBtnPanel overrides this method to assign current class type in
DsnManager

1.23.1.1.1.2 TPalettePanel.Create Constructor

Creates and initializes a TPalettePanel instance.

constructor Create(AOwner: TComponent); override ;

Description

Use Create to programmatically instantiate a TPalettePanel component. Components added in the form designer are
created automatically.

AOwner is the component that is responsible for freeing the component instance. It becomes the value of the Owner
property.

1.23.1.1.1.3 TPalettePanel.Destroy Destructor

Destroys an instance of TPalettePanel.

destructor Destroy; override ;

Description

Do not call Destroy directly. Call Free instead. Free verifies that the object reference is not nil before calling Destroy.

1.23.1.1.1.4 TPalettePanel.DrawButton Method

Generates an OnDrawButton event.

procedure DrawButton(var ARect: TRect; Index : Integer); override ;

Description

Simply generates an OnDrawButton event after rendering this button in TCustomBtnPanel.Paint.

The Rect parameter indicates the location of the button on the canvas.

The Index parameter indicates index of corresponding button.

1.23.1.1.1.5 TPalettePanel.GetButtonHint Method

Returns hint text for the particular button.

function GetButtonHint(Index : Integer): WideString; override ;

Description

Returns hint text for the particular button.

1.23 edcCompPal Namespace EControl Form Designer Pro Classes

365

1

The Index parameter indicates index of corresponding button.

1.23.1.1.1.6 TPalettePanel.UpdateList Method

Updates icons on the palette component

procedure UpdateList;

Description

This method checks PackageMng for corresponding set of components and updates palette component's set of icons.

1.23.1.1.2 TPalettePanel Properties

1.23.1.1.2.1 TPalettePanel.Align Property

Determines how the control aligns within its container (parent control).

property Align;

Description

Use Align to align a control to the top, bottom, left, or right of a form or panel and have it remain there even if the size of the
form, panel, or component that contains the control changes. When the parent is resized, an aligned control also resizes so
that it continues to span the top, bottom, left, or right edge of the parent.

For example, to use a panel component with various controls on it as a tool palette, change the panel’s Align value to alLeft.
The value of alLeft for the Align property of the panel guarantees that the tool palette remains on the left side of the form and
always equals the client height of the form.

The default value of Align is alNone, which means a control remains where it is positioned on a form or panel.

Tip: If Align is set to alClient, the control fills the entire client area so that it is impossible to select the parent form by clicking
on it. In this case, select the parent by selecting the control on the form and pressing Esc, or by using the Object Inspector.

Any number of child components within a single parent can have the same Align value, in which case they stack up along
the edge of the parent. The child controls stack up in z-order. To adjust the order in which the controls stack up, drag the
controls into their desired positions.

Note: To cause a control to maintain a specified relationship with an edge of its parent, but not necessarily lie along one
edge of the parent, use the Anchors property instead.

1.23.1.1.2.2 TPalettePanel.Anchors Property

Specifies how the control is anchored to its parent.

property Anchors;

Description

Use Anchors to ensure that a control maintains its current position relative to an edge of its parent, even if the parent is
resized. When its parent is resized, the control holds its position relative to the edges to which it is anchored.

If a control is anchored to opposite edges of its parent, the control stretches when its parent is resized. For example, if a
control has its Anchors property set to [akLeft, akRight], the control stretches when the width of its parent changes.

1.23 edcCompPal Namespace EControl Form Designer Pro Classes

366

1

Anchors is enforced only when the parent is resized. Thus, for example, if a control is anchored to opposite edges of a form
at design time and the form is created in a maximized state, the control is not stretched because the form is not resized after
the control is created.

Note: If a control should maintain contact with three edges of its parent (hugging one side of the parent and stretching the
length of that side), use the Align property instead. Unlike Anchors, Align allows controls to adjust to changes in the size of
other aligned sibling controls as well as changes to the parent’s size.

1.23.1.1.2.3 TPalettePanel.AutoSize Property

Specifies whether the TCustomBtnPanel sizes itself automatically to accommodate its contents. This is inherited property
from TControl.

property AutoSize;

Description

Use AutoSize to specify whether the TCustomBtnPanel sizes itself automatically. When AutoSize is True, the
TCustomBtnPanel resizes automatically to arrange all the buttons in array.

By default, AutoSize is True.

1.23.1.1.2.4 TPalettePanel.BevelInner Property

Specifies the cut of the inner bevel.

property BevelInner;

Description

Use BevelInner to specify whether the inner bevel has a raised, lowered, or flat look.

The inner bevel appears immediately inside the outer bevel. If there is no outer bevel (BevelOuter is bvNone), the inner
bevel appears immediately inside the border.

1.23.1.1.2.5 TPalettePanel.BevelOuter Property

Specifies the cut of the outer bevel.

property BevelOuter;

Description

Use BevelInner to specify whether the outer bevel has a raised, lowered, or flat look.

The outer bevel appears immediately inside the border and outside the inner bevel.

1.23.1.1.2.6 TPalettePanel.BevelWidth Property

Determines the width, in pixels, of both the inner and outer bevels of a panel.

property BevelWidth;

Description

Use BevelWidth to specify how wide the inner or outer bevel should be. Do not confuse BevelWidth, which is the width of the
bevels, with BorderWidth, which is the space between the bevels.

If both the BevelInner and BevelOuter properties are bvNone, BevelWidth has no effect. To remove both bevels, set the

1.23 edcCompPal Namespace EControl Form Designer Pro Classes

367

1

BevelInner and BevelOuter properties to bvNone, rather than setting the BevelWidth to 0, as this involves less overhead
when painting.

1.23.1.1.2.7 TPalettePanel.BiDiMode Property

Specifies the bi-directional mode for the control.

property BiDiMode;

Description

Use BiDiMode to enable the control to adjust its appearance and behavior automatically when the application runs in a
locale that reads from right to left instead of left to right. The bi-directional mode controls the reading order for the text, the
placement of the vertical scroll bar, and whether the alignment is changed.

Alignment does not change for controls that are known to contain number, date, time, or currency values. For example, with
data aware controls, the alignment does not change for the following field types: ftSmallint, ftInteger, ftWord, ftFloat,
ftCurrency, ftBCD, ftDate, ftTime, ftDateTime, ftAutoInc.

1.23.1.1.2.8 TPalettePanel.BorderStyle Property

Determines the style of the line drawn around the perimeter of the panel control.

property BorderStyle;

Description

Use BorderStyle to specify whether the panel has a single line drawn around it. These are the possible values:

Value Meaning

bsNone No visible border

bsSingle Single-line border

Do not confuse the line drawn around the panel with the BorderWidth of the panel. The BorderWidth of the panel is the
distance between the outer and inner bevels.

1.23.1.1.2.9 TPalettePanel.BorderWidth Property

Specifies the distance, in pixels, between the outer and inner bevels.

property BorderWidth;

Description

Use BorderWidth to specify how wide the border around the panel should be. A value of 0 (zero) means no border should
appear.

The border of a panel is the area between the outer and inner bevels. It is visible only if the inner bevel is raised or lowered,
but affects the inset of the caption within the panel even if BevelInner is bvNone. If the Alignment property is not taCenter,
the Caption will be aligned to the inner edge of the border. This edge is BorderWidth pixels in from the outer bevel if
BevelInner is bvNone. It is the inner edge of the inner bevel otherwise.

Do not confuse the border of the panel with line drawn around the panel itself. The line around the panel is specified by the
BorderStyle property.

1.23.1.1.2.10 TPalettePanel.ButtonHeight Property

Specifies the height of the buttons in array.

1.23 edcCompPal Namespace EControl Form Designer Pro Classes

368

1

property ButtonHeight: integer;

Description

ButtonHeight represents the height, in pixels, of the buttons on the panel.

Setting this property to value less then 2 pixels throws an Exception.

By default, ButtonHeight is 25.

1.23.1.1.2.11 TPalettePanel.ButtonWidth Property

Specifies the width of the buttons in array.

property ButtonWidth: integer;

Description

ButtonWidth represents the width, in pixels, of the buttons on the panel.

Setting this property to value less then 2 pixels throws an Exception.

By default, ButtonWidth is 25.

1.23.1.1.2.12 TPalettePanel.Color Property

Specifies the background color of the control.

property Color;

Description

Use Color to read or change the background color of the control.

If a control's ParentColor property is true, then changing the Color property of the control's parent automatically changes the
Color property of the control. When the value of the Color property is changed, the control's ParentColor property is
automatically set to false.

1.23.1.1.2.13 TPalettePanel.Constraints Property

Specifies the size constraints for the control.

property Constraints;

Description

Use Constraints to specify the minimum and maximum width and height of the control. When Constraints contains maximum
or minimum values, the control cannot be resized to violate those constraints.

Warning: Do not set up constraints that conflict with the value of the Align or Anchors property. When these properties
conflict, the response of the control to resize attempts is not well-defined.

1.23.1.1.2.14 TPalettePanel.Ctl3D Property

Determines whether a control has a three-dimensional (3-D) or two-dimensional look.

property Ctl3D;

Description

Ctl3D is provided for backward compatibility. It is not used by 32-bit versions of Windows or NT4.0 and later.

On earlier platforms, Ctl3D controlled whether the control had a flat or beveled appearance.

1.23 edcCompPal Namespace EControl Form Designer Pro Classes

369

1

1.23.1.1.2.15 TPalettePanel.DownButton Property

Specifies index of pressed button.

property DownButton: integer;

Description

Specifies index of the button which is in selected state where 0 is the first button, 1 is the second and so on;

Set this property to change selected button in the array.

By default, DownButton is -1;

1.23.1.1.2.16 TPalettePanel.DragCursor Property

Indicates the image used to represent the mouse pointer when the control is being dragged.

property DragCursor;

Description

Use the DragCursor property to change the cursor image presented when the control is being dragged.

Note: To make a custom cursor available for the DragCursor property, see the Cursor property.

1.23.1.1.2.17 TPalettePanel.DragImageType Property

Specifies drag image when dragging component on form.

property DragImageType: TComponentClassDragImage ;

Remarks

In Delphi 5,6,7 you will need to add csDisplayDragImage to designed form's ControlStyle.

In Delphi 2005,2006,2007,2009 - DragObject.AlwaysShowDragImages := True, so dragged image is shown over any control.

1.23.1.1.2.18 TPalettePanel.DragKind Property

Specifies whether the control is being dragged normally or for docking.

property DragKind;

Description

Use DragKind to get or set whether the control participates in drag-and-drop operations, or drag-and-dock operations.

1.23.1.1.2.19 TPalettePanel.DragMode Property

Determines how the control initiates drag-and-drop or drag-and-dock operations.

property DragMode;

Description

Use DragMode to control when the user can drag the control. Disable the drag-and-drop or drag-and-dock capability at
runtime by setting the DragMode property value to dmManual. Enable automatic dragging by setting DragMode to
dmAutomatic.

1.23.1.1.2.20 TPalettePanel.Enabled Property

Controls whether the control responds to mouse, keyboard, and timer events.

property Enabled;

1.23 edcCompPal Namespace EControl Form Designer Pro Classes

370

1

Description

Use Enabled to change the availability of the control to the user. To disable a control, set Enabled to false. Disabled controls
appear dimmed. If Enabled is false, the control ignores mouse, keyboard, and timer events.

To re-enable a control, set Enabled to true. The control is no longer dimmed, and the user can use the control.

1.23.1.1.2.21 TPalettePanel.Flat Property

Dictates whether the button should have a 2D look instead of the usual 3D look.

property Flat: Boolean;

Description

Set Flat to True if you want the button to display the button without the edge bevel that gives buttons a 3D look.

By default, Flat is True.

1.23.1.1.2.22 TPalettePanel.Font Property

Controls the attributes of text written on or in the control.

property Font;

Description

To change to a new font, specify a new TFont object. To modify a font, change the value of the Charset, Color, Height,
Name, Pitch, Size, or Style of the TFont object.

1.23.1.1.2.23 TPalettePanel.HintProps Property

Provide properties to adjust hints processing.

property HintProps: TecHintHelper ;

1.23.1.1.2.24 TPalettePanel.Margins Property

Specifies positioning of button array

property Margins: TBtnMargins ;

Description

Margins specifies the Left, Top, Right and Bottom margins between buttons and underlaying panel as well as horizontal and
vertical spaces between buttons themselves.

Example

This example (see page 10) demonstrates how to set Margins property at run-time

1.23.1.1.2.25 TPalettePanel.OnButtonClick Property

Occurs when the user clicks the button on the underlying panel.

property OnButtonClick: TButtonClickEvent ;

Description

Use the OnButtonClick event handler to respond when the user clicks the button on the TCustomBtnPanel.

OnButtonClick occurs when the user presses mouse button with the mouse pointer over the corresponding rectangle of the
underlying TCustomBtnPanel.

1.23 edcCompPal Namespace EControl Form Designer Pro Classes

371

1

The Sender parameter is the object whose event handler is called.

The Index parameter indicates index of pressed button.

1.23.1.1.2.26 TPalettePanel.OnCanResize Property

Occurs when an attempt is made to resize the control.

property OnCanResize;

Description

Use OnCanResize to adjust the way a control is resized. If necessary, change the new width and height of the control in the
OnCanResize event handler. The OnCanResize event handler also allows applications to indicate that the entire resize
should be aborted.

If there is no OnCanResize event handler, or if the OnCanResize event handler indicates that the resize attempt can
proceed, the OnCanResize event is followed immediately by an OnConstrainedResize event.

1.23.1.1.2.27 TPalettePanel.OnClick Property

Occurs when the user clicks the control.

property OnClick;

1.23.1.1.2.28 TPalettePanel.OnConstrainedResize Property

Adjust resize constraints.

property OnConstrainedResize;

Description

Use OnConstrainedResize to adjust a control’s constraints when an attempt is made to resize it. Upon entry to the
OnConstrainedResize event handler, the parameters of the event handler are set to the corresponding properties of the
control’s Constraints object. The event handler can adjust those values before they are applied to the new height and width
that is being applied to the control. (The CanAutoSize method or an OnCanResize event handler may already have adjusted
this new height and width).

On exit from the OnConstrainedResize event handler, the constraints are applied to the attempted new height and width.
Once the constraints are applied, the control’s height and width are changed. After the control’s height and width change, an
OnResize event occurs to allow any final adjustments or responses.

Notes

The OnConstrainedResize handler is called immediately after the OnCanResize handler.

1.23.1.1.2.29 TPalettePanel.OnContextPopup Property

Occurs when the user right-clicks the control or otherwise invokes the popup menu (such as using the keyboard).

property OnContextPopup;

Description

The OnContextPopup handler is called when the user uses the mouse or keyboard to request a popup menu. The
OnContextPopup event is generated by a WM_CONTEXTMENU message, which is itself generated by the user clicking the
right mouse button or by pressing SHIFT+F10 or the Applications key.

This event is especially useful when the control does not have an associated popup menu (the PopupMenu property is not
set) or if the AutoPopup property of the control’s associated popup menu is false. However, the OnContextPopup can also

1.23 edcCompPal Namespace EControl Form Designer Pro Classes

372

1

be used to override the automatic context menu that appears when the control has an associated popup menu with an
AutoPopup property of true. In this last case, if the event handler displays its own menu, it should set the Handled parameter
to true to suppress the default context menu.

The handler’s MousePos parameter indicates the position of the mouse, in client coordinates.. If the event was not
generated by a mouse click, MousePos is (-1,-1).

Note: Parent controls receive an OnContextPopup event before their child controls. In addition, for many child controls, the
default window procedure causes the parent control to receive an OnContextPopup event after the child control. As a result,
when parent controls do not set Handled to true in an OnContextPopup event handler, the event handler may be called
multiple times for each context menu invocation.

1.23.1.1.2.30 TPalettePanel.OnDblClick Property

Occurs when the user double-clicks the left mouse button when the mouse pointer is over the control.

property OnDblClick;

Description

Use the OnDblClick event to respond to mouse double-clicks.

1.23.1.1.2.31 TPalettePanel.OnDragDrop Property

Occurs when the user drops an object being dragged.

property OnDragDrop;

Description

Use the OnDragDrop event handler to specify what happens when the user drops an object. The Source parameter of the
OnDragDrop event is the object being dropped, and the Sender is the control the object is being dropped on. The X and Y
parameters are the coordinates of the mouse positioned over the control.

1.23.1.1.2.32 TPalettePanel.OnDragOver Property

Occurs when the user drags an object over a control.

property OnDragOver;

Description

Use an OnDragOver event to signal that the control can accept a dragged object so the user can drop or dock it.

Within the OnDragOver event handler, change the Accept parameter to false to reject the dragged object. Leave Accept as
true to allow the user to drop or dock the dragged object on the control.

To change the shape of the cursor, indicating that the control can accept the dragged object, change the value of the
DragCursor property for the control before the OnDragOver event occurs.

The Source is the object being dragged, the Sender is the potential drop or dock site, and X and Y are screen coordinates in
pixels. The State parameter specifies how the dragged object is moving over the control.

Note: Within the OnDragOver event handler, the Accept parameter defaults to true. However, if an OnDragOver event
handler is not supplied, the control rejects the dragged object, as if the Accept parameter were changed to false.

1.23 edcCompPal Namespace EControl Form Designer Pro Classes

373

1

1.23.1.1.2.33 TPalettePanel.OnEndDrag Property

Occurs when the dragging of an object ends, either by dropping the object or by canceling the dragging.

property OnEndDrag;

Description

Use the OnEndDrag event handler to specify any special processing that occurs when dragging stops.

1.23.1.1.2.34 TPalettePanel.OnEnter Property

Occurs when a control receives the input focus.

property OnEnter;

Description

Use the OnEnter event handler to cause any special processing to occur when a control becomes active.

The OnEnter event does not occur when switching between forms or between another application and the application that
includes the control.

1.23.1.1.2.35 TPalettePanel.OnExit Property

Occurs when the input focus shifts away from one control to another.

property OnExit;

Description

Use the OnExit event handler to provide special processing when the control ceases to be active.

The OnExit event does not occur when switching between forms or between another application and your application.

1.23.1.1.2.36 TPalettePanel.OnMouseDown Property

Occurs when the user presses a mouse button with the mouse pointer over a control.

property OnMouseDown;

Description

Use the OnMouseDown event handler to implement any special processing that should occur as a result of pressing a
mouse button.

The OnMouseDown event handler can respond to left, right, or center mouse button presses and shift key plus
mouse-button combinations. Shift keys are the Shift, Ctrl, and Alt keys. X and Y are the pixel coordinates of the mouse
pointer in the client area of the Sender.

1.23.1.1.2.37 TPalettePanel.OnMouseMove Property

Occurs when the user moves the mouse pointer while the mouse pointer is over a control.

property OnMouseMove;

Description

Use the OnMouseMove event handler to respond when the mouse pointer moves after the control has captured the mouse.

Use the Shift parameter of the OnMouseDown event handler, to determine to the state of the shift keys and mouse buttons.
Shift keys are the Shift, Ctrl, and Alt keys or shift key-mouse button combinations. X and Y are pixel coordinates of the new
location of the mouse pointer in the client area of the Sender.

1.23 edcCompPal Namespace EControl Form Designer Pro Classes

374

1

1.23.1.1.2.38 TPalettePanel.OnMouseUp Property

Occurs when the user releases a mouse button that was pressed with the mouse pointer over a component.

property OnMouseUp;

Description

Use an OnMouseUp event handler to implement special processing when the user releases a mouse button.

The OnMouseUp event handler can respond to left, right, or center mouse button presses and shift key plus mouse-button
combinations. Shift keys are the Shift, Ctrl, and Alt keys. X and Y are the pixel coordinates of the mouse pointer in the client
area of the Sender.

1.23.1.1.2.39 TPalettePanel.OnResize Property

Occurs immediately after the control is resized.

property OnResize;

Description

Use OnResize to make any final adjustments after a control is resized.

To modify the way a control responds when an attempt is made to resize it, use OnCanResize or OnConstrainedResize.

1.23.1.1.2.40 TPalettePanel.OnStartDrag Property

Occurs when the user begins to drag the control or an object it contains by left-clicking on the control and holding the mouse
button down.

property OnStartDrag;

Description

Use the OnStartDrag event handler to implement special processing when the user starts to drag the control or an object it
contains. OnStartDrag only occurs if DragKind is dkDrag.

Sender is the control that is about to be dragged, or that contains the object about to be dragged.

The OnStartDrag event handler can create a TDragControlObjectEx instance for the DragObject parameter to specify the
drag cursor, or, optionally, a drag image list. If you create a TDragControlObjectEx instance, there is no need to call the Free
method for the DragObject when dragging is over. If you create, instead, a TDragControlObject instance, your application is
responsible for freeing the drag object instance.

If the OnStartDrag event handler sets the DragObject parameter to nil (Delphi) or NULL (C++), a TDragControlObject object
is automatically created and dragging begins on the control itse

1.23.1.1.2.41 TPalettePanel.Orientation Property

Specifies whether the panel's array of button is horizontal or vertical.

property Orientation: TRowOrientation ;

Description

Use Orientation to specify whether the the panel's array of button is horizontal or vertical.

By default, Orientation is roHorizontal.

1.23 edcCompPal Namespace EControl Form Designer Pro Classes

375

1

1.23.1.1.2.42 TPalettePanel.Page Property

Component's palette page name

property Page: string ;

Description

Specifies name of the page with components icons.

Set this property to change this name.

1.23.1.1.2.43 TPalettePanel.ParentBiDiMode Property

Specifies whether the control uses its parent’s BiDiMode.

property ParentBiDiMode;

1.23.1.1.2.44 TPalettePanel.ParentColor Property

Determines where a control looks for its color information.

property ParentColor;

1.23.1.1.2.45 TPalettePanel.ParentCtl3D Property

Determines where a component looks to determine if it should appear three dimensional.

property ParentCtl3D;

Description

ParentCtl3D is provided for backwards compatibility. It has no effect on 32-bit versions of Windows or NT 4.0 and later.

ParentCtl3D determines whether the control uses its parent’s Ctl3D property.

1.23.1.1.2.46 TPalettePanel.ParentFont Property

Determines where a control looks for its font information.

property ParentFont;

1.23.1.1.2.47 TPalettePanel.ParentShowHint Property

Determines where a control looks to find out if its Help Hint should be shown.

property ParentShowHint;

1.23.1.1.2.48 TPalettePanel.PopupMenu Property

Identifies the pop-up menu associated with the control.

property PopupMenu;

Description

Assign a value to PopupMenu to make a pop-up menu appear when the user selects the control and clicks the right mouse
button. If the TPopupMenu’s AutoPopup property is true, the pop-up menu appears automatically. If the menu’s AutoPopup
property is false, display the menu with a call to its Popup method from the control’s OnContextPopup event handler.

1.23.1.1.2.49 TPalettePanel.RowCount Property

Indicates the number of button rows in the panel.

property RowCount: integer;

1.23 edcCompPal Namespace EControl Form Designer Pro Classes

376

1

Description

Read RowCount to determine the number of rows in the button's array are placed.

Set RowCount to add or delete rows to rearrange buttons.

By default, RowCount is 1.

1.23.1.1.2.50 TPalettePanel.ShowHint Property

Determines whether the control displays a Help Hint when the mouse pointer rests momentarily on the control.

property ShowHint;

1.23.1.1.2.51 TPalettePanel.TabOrder Property

Indicates the position of the control in its parent's tab order.

property TabOrder;

1.23.1.1.2.52 TPalettePanel.TabStop Property

Determines if the user can tab to a control.

property TabStop;

Description

Use the TabStop to allow or disallow access to the control using the Tab key.

If TabStop is true, the control is in the tab order. If TabStop is false, the control is not in the tab order and the user can't
press the Tab key to move to the control.

1.23.1.1.2.53 TPalettePanel.Transparent Property

Specifies whether the background of the button is transparent.

property Transparent: Boolean;

Description

Use Transparent to specify whether the background of the button is transparent.

1.23.1.1.2.54 TPalettePanel.Visible Property

Determines whether the component appears on screen.

property Visible;

Description

Use the Visible property to control the visibility of the control at runtime. If Visible is true, the control appears. If Visible is
false, the control is not visible.

Calling the Show method sets the control's Visible property to true. Calling the Hide method sets it to false.

1.23.1.2 TPaletteTab Class
TPaletteTab is the container with tabs corresponding to component palette pages

1.23 edcCompPal Namespace EControl Form Designer Pro Classes

377

1

Class Hierarchy

TPaletteTab = class (TCustomTabControl, IClassSelector);

File

edcCompPal

Description

TPaletteTab provides look and feel of a TPalette component similar to standard Borland IDE one.

With TPaletteTab component all the installed components set themselves up to tabs with group names.

User can shift between component groups clicking on TPaletteTab tabs.

Members

IClassSelector Methods

IClassSelector Methods Description

 ClsChanged (see page 511) Called when selected in component palette component class was changed.

 ClsPalChanged (see page 512) Called when component palette was changed.

TPaletteTab Properties

TPaletteTab Class

TPaletteTab Class Description

 Align (see page 380) Determines how the control aligns within its container (parent control).

 Anchors (see page 380) Specifies how the control is anchored to its parent.

 BiDiMode (see page 381) Specifies the bi-directional mode for the control.

 Constraints (see page 381) Specifies the size constraints for the control.

 DragCursor (see page 381) Indicates the image used to represent the mouse pointer when the control is
being dragged.

 DragKind (see page 381) Specifies whether the control is being dragged normally or for docking.

 DragMode (see page 381) Determines how the control initiates drag-and-drop or drag-and-dock
operations.

 Enabled (see page 381) Controls whether the control responds to mouse, keyboard, and timer events.

 Flat (see page 382) Determines whether the button within component palettes has a 3D border
that provides a raised or lowered look.

 Font (see page 382) Controls the attributes of text written on or in the control.

 HintProps (see page 382) Provide properties to adjust hints processing.

 HotTrack (see page 382) Determines whether labels on the tab under the mouse are automatically
highlighted.

 Images (see page 382) Specifies the images drawn in tabs.

 MultiLine (see page 382) Determines whether the tabs can appear on more than one row.

 OnChange (see page 383) Occurs after a new tab is selected.

 OnChanging (see page 383) Occurs immediately before a new tab is selected.

 OnContextPopup (see page 383) Occurs when the user right-clicks the control or otherwise invokes the popup
menu (such as using the keyboard).

 OnDragDrop (see page 383) Occurs when the user drops an object being dragged.

 OnDragOver (see page 383) Occurs when the user drags an object over a control.

 OnDrawTab (see page 383) Occurs when a tab is about to be drawn.

 OnEndDock (see page 384) Occurs when the dragging of an object ends, either by docking the object or by
canceling the dragging.

 OnEndDrag (see page 384) Occurs when the dragging of an object ends, either by dropping the object or
by canceling the dragging.

 OnEnter (see page 384) Occurs when a control receives the input focus.

 OnExit (see page 384) Occurs when the input focus shifts away from one control to another.

 OnGetImageIndex (see page 384) Occurs when a tab is about to display its associated image.

 OnMouseDown (see page 384) Occurs when the user presses a mouse button with the mouse pointer over a
control.

1.23 edcCompPal Namespace EControl Form Designer Pro Classes

378

1

 OnMouseMove (see page 385) Occurs when the user moves the mouse pointer while the mouse pointer is
over a control

 OnMouseUp (see page 385) Occurs when the user releases a mouse button that was pressed with the
mouse pointer over a component.

 OnResize (see page 385) Occurs immediately after the control is resized.

 OnStartDrag (see page 385) Occurs when the user begins to drag the control or an object it contains by
left-clicking on the control and holding the mouse button down.

 OwnerDraw (see page 385) Specifies whether the tab control handles its own painting.

 PalettePanel (see page 386) Palette panel with components of the page, selected in palette tab.

 ParentBiDiMode (see page 386) Specifies whether the control uses its parent’s BiDiMode (see page 381).

 ParentFont (see page 386) Determines where a control looks for its font information.

 ParentShowHint (see page 386) Determines where a control looks to find out if its Help Hint should be shown.

 PopupMenu (see page 386) Identifies the pop-up menu associated with the control.

 RaggedRight (see page 386) Specifies whether rows of tabs stretch to fill the width of the control.

 ResetOnChange (see page 386) Specifies if current selected component class will be reset after changing tab
page

 ScrollOpposite (see page 387) Determines how the rows of tabs are scrolled in a muliline tab control.

 ShowHint (see page 387) Determines whether the control displays a Help Hint when the mouse pointer
rests momentarily on the control.

 Style (see page 387) Specifies the style of the tab control.

 TabHeight (see page 387) Specifies the height, in pixels, of the tabs in the tab control.

 TabIndex (see page 387) Identifies the selected tab on a tab control.

 TabOrder (see page 387) Indicates the position of the control in its parent's tab order.

 TabPosition (see page 388) Determines whether tabs appear at the top or bottom.

 Tabs (see page 388) Contains the list of text strings that label the tabs of the tab control.

 TabStop (see page 388) Determines if the user can tab to a control.

 TabWidth (see page 388) Specifies the horizontal size, in pixels, of the tabs in the tab control.

 Visible (see page 388) Determines whether the component appears onscreen.

Legend

Method

Property

read only

IClassSelector Methods

IClassSelector Methods Description

 ClsChanged (see page 511) Called when selected in component palette component class was changed.

 ClsPalChanged (see page 512) Called when component palette was changed.

TPaletteTab Properties

TPaletteTab Class

TPaletteTab Class Description

 Align (see page 380) Determines how the control aligns within its container (parent control).

 Anchors (see page 380) Specifies how the control is anchored to its parent.

 BiDiMode (see page 381) Specifies the bi-directional mode for the control.

 Constraints (see page 381) Specifies the size constraints for the control.

 DragCursor (see page 381) Indicates the image used to represent the mouse pointer when the control is
being dragged.

 DragKind (see page 381) Specifies whether the control is being dragged normally or for docking.

 DragMode (see page 381) Determines how the control initiates drag-and-drop or drag-and-dock
operations.

 Enabled (see page 381) Controls whether the control responds to mouse, keyboard, and timer events.

 Flat (see page 382) Determines whether the button within component palettes has a 3D border
that provides a raised or lowered look.

 Font (see page 382) Controls the attributes of text written on or in the control.

 HintProps (see page 382) Provide properties to adjust hints processing.

 HotTrack (see page 382) Determines whether labels on the tab under the mouse are automatically
highlighted.

 Images (see page 382) Specifies the images drawn in tabs.

 MultiLine (see page 382) Determines whether the tabs can appear on more than one row.

 OnChange (see page 383) Occurs after a new tab is selected.

1.23 edcCompPal Namespace EControl Form Designer Pro Classes

379

1

 OnChanging (see page 383) Occurs immediately before a new tab is selected.

 OnContextPopup (see page 383) Occurs when the user right-clicks the control or otherwise invokes the popup
menu (such as using the keyboard).

 OnDragDrop (see page 383) Occurs when the user drops an object being dragged.

 OnDragOver (see page 383) Occurs when the user drags an object over a control.

 OnDrawTab (see page 383) Occurs when a tab is about to be drawn.

 OnEndDock (see page 384) Occurs when the dragging of an object ends, either by docking the object or by
canceling the dragging.

 OnEndDrag (see page 384) Occurs when the dragging of an object ends, either by dropping the object or
by canceling the dragging.

 OnEnter (see page 384) Occurs when a control receives the input focus.

 OnExit (see page 384) Occurs when the input focus shifts away from one control to another.

 OnGetImageIndex (see page 384) Occurs when a tab is about to display its associated image.

 OnMouseDown (see page 384) Occurs when the user presses a mouse button with the mouse pointer over a
control.

 OnMouseMove (see page 385) Occurs when the user moves the mouse pointer while the mouse pointer is
over a control

 OnMouseUp (see page 385) Occurs when the user releases a mouse button that was pressed with the
mouse pointer over a component.

 OnResize (see page 385) Occurs immediately after the control is resized.

 OnStartDrag (see page 385) Occurs when the user begins to drag the control or an object it contains by
left-clicking on the control and holding the mouse button down.

 OwnerDraw (see page 385) Specifies whether the tab control handles its own painting.

 PalettePanel (see page 386) Palette panel with components of the page, selected in palette tab.

 ParentBiDiMode (see page 386) Specifies whether the control uses its parent’s BiDiMode (see page 381).

 ParentFont (see page 386) Determines where a control looks for its font information.

 ParentShowHint (see page 386) Determines where a control looks to find out if its Help Hint should be shown.

 PopupMenu (see page 386) Identifies the pop-up menu associated with the control.

 RaggedRight (see page 386) Specifies whether rows of tabs stretch to fill the width of the control.

 ResetOnChange (see page 386) Specifies if current selected component class will be reset after changing tab
page

 ScrollOpposite (see page 387) Determines how the rows of tabs are scrolled in a muliline tab control.

 ShowHint (see page 387) Determines whether the control displays a Help Hint when the mouse pointer
rests momentarily on the control.

 Style (see page 387) Specifies the style of the tab control.

 TabHeight (see page 387) Specifies the height, in pixels, of the tabs in the tab control.

 TabIndex (see page 387) Identifies the selected tab on a tab control.

 TabOrder (see page 387) Indicates the position of the control in its parent's tab order.

 TabPosition (see page 388) Determines whether tabs appear at the top or bottom.

 Tabs (see page 388) Contains the list of text strings that label the tabs of the tab control.

 TabStop (see page 388) Determines if the user can tab to a control.

 TabWidth (see page 388) Specifies the horizontal size, in pixels, of the tabs in the tab control.

 Visible (see page 388) Determines whether the component appears onscreen.

1.23.1.2.1 TPaletteTab Properties

1.23.1.2.1.1 TPaletteTab.Align Property

Determines how the control aligns within its container (parent control).

property Align;

Description

This is inherited property.

See TControl.Align for details

1.23.1.2.1.2 TPaletteTab.Anchors Property

Specifies how the control is anchored to its parent.

property Anchors;

1.23 edcCompPal Namespace EControl Form Designer Pro Classes

380

1

Description

This is inherited property.

See TControl.Anchors for details

1.23.1.2.1.3 TPaletteTab.BiDiMode Property

Specifies the bi-directional mode for the control.

property BiDiMode;

Description

This is inherited property.

See TControl.BiDiMode for details

1.23.1.2.1.4 TPaletteTab.Constraints Property

Specifies the size constraints for the control.

property Constraints;

Description

This is inherited property.

See TControl.Constraints for details

1.23.1.2.1.5 TPaletteTab.DragCursor Property

Indicates the image used to represent the mouse pointer when the control is being dragged.

property DragCursor;

Description

This is inherited property.

See TControl.DragCursor for details

1.23.1.2.1.6 TPaletteTab.DragKind Property

Specifies whether the control is being dragged normally or for docking.

property DragKind;

Description

This is inherited property.

See TControl.DragKind for details

1.23.1.2.1.7 TPaletteTab.DragMode Property

Determines how the control initiates drag-and-drop or drag-and-dock operations.

property DragMode;

Description

This is inherited property.

See TControl.DragMode for details

1.23.1.2.1.8 TPaletteTab.Enabled Property

Controls whether the control responds to mouse, keyboard, and timer events.

1.23 edcCompPal Namespace EControl Form Designer Pro Classes

381

1

property Enabled;

Description

This is inherited property.

See TControl.Enabled for details

1.23.1.2.1.9 TPaletteTab.Flat Property

Determines whether the button within component palettes has a 3D border that provides a raised or lowered look.

property Flat: Boolean;

Description

Set Flat to True to remove the raised border when the button is unselected and the lowered border when the button is
clicked or selected.

1.23.1.2.1.10 TPaletteTab.Font Property

Controls the attributes of text written on or in the control.

property Font;

Description

This is inherited property.

See TControl.Font for details

1.23.1.2.1.11 TPaletteTab.HintProps Property

Provide properties to adjust hints processing.

property HintProps: TecHintHelper ;

1.23.1.2.1.12 TPaletteTab.HotTrack Property

Determines whether labels on the tab under the mouse are automatically highlighted.

property HotTrack;

Description

This is inherited property.

See TCustomTabControl.HotTrack for details

1.23.1.2.1.13 TPaletteTab.Images Property

Specifies the images drawn in tabs.

property Images;

Description

This is inherited property.

See TCustomTabControl.Images for details

1.23.1.2.1.14 TPaletteTab.MultiLine Property

Determines whether the tabs can appear on more than one row.

property MultiLine;

Description

This is inherited property.

1.23 edcCompPal Namespace EControl Form Designer Pro Classes

382

1

See TCustomTabControl.MultiLine for details

1.23.1.2.1.15 TPaletteTab.OnChange Property

Occurs after a new tab is selected.

property OnChange;

Description

This is inherited property.

See TCustomTabControl.OnChange for details

1.23.1.2.1.16 TPaletteTab.OnChanging Property

Occurs immediately before a new tab is selected.

property OnChanging;

Description

This is inherited property.

See TCustomTabControl.OnChanging for details

1.23.1.2.1.17 TPaletteTab.OnContextPopup Property

Occurs when the user right-clicks the control or otherwise invokes the popup menu (such as using the keyboard).

property OnContextPopup;

Description

This is inherited property.

See TControl.OnContextPopup for details

1.23.1.2.1.18 TPaletteTab.OnDragDrop Property

Occurs when the user drops an object being dragged.

property OnDragDrop;

Description

This is inherited property.

See TControl.OnDragDrop for details

1.23.1.2.1.19 TPaletteTab.OnDragOver Property

Occurs when the user drags an object over a control.

property OnDragOver;

Description

This is inherited property.

See TControl.OnDragOver for details

1.23.1.2.1.20 TPaletteTab.OnDrawTab Property

Occurs when a tab is about to be drawn.

property OnDrawTab;

1.23 edcCompPal Namespace EControl Form Designer Pro Classes

383

1

Description

This is inherited property.

See TCustomTabControl.OnDrawTab for details

1.23.1.2.1.21 TPaletteTab.OnEndDock Property

Occurs when the dragging of an object ends, either by docking the object or by canceling the dragging.

property OnEndDock;

Description

This is inherited property.

See TControl.OnEndDock for details

1.23.1.2.1.22 TPaletteTab.OnEndDrag Property

Occurs when the dragging of an object ends, either by dropping the object or by canceling the dragging.

property OnEndDrag;

Description

This is inherited property.

See TControl.OnEndDrag for details

1.23.1.2.1.23 TPaletteTab.OnEnter Property

Occurs when a control receives the input focus.

property OnEnter;

Description

This is inherited property.

See TWinControl.OnEnter for details

1.23.1.2.1.24 TPaletteTab.OnExit Property

Occurs when the input focus shifts away from one control to another.

property OnExit;

Description

This is inherited property.

See TWinControl.OnExit for details

1.23.1.2.1.25 TPaletteTab.OnGetImageIndex Property

Occurs when a tab is about to display its associated image.

property OnGetImageIndex;

Description

This is inherited property.

See TCustomTabControl.OnGetImageIndex for details

1.23.1.2.1.26 TPaletteTab.OnMouseDown Property

Occurs when the user presses a mouse button with the mouse pointer over a control.

1.23 edcCompPal Namespace EControl Form Designer Pro Classes

384

1

property OnMouseDown;

Description

This is inherited property.

See TControl.OnMouseDown for details

1.23.1.2.1.27 TPaletteTab.OnMouseMove Property

Occurs when the user moves the mouse pointer while the mouse pointer is over a control

property OnMouseMove;

Description

This is inherited property.

See TControl.OnMouseMove for details

1.23.1.2.1.28 TPaletteTab.OnMouseUp Property

Occurs when the user releases a mouse button that was pressed with the mouse pointer over a component.

property OnMouseUp;

Description

This is inherited property.

See TControl.OnMouseUp for details

1.23.1.2.1.29 TPaletteTab.OnResize Property

Occurs immediately after the control is resized.

property OnResize;

Description

This is inherited property.

See TControl.OnResize for details

1.23.1.2.1.30 TPaletteTab.OnStartDrag Property

Occurs when the user begins to drag the control or an object it contains by left-clicking on the control and holding the mouse
button down.

property OnStartDrag;

Description

This is inherited property.

See TControl.OnStartDrag for details

1.23.1.2.1.31 TPaletteTab.OwnerDraw Property

Specifies whether the tab control handles its own painting.

property OwnerDraw;

Description

This is inherited property.

See TCustomTabControl.OwnerDraw for details

1.23 edcCompPal Namespace EControl Form Designer Pro Classes

385

1

1.23.1.2.1.32 TPaletteTab.PalettePanel Property

Palette panel with components of the page, selected in palette tab.

property PalettePanel: TPalettePanel ;

1.23.1.2.1.33 TPaletteTab.ParentBiDiMode Property

Specifies whether the control uses its parent’s BiDiMode (see page 381).

property ParentBiDiMode;

Description

This is inherited property.

See TControl.ParentBiDiMode for details

1.23.1.2.1.34 TPaletteTab.ParentFont Property

Determines where a control looks for its font information.

property ParentFont;

Description

This is inherited property.

See TControl.ParentFont for details

1.23.1.2.1.35 TPaletteTab.ParentShowHint Property

Determines where a control looks to find out if its Help Hint should be shown.

property ParentShowHint;

Description

This is inherited property.

See TControl.ParentShowHint for details

1.23.1.2.1.36 TPaletteTab.PopupMenu Property

Identifies the pop-up menu associated with the control.

property PopupMenu;

Description

This is inherited property.

See TControl.PopupMenu for details

1.23.1.2.1.37 TPaletteTab.RaggedRight Property

Specifies whether rows of tabs stretch to fill the width of the control.

property RaggedRight;

Description

This is inherited property.

See TCustomTabControl.RaggedRight for details

1.23.1.2.1.38 TPaletteTab.ResetOnChange Property

Specifies if current selected component class will be reset after changing tab page

1.23 edcCompPal Namespace EControl Form Designer Pro Classes

386

1

property ResetOnChange: Boolean;

Description

1.23.1.2.1.39 TPaletteTab.ScrollOpposite Property

Determines how the rows of tabs are scrolled in a muliline tab control.

property ScrollOpposite;

Description

This is inherited property.

See TCustomTabControl.ScrollOpposite for details

1.23.1.2.1.40 TPaletteTab.ShowHint Property

Determines whether the control displays a Help Hint when the mouse pointer rests momentarily on the control.

property ShowHint;

Description

This is inherited property.

See TControl.ShowHint for details

1.23.1.2.1.41 TPaletteTab.Style Property

Specifies the style of the tab control.

property Style;

Description

This is inherited property.

See TCustomTabControl.Style for details

1.23.1.2.1.42 TPaletteTab.TabHeight Property

Specifies the height, in pixels, of the tabs in the tab control.

property TabHeight;

Description

This is inherited property.

See TCustomTabControl.TabHeight for details

1.23.1.2.1.43 TPaletteTab.TabIndex Property

Identifies the selected tab on a tab control.

property TabIndex;

Description

This is inherited property.

See TCustomTabControl.TabIndex for details

1.23.1.2.1.44 TPaletteTab.TabOrder Property

Indicates the position of the control in its parent's tab order.

1.23 edcCompPal Namespace EControl Form Designer Pro Classes

387

1

property TabOrder;

Description

This is inherited property.

See TWinControl.TabOrder for details

1.23.1.2.1.45 TPaletteTab.TabPosition Property

Determines whether tabs appear at the top or bottom.

property TabPosition;

Description

This is inherited property.

See TCustomTabControl.TabPosition for details

1.23.1.2.1.46 TPaletteTab.Tabs Property

Contains the list of text strings that label the tabs of the tab control.

property Tabs;

Description

This is inherited property.

See TCustomTabControl.Tabs for details

1.23.1.2.1.47 TPaletteTab.TabStop Property

Determines if the user can tab to a control.

property TabStop;

Description

This is inherited property.

See TWinControl.TabStop for details

1.23.1.2.1.48 TPaletteTab.TabWidth Property

Specifies the horizontal size, in pixels, of the tabs in the tab control.

property TabWidth;

Description

This is inherited property.

See TCustomTabControl.TabWidth for details

1.23.1.2.1.49 TPaletteTab.Visible Property

Determines whether the component appears onscreen.

property Visible;

Description

This is inherited property.

See TControl.Visible for details

1.24 edcDsnEvents Namespace EControl Form Designer Pro

388

1

1.24 edcDsnEvents Namespace

1.24.1 Classes

The following table lists classes in this documentation.

Classes

Class Description

TDesignerEvents (see page 389) TDesignerEvents provides access to events of active designer and design
environment

1.24.1.1 TDesignerEvents Class
TDesignerEvents provides access to events of active designer and design environment

Class Hierarchy

TDesignerEvents = class (TComponent, IDesignNotification, IClassSelector , IDesignIDEEvents ,
IUnknown);

File

edcDsnEvents

Description

TDesignerEvents implements set of useful IDE interfaces such as

• IDesignNotification

• IClassSelector (see page 511)

• IDesignIDEEvents (see page 512)

to provide corresponding behavior on IDE events.

Using this events one can take specific actions on many aspects of design mode.

Members

IClassSelector Methods

IClassSelector Methods Description

 ClsChanged (see page 511) Called when selected in component palette component class was changed.

 ClsPalChanged (see page 512) Called when component palette was changed.

IDesignIDEEvents Interface

IDesignIDEEvents Interface Description

 ActiveDsnChanged (see page 512) Called when active designer was changed.

 BeforeRegisterComponent (see page 512) Called before registering component class.

 GetGlobalComponents (see page 512) Called to get global components.

1.24 edcDsnEvents Namespace EControl Form Designer Pro Classes

389

1

 GetWorkspaceOrigin (see page 513) Called to get workspace origin.

 KeyDown (see page 513) Called on key down in active designer.

 KeyPress (see page 513) Called on key press in active designer.

TDesignerEvents Events

TDesignerEvents Class

TDesignerEvents Class Description

 OnActiveDsnChanged (see page 391) Occurs when DsnManager.ActiveDesigner property is changed

 OnClassChanged (see page 391) Occurs when the current selected component class in the component palette
is changed.

 OnDesignerClosed (see page 391) Occurs when designer is deactivated

 OnDesignerInitialized (see page 391) Occurs when designer is initializing.

 OnDsnKeyDown (see page 392) Occurs when user presses any key in active designer.

 OnGetGlobalComponents (see page 392) Occurs when designer requests global components.

 OnGetWorkspaceOrigin (see page 392) Occurs when designer requests workspace origin.

 OnItemDeleted (see page 392) Occurs when object is deleted in the active designer

 OnItemInserted (see page 393) Occurs when object is inserted in the active designer

 OnItemsModified (see page 393) Occurs when object is modified in the active designer

 OnKeyPress (see page 393) Occurs when user presses any key in active designer.

 OnPaletteChanged (see page 393) Occurs when component palette changed, i.e. registered components is being
changed.

 OnRegisterComponent (see page 394) Occurs before component will be registered.

 OnSelectionChanged (see page 394) Occurs when current selection in the active designer is changed.

Legend

Method

Event

TDesignerEvents Events

TDesignerEvents Class

TDesignerEvents Class Description

 OnActiveDsnChanged (see page 391) Occurs when DsnManager.ActiveDesigner property is changed

 OnClassChanged (see page 391) Occurs when the current selected component class in the component palette
is changed.

 OnDesignerClosed (see page 391) Occurs when designer is deactivated

 OnDesignerInitialized (see page 391) Occurs when designer is initializing.

 OnDsnKeyDown (see page 392) Occurs when user presses any key in active designer.

 OnGetGlobalComponents (see page 392) Occurs when designer requests global components.

 OnGetWorkspaceOrigin (see page 392) Occurs when designer requests workspace origin.

 OnItemDeleted (see page 392) Occurs when object is deleted in the active designer

 OnItemInserted (see page 393) Occurs when object is inserted in the active designer

 OnItemsModified (see page 393) Occurs when object is modified in the active designer

 OnKeyPress (see page 393) Occurs when user presses any key in active designer.

 OnPaletteChanged (see page 393) Occurs when component palette changed, i.e. registered components is being
changed.

 OnRegisterComponent (see page 394) Occurs before component will be registered.

 OnSelectionChanged (see page 394) Occurs when current selection in the active designer is changed.

IClassSelector Methods

IClassSelector Methods Description

 ClsChanged (see page 511) Called when selected in component palette component class was changed.

 ClsPalChanged (see page 512) Called when component palette was changed.

IDesignIDEEvents Interface

IDesignIDEEvents Interface Description

 ActiveDsnChanged (see page 512) Called when active designer was changed.

 BeforeRegisterComponent (see page 512) Called before registering component class.

 GetGlobalComponents (see page 512) Called to get global components.

 GetWorkspaceOrigin (see page 513) Called to get workspace origin.

1.24 edcDsnEvents Namespace EControl Form Designer Pro Classes

390

1

 KeyDown (see page 513) Called on key down in active designer.

 KeyPress (see page 513) Called on key press in active designer.

1.24.1.1.1 TDesignerEvents Events

1.24.1.1.1.1 TDesignerEvents.OnActiveDsnChanged Event

Occurs when DsnManager.ActiveDesigner property is changed

property OnActiveDsnChanged: TNotifyEvent;

Description

Write an OnActiveDsnChanged event handler to catch when the active designer is changed.

Sender is the TDesignerEvents (see page 389) himself.

1.24.1.1.1.2 TDesignerEvents.OnClassChanged Event

Occurs when the current selected component class in the component palette is changed.

property OnClassChanged: TNotifyEvent;

Description

Write an OnClassChanged event handler to take some specific action when the current selected component class in the
component palette is changed.

Sender is the TDesignerEvents (see page 389) himself.

1.24.1.1.1.3 TDesignerEvents.OnDesignerClosed Event

Occurs when designer is deactivated

property OnDesignerClosed: TDesignerEvent ;

Description

Write an OnDesignerClosed event handler to catch when the active designer is about to closed.

OnActiveDsnChanged (see page 391) fires before this event.

Sender is the TDesignerEvents (see page 389) himself.

ADesigner is the corresponding designer.

1.24.1.1.1.4 TDesignerEvents.OnDesignerInitialized Event

Occurs when designer is initializing.

property OnDesignerInitialized: TDesignerEvent ;

Description

Write an OnDesignerInitialized event handler to catch when the designer is about to initialized.

Sender is the TDesignerEvents (see page 389) himself.

1.24 edcDsnEvents Namespace EControl Form Designer Pro Classes

391

1

ADesigner is the corresponding designer.

1.24.1.1.1.5 TDesignerEvents.OnDsnKeyDown Event

Occurs when user presses any key in active designer.

property OnDsnKeyDown: TDsnKeyDownEvent ;

Description

Write an OnDsnKeyDown event handler to take specific action when user presses any key in active designer.

Sender is the corresponding designer.

The Key parameter is the key on the keyboard. For non-alphanumeric keys, use virtual key codes to determine the key
pressed. For more information, see Virtual Key codes.

The Shift parameter indicates whether the Shift, Alt, or Ctrl keys are combined with the keystroke.

1.24.1.1.1.6 TDesignerEvents.OnGetGlobalComponents Event

Occurs when designer requests global components.

property OnGetGlobalComponents: TGetGlobalsEvent ;

Description

Write an OnGetGlobalComponents event handler to fill list of components.

Root is the Root-component is being designed.

List is the list for filling with components

1.24.1.1.1.7 TDesignerEvents.OnGetWorkspaceOrigin Event

Occurs when designer requests workspace origin.

property OnGetWorkspaceOrigin: TOnGetPoint ;

Description

Write an OnGetWorkspaceOrigin event handler to provides information for DesignWindows positioning.

Sender is the TDesignerEvents (see page 389) himself.

P is the topleft point.

1.24.1.1.1.8 TDesignerEvents.OnItemDeleted Event

Occurs when object is deleted in the active designer

property OnItemDeleted: TDsnItemEvent ;

Description

Write an OnItemDeleted event handler to take specific action when item is being deleted.

1.24 edcDsnEvents Namespace EControl Form Designer Pro Classes

392

1

Sender is the TDesignerEvents (see page 389) himself.

AItem is the item being deleted

1.24.1.1.1.9 TDesignerEvents.OnItemInserted Event

Occurs when object is inserted in the active designer

property OnItemInserted: TDsnItemEvent ;

Description

Write an OnItemInserted event handler to take specific action when item is being inserted.

Sender is the TDesignerEvents (see page 389) himself.

AItem is the item being inserted

1.24.1.1.1.10 TDesignerEvents.OnItemsModified Event

Occurs when object is modified in the active designer

property OnItemsModified: TDesignerEvent ;

Description

Write an OnItemsModified event handler to take specific action when item is being modified.

Sender is the TDesignerEvents (see page 389) himself.

AItem is the item being modified

1.24.1.1.1.11 TDesignerEvents.OnKeyPress Event

Occurs when user presses any key in active designer.

property OnKeyPress: TDsnKeyPressEvent ;

Description

Write an OnKeyPress event handler to make something happen as a result of a single character key press..

Sender is the corresponding designer.

The Key parameter in the OnKeyPress event handler is of type Char.

This is similar to standard TWinControl.OnKeyPress event. See it for details.

1.24.1.1.1.12 TDesignerEvents.OnPaletteChanged Event

Occurs when component palette changed, i.e. registered components is being changed.

property OnPaletteChanged: TNotifyEvent;

1.24 edcDsnEvents Namespace EControl Form Designer Pro Classes

393

1

Description

Write an OnPaletteChanged event handler to take some specific action when the component palette is changed.

Sender is the TDesignerEvents (see page 389) himself.

1.24.1.1.1.13 TDesignerEvents.OnRegisterComponent Event

Occurs before component will be registered.

property OnRegisterComponent: TRegisterComponentEvent ;

Description

Using this event you may filter components during loading packages.

The AClass parameter is the component class is being registered currently.

The Page parameter is the name of palette page component is being installed to. Change this property to customize output.

The Accept parameter determines whether a component is allowed to be registered.

1.24.1.1.1.14 TDesignerEvents.OnSelectionChanged Event

Occurs when current selection in the active designer is changed.

property OnSelectionChanged: TNotifyEvent;

Description

Write an OnSelectionChanged event handler to take some specific action when current selection in the active designer is
changed.

Sender is the TDesignerEvents (see page 389) himself.

1.24.2 Types

The following table lists types in this documentation.

Types

Type Description

TDesignerEvent (see page 394) Type of event handler for designer related events.

TDsnItemEvent (see page 395) Type of event handler for designed item related events.

TDsnKeyDownEvent (see page 395) See TDesignerEvents.OnDsnKeyDown Event (see page 392)

TDsnKeyPressEvent (see page 395) See TDesignerEvents.OnKeyPress Event (see page 393)

TGetGlobalsEvent (see page 395) See TDesignerEvents.OnGetGlobalComponents Event (see page 392)

TOnGetPoint (see page 395) See TDesignerEvents.OnGetWorkspaceOrigin Event (see page 392)

TRegisterComponentEvent (see page 396) See TDesignerEvents.OnRegisterComponent Event (see page 394)

1.24.2.1 edcDsnEvents.TDesignerEvent Type
TDesignerEvent = procedure (Sender: TObject; ADesigner: IUnknown) of object ;

File

edcDsnEvents

1.24 edcDsnEvents Namespace EControl Form Designer Pro Types

394

1

Description

Type of event handler for designer related events.

1.24.2.2 edcDsnEvents.TDsnItemEvent Type
TDsnItemEvent = procedure (Sender, AItem: TObject) of object ;

File

edcDsnEvents

Description

Type of event handler for designed item related events.

1.24.2.3 edcDsnEvents.TDsnKeyDownEvent Type
TDsnKeyDownEvent = procedure (Sender: IDesigner; var Key: Word; Shift: TShiftState) of
object ;

File

edcDsnEvents

Description

See TDesignerEvents.OnDsnKeyDown Event (see page 392)

1.24.2.4 edcDsnEvents.TDsnKeyPressEvent Type
TDsnKeyPressEvent = procedure (Sender: IDesigner; var Key: Char) of object ;

File

edcDsnEvents

Description

See TDesignerEvents.OnKeyPress Event (see page 393)

1.24.2.5 edcDsnEvents.TGetGlobalsEvent Type
TGetGlobalsEvent = function (Root: TComponent; const List: TList): Boolean of object ;

File

edcDsnEvents

Description

See TDesignerEvents.OnGetGlobalComponents Event (see page 392)

1.24.2.6 edcDsnEvents.TOnGetPoint Type
TOnGetPoint = procedure (Sender: TObject; var P: TPoint) of object ;

File

edcDsnEvents

1.24 edcDsnEvents Namespace EControl Form Designer Pro Types

395

1

Description

See TDesignerEvents.OnGetWorkspaceOrigin Event (see page 392)

1.24.2.7 edcDsnEvents.TRegisterComponentEvent Type
TRegisterComponentEvent = procedure (ComponentClass: TComponentClass; var Page: string ; var
Accept: Boolean) of object ;

File

edcDsnEvents

Description

See TDesignerEvents.OnRegisterComponent Event (see page 394)

1.25 edcPropCtrl Namespace

1.25.1 Classes

The following table lists classes in this documentation.

Classes

Class Description

TCategoryNode (see page 396) Determines "Category node" in the TPropertyNodes (see page 442)
collection

TCustomInspectorList (see page 399) TCustomInspectorList is the base class for TInspectorList (see page 413).

TInspectorList (see page 413) TInspectorList is the descendant of TCustomInspectorList (see page 399)
directly using in the Object Inspector

TPropertyNode (see page 439) Represents single node associated with property

TPropertyNodes (see page 442) TPropertyNodes represents collection of property

TzDesignerSelections (see page 445) TzDesignerSelections is the same to TDesignerSelectionList class.

1.25.1.1 TCategoryNode Class
Determines "Category node" in the TPropertyNodes (see page 442) collection

Class Hierarchy

TCategoryNode = class (TPropertyItem);

File

edcPropCtrl

Description

TCategoryNode used to collect properties by categories in the Object Inspector

1.25 edcPropCtrl Namespace EControl Form Designer Pro Classes

396

1

Members

TPropertyItem Methods

TPropertyItem Methods Description

 Add (see page 62) Adds new property item.

 Changed (see page 62) Called when property item was changed.

 Clear (see page 62) Deletes all items from the node.

 Create (see page 62) Creates and initializes a TPropertyItem instance.

 Delete (see page 63) Deletes Item at index

 Destroy (see page 63) Destroys an instance of TPropertyItem.

 Expandable (see page 63) Specifies whether property item can be expanded.

 GetName (see page 63) Returns name of the item. May be overridden in derived class.

 HasValue (see page 63) Specifies whether property item has value. For example, category item does
not have value.

 IndexOf (see page 63) Returns index of child item. If Item is not a child returns -1.

 Insert (see page 63) Adds a property item to the Items (see page 64) array at the position
specified by Index.

 IsEqual (see page 63) Returns True if property items are equal.

 IsRoot (see page 63) Returns True if the item is root (see page 64) item.

 Move (see page 63) Changes the position of an item in the Items (see page 64) array.

 Root (see page 64) Specifies Root item.

TCategoryNode Class

TCategoryNode Class Description

 Clear (see page 398) Does nothing in the TCategoryNode

 Create (see page 398) Creates and initializes a TCategoryNode instance.

 Expandable (see page 398) Returns True because TCategoryNode is an expandable node

 GetName (see page 399) Returns Name of the underlying category passed when TCategoryNode object
was created

 HasValue (see page 399) Returns False, because category item occupies both name and value cells.

TPropertyItem Properties

TPropertyItem Properties Description

 Count (see page 64) Determines count of child items.

 DisplayName (see page 64) Specifies name displayed on screen

 Expanded (see page 64) Specifies if node is expanded or not.

 Items (see page 64) Provides indexed access to the child items.

 Level (see page 64) Indicates the level of indentation of a item within the property list control..

 Name (see page 64) Specifies the name of the property node.

 Parent (see page 65) Indicates the parent property of the node.

 PathName (see page 65) Returns path of the item. Path is combined from the item name and all parent
names.

 Visible (see page 65) Specifies whether item is selected.

Legend

Method

protected

virtual

Property

read only

TPropertyItem Methods

TPropertyItem Methods Description

 Add (see page 62) Adds new property item.

 Changed (see page 62) Called when property item was changed.

 Clear (see page 62) Deletes all items from the node.

 Create (see page 62) Creates and initializes a TPropertyItem instance.

 Delete (see page 63) Deletes Item at index

 Destroy (see page 63) Destroys an instance of TPropertyItem.

 Expandable (see page 63) Specifies whether property item can be expanded.

1.25 edcPropCtrl Namespace EControl Form Designer Pro Classes

397

1

 GetName (see page 63) Returns name of the item. May be overridden in derived class.

 HasValue (see page 63) Specifies whether property item has value. For example, category item does
not have value.

 IndexOf (see page 63) Returns index of child item. If Item is not a child returns -1.

 Insert (see page 63) Adds a property item to the Items (see page 64) array at the position
specified by Index.

 IsEqual (see page 63) Returns True if property items are equal.

 IsRoot (see page 63) Returns True if the item is root (see page 64) item.

 Move (see page 63) Changes the position of an item in the Items (see page 64) array.

 Root (see page 64) Specifies Root item.

TCategoryNode Class

TCategoryNode Class Description

 Clear (see page 398) Does nothing in the TCategoryNode

 Create (see page 398) Creates and initializes a TCategoryNode instance.

 Expandable (see page 398) Returns True because TCategoryNode is an expandable node

 GetName (see page 399) Returns Name of the underlying category passed when TCategoryNode object
was created

 HasValue (see page 399) Returns False, because category item occupies both name and value cells.

TPropertyItem Properties

TPropertyItem Properties Description

 Count (see page 64) Determines count of child items.

 DisplayName (see page 64) Specifies name displayed on screen

 Expanded (see page 64) Specifies if node is expanded or not.

 Items (see page 64) Provides indexed access to the child items.

 Level (see page 64) Indicates the level of indentation of a item within the property list control..

 Name (see page 64) Specifies the name of the property node.

 Parent (see page 65) Indicates the parent property of the node.

 PathName (see page 65) Returns path of the item. Path is combined from the item name and all parent
names.

 Visible (see page 65) Specifies whether item is selected.

1.25.1.1.1 TCategoryNode Methods

1.25.1.1.1.1 TCategoryNode.Clear Method

Does nothing in the TCategoryNode (see page 396)

procedure Clear; override ;

Description

1.25.1.1.1.2 TCategoryNode.Create Constructor

Creates and initializes a TCategoryNode instance.

constructor Create(Cat: TPropertyCategory; const ADispName: WideString);

Description

Use Create to programmatically instantiate a TCategoryNode object.

1.25.1.1.1.3 TCategoryNode.Expandable Method

Returns True because TCategoryNode (see page 396) is an expandable node

function Expandable: Boolean; override ;

Description

1.25 edcPropCtrl Namespace EControl Form Designer Pro Classes

398

1

1.25.1.1.1.4 TCategoryNode.GetName Method

Returns Name of the underlying category passed when TCategoryNode (see page 396) object was created

function GetName: string ; override ;

Description

1.25.1.1.1.5 TCategoryNode.HasValue Method

Returns False, because category item occupies both name and value cells.

function HasValue: Boolean; override ;

1.25.1.2 TCustomInspectorList Class
TCustomInspectorList is the base class for TInspectorList (see page 413).

Class Hierarchy

TCustomInspectorList = class (TCustomPropList , IDesignNotification);

File

edcPropCtrl

Description

TCustomInspectorList represents dual list control with properties of the selected object(s) in the active designer. Any of
these properties are accessible for editing.

It declares and implements all the properties and methods for these purposes.

Members

TDualList Methods

TDualList Methods Description

 Create (see page 54) Creates and initializes an instance of TDualList (see page 52).

 CreateEditor (see page 54) Creates in-place editor. Must be overridden in derived classes.

 CreateHandle (see page 54) Creates underlying screen object.

 Destroy (see page 54) Destroys an instance of TDualList (see page 52).

 DoMouseWheel (see page 54) Processes mouse wheel motion.

 DrawCell (see page 55) Draws a specified cell.

 DrawStr (see page 55) Draws string in the specified rectangle

 DrawStrW (see page 55) Draws Unicode string in the specified rectangle

 ExecuteAction (see page 55) Invokes an action with the component as its target.

 FocusEditor (see page 56) Moves focus from list control to child in-place editor.

 IsHeaderItem (see page 56) Determines if specified item is header.

 ItemRect (see page 56) Returns the rectangle that surrounds the item specified in the Item parameter.

 KeyDown (see page 56) Respond to key press events.

 MouseDown (see page 56) Generates an OnMouseUp event.

 MouseMove (see page 56) Respond to mouse moving over control area..

 MouseToItem (see page 57) Returns item index depending on coordinates specified in Y parameter.

 MouseUp (see page 57) Generates an OnMouseUp event.

 Paint (see page 57) Renders the image of a dual list.

 SetItemIndex (see page 57) Set method of ItemIndex (see page 59) property.

 UpdateAction (see page 57) Updates an action component to reflect the current state of the component.

 UpdateEditor (see page 58) Updates current Editor (see page 59).

1.25 edcPropCtrl Namespace EControl Form Designer Pro Classes

399

1

TCustomPropList Class

TCustomPropList Class Description

 Create (see page 49) Creates and initializes an instance of TDualList.

 CreateItems (see page 49) Creates root item.

 Current (see page 49) Returns current selected item. If there is no item selected Current returns nil.

 Destroy (see page 49) Destroys an instance of TDualList.

 DoPrepareCanvas (see page 50) Prepares Canvas (see page 58) before painting cell.

 DrawCell (see page 50) Draws dual list cell.

 DrawPropCell (see page 50) Draws cell content.

 GutterWidth (see page 50) Returns gutter width for specified row in list.

 IsHeaderItem (see page 50) Determines if specified item is header.

 MouseDown (see page 50) Generates an OnMouseUp event.

TCustomInspectorList Class

TCustomInspectorList Class Description

 AcceptProperty (see page 404) Called before adding property to the list.

 CopyName (see page 404) Copies selected property name to the clipboard.

 CopyValue (see page 405) Copies text of the property editor.

 Create (see page 405)

 CreateEditor (see page 405) Creates TExtEdit inplace object for the current property

 CreateItems (see page 405) Creates root item.

 CutValue (see page 405) Cuts text of the property editor.

 DoPrepareCanvas (see page 405) Prepares Canvas before painting cell.

 DrawPropCell (see page 406) Draws cell content.

 FocusEditor (see page 406) Moves focus from list control to child in-place editor.

 GetDesigner (see page 406) Indicates if item is header one

 IsPropReadOnly (see page 406) Determines whether property editor does not allow changing property value.

 KeyDown (see page 406) Responds to key down when TInspectorList (see page 413) has focus.

 Loaded (see page 406) Updates TCustomInspectorList after loading from stream

 MouseDown (see page 406) Updates TCustomInspectorList depending on mouse coordinates

 PasteValue (see page 406) Pastes text to the property editor.

 PropValueChanged (see page 407) Updates editor and invalidates TCustomInspectorList

 SaveValue (see page 407) Saves currently edit value.

 SetItemIndex (see page 407) Change active editor

 UpdateEditor (see page 407) Updates editor

 UpdateList (see page 407) Updates list of properties

TDualList Properties

TDualList Properties Description

 BorderStyle (see page 58) Determines the style of the line drawn around the perimeter of the panel
control.

 Canvas (see page 58) Provides access to a drawing surface that represents the TDualList (see
page 52).

 Editor (see page 59) In-place editor

 EditorVisible (see page 59) Specifies whether editor is visible in the selected row

 ItemCount (see page 59) Specifies the number of items in the DualList

 ItemHeight (see page 59) Specifies the height, in pixels, of the items in the dual list

 ItemIndex (see page 59) Specifies the index of the selected item.

 OnClick (see page 60) Occurs when the user clicks the dual list.

 ShowGrid (see page 60) Determines whether lines are drawn separating items in the list

 ShowSelFrame (see page 60) Specifies whether frame rectangle should be painted around selected item.

 SplitPos (see page 60) Specifies width of the first column in pixels (or splitter position)

 TabOrder (see page 60) Indicates the position of the control in its parent's tab order.

 TabStop (see page 60) Add a summary here...

 TopItem (see page 60) Specifies the topmost row that appears in the dual list.

TCustomPropList Class

TCustomPropList Class Description

 cGutter (see page 50) Specifies color of gutter background.

1.25 edcPropCtrl Namespace EControl Form Designer Pro Classes

400

1

 cGutterBnd (see page 51) Specifies color of border which separates gutter from the rest of control.

 cHighlight (see page 51) Specifies background color of selected item.

 cHighlightText (see page 51) Specifies font color of selected item.

 FoldingIcon (see page 51) Holds folding icon images.

 Items (see page 51) Reference to root item. Particular root item class may be different in derived
classes. Items are accessible via root item.

 LeftMargin (see page 51) Specifies left margin.

 LevelWidth (see page 51) Specifies offset for each level of items.

 ShowGutter (see page 51) Specifies whether gutter is visible.

TCustomInspectorList Class

TCustomInspectorList Class Description

 ByCategories (see page 407) Specifies arrangement of properties list. If ByCategories is True, all properties
are arranged by categories

 Categories (see page 408) Determines list of the current available categories for the properties of
selected object(s).
This list does not include empty categories

 cCategories (see page 408) Specifies font color for category items

 cDefValues (see page 408) Specifies font color property values which differ from default.

 cEditBackGround (see page 408) Specifies font color for the in-place editors

 cEditValue (see page 408) Specifies font color for the text in the in-place editor

 Component (see page 408) Specifies editable component

 cPropName (see page 409) Specifies font color for the Property name

 cPropReadOnly (see page 409) Specifies font color for the read-only property

 cPropReference (see page 409) Specifies font color for the reference property

 cPropValue (see page 409) Specifies font color for the property value

 cSubProperty (see page 409) Specifies font color for the property, that belongs to referenced object

 DefPropNameDraw (see page 409) Specifies whether custom property name drawing defined in property editors is
used.

 Designer (see page 409) Specifies current active designer

 EditedObject (see page 410) Specifies editable TPersistent object

 ExpandRefs (see page 410) Specifies whether reference properties may be expanded

 HiddenCount (see page 410) Indicates number of properties those are not visible

 HintProps (see page 410) Provide properties to adjust hints processing.

 IncludeRefs (see page 410) Specifies whether reference properties should be displayed in the inspector list.

 MarkNonDefault (see page 410) Specifies if properties those values differ from default will be marked with bold

 PopupListAlign (see page 411) Specifies alignment of popup list box relative to edit box.

 ReadOnly (see page 411) Specifies whether properties may be edited.

 SearchPropKey (see page 411) Property name search key.

 SearchPropMode (see page 411) Specifies whether inspector list is in property name search mode. This mode is
turned on/off when user presses TAB key.

 Selected (see page 411) Specifies number of selected object in the inspector list.

 SelectedCount (see page 411) Number of selected objects in active designer. Use property Selected (see
page 411)[] to get these objects.

 ShowReadOnly (see page 411) Specifies whether read-only properties will be displayed in the inspector list

 TypeKinds (see page 411) Specifies types of properties those will be displayed in the inspector list

 TypeSelector (see page 412) Specifies kind of inspector list. Property TypeKinds (see page 411) is used
only when TypeSelector = tsCustom.

TCustomPropList Events

TCustomPropList Class

TCustomPropList Class Description

 OnDrawPropCell (see page 51) Draws cell content.

 OnGetCellParams (see page 52) Occurs to adjust cell properties.

TCustomInspectorList Class

TCustomInspectorList Class Description

 OnAcceptCategory (see page 412) Occurs before adding category to the list.

 OnAcceptProperty (see page 412) Occurs before adding property to the list.

 OnChangeSelection (see page 412) Occurs when changing selected object in inspector list.

 OnGetPropReadOnly (see page 413) Occurs to determine whether property PropEdit is read-only.

1.25 edcPropCtrl Namespace EControl Form Designer Pro Classes

401

1

 OnPropListUpdated (see page 413) Occurs after list of properties has been updated

 OnPropValueChanged (see page 413) Occurs when property value has been changed.

 OnSetPropValueA (see page 413) Occurs before changing property value (ANSI version).

 OnSetPropValueW (see page 413) Occurs before changing property value (Unicode version).

Legend

Constructor

virtual

protected

Property

read only

Event

TCustomPropList Events

TCustomPropList Class

TCustomPropList Class Description

 OnDrawPropCell (see page 51) Draws cell content.

 OnGetCellParams (see page 52) Occurs to adjust cell properties.

TCustomInspectorList Class

TCustomInspectorList Class Description

 OnAcceptCategory (see page 412) Occurs before adding category to the list.

 OnAcceptProperty (see page 412) Occurs before adding property to the list.

 OnChangeSelection (see page 412) Occurs when changing selected object in inspector list.

 OnGetPropReadOnly (see page 413) Occurs to determine whether property PropEdit is read-only.

 OnPropListUpdated (see page 413) Occurs after list of properties has been updated

 OnPropValueChanged (see page 413) Occurs when property value has been changed.

 OnSetPropValueA (see page 413) Occurs before changing property value (ANSI version).

 OnSetPropValueW (see page 413) Occurs before changing property value (Unicode version).

TDualList Methods

TDualList Methods Description

 Create (see page 54) Creates and initializes an instance of TDualList (see page 52).

 CreateEditor (see page 54) Creates in-place editor. Must be overridden in derived classes.

 CreateHandle (see page 54) Creates underlying screen object.

 Destroy (see page 54) Destroys an instance of TDualList (see page 52).

 DoMouseWheel (see page 54) Processes mouse wheel motion.

 DrawCell (see page 55) Draws a specified cell.

 DrawStr (see page 55) Draws string in the specified rectangle

 DrawStrW (see page 55) Draws Unicode string in the specified rectangle

 ExecuteAction (see page 55) Invokes an action with the component as its target.

 FocusEditor (see page 56) Moves focus from list control to child in-place editor.

 IsHeaderItem (see page 56) Determines if specified item is header.

 ItemRect (see page 56) Returns the rectangle that surrounds the item specified in the Item parameter.

 KeyDown (see page 56) Respond to key press events.

 MouseDown (see page 56) Generates an OnMouseUp event.

 MouseMove (see page 56) Respond to mouse moving over control area..

 MouseToItem (see page 57) Returns item index depending on coordinates specified in Y parameter.

 MouseUp (see page 57) Generates an OnMouseUp event.

 Paint (see page 57) Renders the image of a dual list.

 SetItemIndex (see page 57) Set method of ItemIndex (see page 59) property.

 UpdateAction (see page 57) Updates an action component to reflect the current state of the component.

 UpdateEditor (see page 58) Updates current Editor (see page 59).

TCustomPropList Class

TCustomPropList Class Description

 Create (see page 49) Creates and initializes an instance of TDualList.

 CreateItems (see page 49) Creates root item.

 Current (see page 49) Returns current selected item. If there is no item selected Current returns nil.

1.25 edcPropCtrl Namespace EControl Form Designer Pro Classes

402

1

 Destroy (see page 49) Destroys an instance of TDualList.

 DoPrepareCanvas (see page 50) Prepares Canvas (see page 58) before painting cell.

 DrawCell (see page 50) Draws dual list cell.

 DrawPropCell (see page 50) Draws cell content.

 GutterWidth (see page 50) Returns gutter width for specified row in list.

 IsHeaderItem (see page 50) Determines if specified item is header.

 MouseDown (see page 50) Generates an OnMouseUp event.

TCustomInspectorList Class

TCustomInspectorList Class Description

 AcceptProperty (see page 404) Called before adding property to the list.

 CopyName (see page 404) Copies selected property name to the clipboard.

 CopyValue (see page 405) Copies text of the property editor.

 Create (see page 405)

 CreateEditor (see page 405) Creates TExtEdit inplace object for the current property

 CreateItems (see page 405) Creates root item.

 CutValue (see page 405) Cuts text of the property editor.

 DoPrepareCanvas (see page 405) Prepares Canvas before painting cell.

 DrawPropCell (see page 406) Draws cell content.

 FocusEditor (see page 406) Moves focus from list control to child in-place editor.

 GetDesigner (see page 406) Indicates if item is header one

 IsPropReadOnly (see page 406) Determines whether property editor does not allow changing property value.

 KeyDown (see page 406) Responds to key down when TInspectorList (see page 413) has focus.

 Loaded (see page 406) Updates TCustomInspectorList after loading from stream

 MouseDown (see page 406) Updates TCustomInspectorList depending on mouse coordinates

 PasteValue (see page 406) Pastes text to the property editor.

 PropValueChanged (see page 407) Updates editor and invalidates TCustomInspectorList

 SaveValue (see page 407) Saves currently edit value.

 SetItemIndex (see page 407) Change active editor

 UpdateEditor (see page 407) Updates editor

 UpdateList (see page 407) Updates list of properties

TDualList Properties

TDualList Properties Description

 BorderStyle (see page 58) Determines the style of the line drawn around the perimeter of the panel
control.

 Canvas (see page 58) Provides access to a drawing surface that represents the TDualList (see
page 52).

 Editor (see page 59) In-place editor

 EditorVisible (see page 59) Specifies whether editor is visible in the selected row

 ItemCount (see page 59) Specifies the number of items in the DualList

 ItemHeight (see page 59) Specifies the height, in pixels, of the items in the dual list

 ItemIndex (see page 59) Specifies the index of the selected item.

 OnClick (see page 60) Occurs when the user clicks the dual list.

 ShowGrid (see page 60) Determines whether lines are drawn separating items in the list

 ShowSelFrame (see page 60) Specifies whether frame rectangle should be painted around selected item.

 SplitPos (see page 60) Specifies width of the first column in pixels (or splitter position)

 TabOrder (see page 60) Indicates the position of the control in its parent's tab order.

 TabStop (see page 60) Add a summary here...

 TopItem (see page 60) Specifies the topmost row that appears in the dual list.

TCustomPropList Class

TCustomPropList Class Description

 cGutter (see page 50) Specifies color of gutter background.

 cGutterBnd (see page 51) Specifies color of border which separates gutter from the rest of control.

 cHighlight (see page 51) Specifies background color of selected item.

 cHighlightText (see page 51) Specifies font color of selected item.

 FoldingIcon (see page 51) Holds folding icon images.

 Items (see page 51) Reference to root item. Particular root item class may be different in derived
classes. Items are accessible via root item.

1.25 edcPropCtrl Namespace EControl Form Designer Pro Classes

403

1

 LeftMargin (see page 51) Specifies left margin.

 LevelWidth (see page 51) Specifies offset for each level of items.

 ShowGutter (see page 51) Specifies whether gutter is visible.

TCustomInspectorList Class

TCustomInspectorList Class Description

 ByCategories (see page 407) Specifies arrangement of properties list. If ByCategories is True, all properties
are arranged by categories

 Categories (see page 408) Determines list of the current available categories for the properties of
selected object(s).
This list does not include empty categories

 cCategories (see page 408) Specifies font color for category items

 cDefValues (see page 408) Specifies font color property values which differ from default.

 cEditBackGround (see page 408) Specifies font color for the in-place editors

 cEditValue (see page 408) Specifies font color for the text in the in-place editor

 Component (see page 408) Specifies editable component

 cPropName (see page 409) Specifies font color for the Property name

 cPropReadOnly (see page 409) Specifies font color for the read-only property

 cPropReference (see page 409) Specifies font color for the reference property

 cPropValue (see page 409) Specifies font color for the property value

 cSubProperty (see page 409) Specifies font color for the property, that belongs to referenced object

 DefPropNameDraw (see page 409) Specifies whether custom property name drawing defined in property editors is
used.

 Designer (see page 409) Specifies current active designer

 EditedObject (see page 410) Specifies editable TPersistent object

 ExpandRefs (see page 410) Specifies whether reference properties may be expanded

 HiddenCount (see page 410) Indicates number of properties those are not visible

 HintProps (see page 410) Provide properties to adjust hints processing.

 IncludeRefs (see page 410) Specifies whether reference properties should be displayed in the inspector list.

 MarkNonDefault (see page 410) Specifies if properties those values differ from default will be marked with bold

 PopupListAlign (see page 411) Specifies alignment of popup list box relative to edit box.

 ReadOnly (see page 411) Specifies whether properties may be edited.

 SearchPropKey (see page 411) Property name search key.

 SearchPropMode (see page 411) Specifies whether inspector list is in property name search mode. This mode is
turned on/off when user presses TAB key.

 Selected (see page 411) Specifies number of selected object in the inspector list.

 SelectedCount (see page 411) Number of selected objects in active designer. Use property Selected (see
page 411)[] to get these objects.

 ShowReadOnly (see page 411) Specifies whether read-only properties will be displayed in the inspector list

 TypeKinds (see page 411) Specifies types of properties those will be displayed in the inspector list

 TypeSelector (see page 412) Specifies kind of inspector list. Property TypeKinds (see page 411) is used
only when TypeSelector = tsCustom.

1.25.1.2.1 TCustomInspectorList Methods

1.25.1.2.1.1 TCustomInspectorList.AcceptProperty Method

Called before adding property to the list.

function AcceptProperty(const PropEdit: IProperty ; var DisplayName: WideString): Boolean;
dynamic ;

Description

If function result is False property will not be displayed in the inspector list

1.25.1.2.1.2 TCustomInspectorList.CopyName Method

Copies selected property name to the clipboard.

procedure CopyName;

1.25 edcPropCtrl Namespace EControl Form Designer Pro Classes

404

1

Description

1.25.1.2.1.3 TCustomInspectorList.CopyValue Method

Copies text of the property editor.

procedure CopyValue;

Description

1.25.1.2.1.4 TCustomInspectorList.Create Constructor

constructor Create(AOwner: TComponent); override ;

Description

1.25.1.2.1.5 TCustomInspectorList.CreateEditor Method

Creates TExtEdit inplace object for the current property

function CreateEditor: TCustomEditEx ; override ;

Description

1.25.1.2.1.6 TCustomInspectorList.CreateItems Method

Creates root item.

function CreateItems: TPropListRoot ; override ;

Description

CreateItems creates items storage.

1.25.1.2.1.7 TCustomInspectorList.CutValue Method

Cuts text of the property editor.

procedure CutValue;

Description

1.25.1.2.1.8 TCustomInspectorList.DoPrepareCanvas Method

Prepares Canvas before painting cell.

procedure DoPrepareCanvas(Node: TPropertyItem ; CellType: TCellType ; var Alignment:
TAlignment); override ;

Description

Node and CellType specifies position in list. Change property of control Canvas and Alignment parameter to change cell
painting style.

1.25 edcPropCtrl Namespace EControl Form Designer Pro Classes

405

1

1.25.1.2.1.9 TCustomInspectorList.DrawPropCell Method

Draws cell content.

procedure DrawPropCell(const R: TRect; Node: TPropertyItem ; CellType: TCellType ; Alignment:
TAlignment); override ;

1.25.1.2.1.10 TCustomInspectorList.FocusEditor Method

Moves focus from list control to child in-place editor.

procedure FocusEditor; override ;

1.25.1.2.1.11 TCustomInspectorList.GetDesigner Method

Indicates if item is header one

function GetDesigner: IFormDesigner ;

Description

Header item used as caption for category and has no value.

1.25.1.2.1.12 TCustomInspectorList.IsPropReadOnly Method

Determines whether property editor does not allow changing property value.

function IsPropReadOnly(const PropEdit: IProperty): Boolean; virtual ;

1.25.1.2.1.13 TCustomInspectorList.KeyDown Method

Responds to key down when TInspectorList (see page 413) has focus.

procedure KeyDown(var Key: Word; Shift: TShiftState); override ;

Description

Process two keystrokes:

• VK_RETURN: Sets (new) value for the current property

• VK_ESCAPE: ends up editing in the current editor

1.25.1.2.1.14 TCustomInspectorList.Loaded Method

Updates TCustomInspectorList (see page 399) after loading from stream

procedure Loaded; override ;

Description

1.25.1.2.1.15 TCustomInspectorList.MouseDown Method

Updates TCustomInspectorList (see page 399) depending on mouse coordinates

procedure MouseDown(Button: TMouseButton; Shift: TShiftState; X: Integer; Y: Integer);
override ;

Description

1.25.1.2.1.16 TCustomInspectorList.PasteValue Method

Pastes text to the property editor.

procedure PasteValue;

1.25 edcPropCtrl Namespace EControl Form Designer Pro Classes

406

1

Description

1.25.1.2.1.17 TCustomInspectorList.PropValueChanged Method

Updates editor and invalidates TCustomInspectorList (see page 399)

procedure PropValueChanged;

Description

1.25.1.2.1.18 TCustomInspectorList.SaveValue Method

Saves currently edit value.

procedure SaveValue;

1.25.1.2.1.19 TCustomInspectorList.SetItemIndex Method

Change active editor

procedure SetItemIndex(Value: integer); override ;

Description

If Index parameter is not equal to current

• Sets new value for current property

• Moves focus to the new one

1.25.1.2.1.20 TCustomInspectorList.UpdateEditor Method

Updates editor

procedure UpdateEditor; override ;

Description

This method is called after changing editor' properties such as color scheme, value and so on.

1.25.1.2.1.21 TCustomInspectorList.UpdateList Method

Updates list of properties

procedure UpdateList;

Description

This method updates list of properties after changing on the active designer and so on

1.25.1.2.2 TCustomInspectorList Properties

1.25.1.2.2.1 TCustomInspectorList.ByCategories Property

Specifies arrangement of properties list. If ByCategories is True, all properties are arranged by categories

property ByCategories: Boolean;

Description

Set this property to arrange all properties of the selected object(s) by categories.

1.25 edcPropCtrl Namespace EControl Form Designer Pro Classes

407

1

Default value is False.

1.25.1.2.2.2 TCustomInspectorList.Categories Property

Determines list of the current available categories for the properties of selected object(s).

This list does not include empty categories

property Categories: TStrings;

Description

1.25.1.2.2.3 TCustomInspectorList.cCategories Property

Specifies font color for category items

property cCategories: TColor;

Description

Default value is clPurple

1.25.1.2.2.4 TCustomInspectorList.cDefValues Property

Specifies font color property values which differ from default.

property cDefValues: TColor;

Description

Default value is clNavy.

1.25.1.2.2.5 TCustomInspectorList.cEditBackGround Property

Specifies font color for the in-place editors

property cEditBackGround: TColor;

Description

Default value is clWindow

1.25.1.2.2.6 TCustomInspectorList.cEditValue Property

Specifies font color for the text in the in-place editor

property cEditValue: TColor;

Description

Default value is clWindowText

1.25.1.2.2.7 TCustomInspectorList.Component Property

Specifies editable component

property Component: TComponent;

Description

This property is used for design component without active designer.

Simply set Designer (see page 409) property and Component property and edit properties of the component directly in the
Object Inspector.

1.25 edcPropCtrl Namespace EControl Form Designer Pro Classes

408

1

1.25.1.2.2.8 TCustomInspectorList.cPropName Property

Specifies font color for the Property name

property cPropName: TColor;

Description

Default value is clBtnText

1.25.1.2.2.9 TCustomInspectorList.cPropReadOnly Property

Specifies font color for the read-only property

property cPropReadOnly: TColor;

Description

Default value is clBtnText

1.25.1.2.2.10 TCustomInspectorList.cPropReference Property

Specifies font color for the reference property

property cPropReference: TColor;

Description

Default value is clMaroon

1.25.1.2.2.11 TCustomInspectorList.cPropValue Property

Specifies font color for the property value

property cPropValue: TColor;

Description

Default value is clNavy

1.25.1.2.2.12 TCustomInspectorList.cSubProperty Property

Specifies font color for the property, that belongs to referenced object

property cSubProperty: TColor;

Description

Default value is clGreen

1.25.1.2.2.13 TCustomInspectorList.DefPropNameDraw Property

Specifies whether custom property name drawing defined in property editors is used.

property DefPropNameDraw: Boolean;

Description

It is possible ti define property name rendering in any property editor by implementing ICustomPropertyDrawing interface. If
you change displayed property names by assigning new values to TPropertyItem.DisplayName (see page 64) this
property drawing implementation will paint default property name and TPropertyItem.DisplayName (see page 64) will not
be used.

To disable using ICustomPropertyDrawing for rendering property names set DefPropNameDraw to False.

1.25.1.2.2.14 TCustomInspectorList.Designer Property

Specifies current active designer

1.25 edcPropCtrl Namespace EControl Form Designer Pro Classes

409

1

property Designer: TzFormDesigner ;

Description

1.25.1.2.2.15 TCustomInspectorList.EditedObject Property

Specifies editable TPersistent object

property EditedObject: TPersistent;

Description

This property is used for design component without active designer.

Simply set Designer (see page 409) property and Component (see page 408) property and edit properties of the
component directly in the Object Inspector.

This is the same as Component (see page 408) property only for TPersistent descendants

1.25.1.2.2.16 TCustomInspectorList.ExpandRefs Property

Specifies whether reference properties may be expanded

property ExpandRefs: Boolean;

Description

Default value is True

1.25.1.2.2.17 TCustomInspectorList.HiddenCount Property

Indicates number of properties those are not visible

property HiddenCount: integer;

Description

Read-only property

1.25.1.2.2.18 TCustomInspectorList.HintProps Property

Provide properties to adjust hints processing.

property HintProps: TecHintHelper ;

1.25.1.2.2.19 TCustomInspectorList.IncludeRefs Property

Specifies whether reference properties should be displayed in the inspector list.

property IncludeRefs: Boolean;

Description

When IncludeRefs is True, reference properties will be in list even if TypeKinds (see page 411) does not contain tkClass,
for example, on the "Events" page in the object inspector

1.25.1.2.2.20 TCustomInspectorList.MarkNonDefault Property

Specifies if properties those values differ from default will be marked with bold

property MarkNonDefault: Boolean;

Description

Default value is True.

1.25 edcPropCtrl Namespace EControl Form Designer Pro Classes

410

1

1.25.1.2.2.21 TCustomInspectorList.PopupListAlign Property

Specifies alignment of popup list box relative to edit box.

property PopupListAlign: TAlignment;

1.25.1.2.2.22 TCustomInspectorList.ReadOnly Property

Specifies whether properties may be edited.

property ReadOnly : Boolean;

Description

Use this property to enable/disable editing of properties. When ReadOnly is true editor will not be shown for selected item
and property can not be edited.

1.25.1.2.2.23 TCustomInspectorList.SearchPropKey Property

Property name search key.

property SearchPropKey: string ;

1.25.1.2.2.24 TCustomInspectorList.SearchPropMode Property

Specifies whether inspector list is in property name search mode. This mode is turned on/off when user presses TAB key.

property SearchPropMode: Boolean;

1.25.1.2.2.25 TCustomInspectorList.Selected Property

Specifies number of selected object in the inspector list.

property Selected [Index : integer]: TPersistent;

Description

If inspector list is linked to designer this property is equal to number of selected objects in designer.

1.25.1.2.2.26 TCustomInspectorList.SelectedCount Property

Number of selected objects in active designer. Use property Selected (see page 411)[] to get these objects.

property SelectedCount: integer;

Description

1.25.1.2.2.27 TCustomInspectorList.ShowReadOnly Property

Specifies whether read-only properties will be displayed in the inspector list

property ShowReadOnly: Boolean;

Description

Default value is False

1.25.1.2.2.28 TCustomInspectorList.TypeKinds Property

Specifies types of properties those will be displayed in the inspector list

property TypeKinds: TTypeKinds;

Description

Default value is tkProperties

1.25 edcPropCtrl Namespace EControl Form Designer Pro Classes

411

1

1.25.1.2.2.29 TCustomInspectorList.TypeSelector Property

Specifies kind of inspector list. Property TypeKinds (see page 411) is used only when TypeSelector = tsCustom.

property TypeSelector: TTypeSelector ;

1.25.1.2.3 TCustomInspectorList Events

1.25.1.2.3.1 TCustomInspectorList.OnAcceptCategory Event

Occurs before adding category to the list.

property OnAcceptCategory: TAcceptCategoryEvent ;

Description

Write this event handler to take some specific action before category will be added to the list, for example

to localize categories names.

Sender is the TInspectorList (see page 413) object

CategoryName is the name of the category that can be localized

Accept is the flag if category will be added to the list

1.25.1.2.3.2 TCustomInspectorList.OnAcceptProperty Event

Occurs before adding property to the list.

property OnAcceptProperty: TAcceptPropertyEvent ;

Description

Write this event handler to take some specific action before property will be added to the list.

Assign False to Accept parameter to exclude property from the inspector list.

PropEdit is the pointer to the IProperty (see page 446) interface

PropName is the name of property

Accept is the flag if property will be added to the list

1.25.1.2.3.3 TCustomInspectorList.OnChangeSelection Event

Occurs when changing selected object in inspector list.

property OnChangeSelection: TChangeSelectionEvent ;

Description

Write OnChangeSelection event handler to perform any action when selected objects in inspector are to be changed.

It is possible to change selection by creating new IDesignerSelections which will contain another objects.

1.25 edcPropCtrl Namespace EControl Form Designer Pro Classes

412

1

1.25.1.2.3.4 TCustomInspectorList.OnGetPropReadOnly Event

Occurs to determine whether property PropEdit is read-only.

property OnGetPropReadOnly: TGetPropReadonlyEvent ;

1.25.1.2.3.5 TCustomInspectorList.OnPropListUpdated Event

Occurs after list of properties has been updated

property OnPropListUpdated: TNotifyEvent;

Description

Write this event handler to take some specific action after list of properties has been updated.

1.25.1.2.3.6 TCustomInspectorList.OnPropValueChanged Event

Occurs when property value has been changed.

property OnPropValueChanged: TNotifyEvent;

Description

Use this event handler to process changing of property value.

1.25.1.2.3.7 TCustomInspectorList.OnSetPropValueA Event

Occurs before changing property value (ANSI version).

property OnSetPropValueA: TOnInspSetPropValueEventA ;

Description

Write OnSetPropValueA to change value to be written to property of selected objects.

1.25.1.2.3.8 TCustomInspectorList.OnSetPropValueW Event

Occurs before changing property value (Unicode version).

property OnSetPropValueW: TOnInspSetPropValueEventW ;

Description

Write OnSetPropValueW to change value to be written to property of selected objects.

1.25.1.3 TInspectorList Class
TInspectorList is the descendant of TCustomInspectorList (see page 399) directly using in the Object Inspector

Class Hierarchy

TInspectorList = class (TCustomInspectorList);

File

edcPropCtrl

Description

TInspectorList publishes inherited properties to provide wide range of functionality.

1.25 edcPropCtrl Namespace EControl Form Designer Pro Classes

413

1

Members

TDualList Methods

TDualList Methods Description

 Create (see page 54) Creates and initializes an instance of TDualList (see page 52).

 CreateEditor (see page 54) Creates in-place editor. Must be overridden in derived classes.

 CreateHandle (see page 54) Creates underlying screen object.

 Destroy (see page 54) Destroys an instance of TDualList (see page 52).

 DoMouseWheel (see page 54) Processes mouse wheel motion.

 DrawCell (see page 55) Draws a specified cell.

 DrawStr (see page 55) Draws string in the specified rectangle

 DrawStrW (see page 55) Draws Unicode string in the specified rectangle

 ExecuteAction (see page 55) Invokes an action with the component as its target.

 FocusEditor (see page 56) Moves focus from list control to child in-place editor.

 IsHeaderItem (see page 56) Determines if specified item is header.

 ItemRect (see page 56) Returns the rectangle that surrounds the item specified in the Item parameter.

 KeyDown (see page 56) Respond to key press events.

 MouseDown (see page 56) Generates an OnMouseUp event.

 MouseMove (see page 56) Respond to mouse moving over control area..

 MouseToItem (see page 57) Returns item index depending on coordinates specified in Y parameter.

 MouseUp (see page 57) Generates an OnMouseUp event.

 Paint (see page 57) Renders the image of a dual list.

 SetItemIndex (see page 57) Set method of ItemIndex (see page 59) property.

 UpdateAction (see page 57) Updates an action component to reflect the current state of the component.

 UpdateEditor (see page 58) Updates current Editor (see page 59).

TCustomPropList Class

TCustomPropList Class Description

 Create (see page 49) Creates and initializes an instance of TDualList.

 CreateItems (see page 49) Creates root item.

 Current (see page 49) Returns current selected item. If there is no item selected Current returns nil.

 Destroy (see page 49) Destroys an instance of TDualList.

 DoPrepareCanvas (see page 50) Prepares Canvas (see page 58) before painting cell.

 DrawCell (see page 50) Draws dual list cell.

 DrawPropCell (see page 50) Draws cell content.

 GutterWidth (see page 50) Returns gutter width for specified row in list.

 IsHeaderItem (see page 50) Determines if specified item is header.

 MouseDown (see page 50) Generates an OnMouseUp event.

TCustomInspectorList Class

TCustomInspectorList Class Description

 AcceptProperty (see page 404) Called before adding property to the list.

 CopyName (see page 404) Copies selected property name to the clipboard.

 CopyValue (see page 405) Copies text of the property editor.

 Create (see page 405)

 CreateEditor (see page 405) Creates TExtEdit inplace object for the current property

 CreateItems (see page 405) Creates root item.

 CutValue (see page 405) Cuts text of the property editor.

 DoPrepareCanvas (see page 405) Prepares Canvas before painting cell.

 DrawPropCell (see page 406) Draws cell content.

 FocusEditor (see page 406) Moves focus from list control to child in-place editor.

 GetDesigner (see page 406) Indicates if item is header one

 IsPropReadOnly (see page 406) Determines whether property editor does not allow changing property value.

 KeyDown (see page 406) Responds to key down when TInspectorList has focus.

 Loaded (see page 406) Updates TCustomInspectorList (see page 399) after loading from stream

 MouseDown (see page 406) Updates TCustomInspectorList (see page 399) depending on mouse
coordinates

 PasteValue (see page 406) Pastes text to the property editor.

 PropValueChanged (see page 407) Updates editor and invalidates TCustomInspectorList (see page 399)

1.25 edcPropCtrl Namespace EControl Form Designer Pro Classes

414

1

 SaveValue (see page 407) Saves currently edit value.

 SetItemIndex (see page 407) Change active editor

 UpdateEditor (see page 407) Updates editor

 UpdateList (see page 407) Updates list of properties

TDualList Properties

TDualList Properties Description

 BorderStyle (see page 58) Determines the style of the line drawn around the perimeter of the panel
control.

 Canvas (see page 58) Provides access to a drawing surface that represents the TDualList (see
page 52).

 Editor (see page 59) In-place editor

 EditorVisible (see page 59) Specifies whether editor is visible in the selected row

 ItemCount (see page 59) Specifies the number of items in the DualList

 ItemHeight (see page 59) Specifies the height, in pixels, of the items in the dual list

 ItemIndex (see page 59) Specifies the index of the selected item.

 OnClick (see page 60) Occurs when the user clicks the dual list.

 ShowGrid (see page 60) Determines whether lines are drawn separating items in the list

 ShowSelFrame (see page 60) Specifies whether frame rectangle should be painted around selected item.

 SplitPos (see page 60) Specifies width of the first column in pixels (or splitter position)

 TabOrder (see page 60) Indicates the position of the control in its parent's tab order.

 TabStop (see page 60) Add a summary here...

 TopItem (see page 60) Specifies the topmost row that appears in the dual list.

TCustomPropList Class

TCustomPropList Class Description

 cGutter (see page 50) Specifies color of gutter background.

 cGutterBnd (see page 51) Specifies color of border which separates gutter from the rest of control.

 cHighlight (see page 51) Specifies background color of selected item.

 cHighlightText (see page 51) Specifies font color of selected item.

 FoldingIcon (see page 51) Holds folding icon images.

 Items (see page 51) Reference to root item. Particular root item class may be different in derived
classes. Items are accessible via root item.

 LeftMargin (see page 51) Specifies left margin.

 LevelWidth (see page 51) Specifies offset for each level of items.

 ShowGutter (see page 51) Specifies whether gutter is visible.

TCustomInspectorList Class

TCustomInspectorList Class Description

 ByCategories (see page 407) Specifies arrangement of properties list. If ByCategories is True, all properties
are arranged by categories

 Categories (see page 408) Determines list of the current available categories for the properties of
selected object(s).
This list does not include empty categories

 cCategories (see page 408) Specifies font color for category items

 cDefValues (see page 408) Specifies font color property values which differ from default.

 cEditBackGround (see page 408) Specifies font color for the in-place editors

 cEditValue (see page 408) Specifies font color for the text in the in-place editor

 Component (see page 408) Specifies editable component

 cPropName (see page 409) Specifies font color for the Property name

 cPropReadOnly (see page 409) Specifies font color for the read-only property

 cPropReference (see page 409) Specifies font color for the reference property

 cPropValue (see page 409) Specifies font color for the property value

 cSubProperty (see page 409) Specifies font color for the property, that belongs to referenced object

 DefPropNameDraw (see page 409) Specifies whether custom property name drawing defined in property editors is
used.

 Designer (see page 409) Specifies current active designer

 EditedObject (see page 410) Specifies editable TPersistent object

 ExpandRefs (see page 410) Specifies whether reference properties may be expanded

 HiddenCount (see page 410) Indicates number of properties those are not visible

 HintProps (see page 410) Provide properties to adjust hints processing.

1.25 edcPropCtrl Namespace EControl Form Designer Pro Classes

415

1

 IncludeRefs (see page 410) Specifies whether reference properties should be displayed in the inspector list.

 MarkNonDefault (see page 410) Specifies if properties those values differ from default will be marked with bold

 PopupListAlign (see page 411) Specifies alignment of popup list box relative to edit box.

 ReadOnly (see page 411) Specifies whether properties may be edited.

 SearchPropKey (see page 411) Property name search key.

 SearchPropMode (see page 411) Specifies whether inspector list is in property name search mode. This mode is
turned on/off when user presses TAB key.

 Selected (see page 411) Specifies number of selected object in the inspector list.

 SelectedCount (see page 411) Number of selected objects in active designer. Use property Selected (see
page 411)[] to get these objects.

 ShowReadOnly (see page 411) Specifies whether read-only properties will be displayed in the inspector list

 TypeKinds (see page 411) Specifies types of properties those will be displayed in the inspector list

 TypeSelector (see page 412) Specifies kind of inspector list. Property TypeKinds (see page 411) is used
only when TypeSelector = tsCustom.

TInspectorList Class

TInspectorList Class Description

 Align (see page 422) Determines how the control aligns within its container (parent control).

 Anchors (see page 423) Specifies how the control is anchored to its parent.

 BevelEdges (see page 423) Specifies which edges of the control are beveled.

 BevelInner (see page 423) Specifies the cut of the inner bevel.

 BevelKind (see page 424) Specifies the control’s bevel style.

 BevelOuter (see page 424) Specifies the cut of the outer bevel.

 BiDiMode (see page 424) Specifies the bi-directional mode for the control.

 BorderStyle (see page 424) Determines the style of the line drawn around the perimeter of the panel
control.

 ByCategories (see page 425) Specifies arrangement of properties list. If ByCategories is True, all properties
are arranged by categories

 cCategories (see page 425) Specifies font color for category items

 cDefValues (see page 425) Specifies font color property values which differ from default.

 cEditBackGround (see page 425) Specifies font color for the in-place editors

 cEditValue (see page 425) Specifies font color for the text in the in-place editor

 cGutter (see page 425) Specifies color of gutter background.

 cGutterBnd (see page 425) Specifies color of border which separates gutter from the rest of control.

 cHighlight (see page 425) Specifies background color of selected item.

 cHighlightText (see page 426) Specifies font color of selected item.

 Color (see page 426) Specifies the background color of the control.

 Component (see page 426) Specifies editable component

 Constraints (see page 426) Specifies the size constraints for the control.

 cPropName (see page 426) Specifies font color for the Property name

 cPropReadOnly (see page 426) Specifies font color for the read-only property

 cPropReference (see page 427) Specifies font color for the reference property

 cPropValue (see page 427) Specifies font color for the property value

 cSubProperty (see page 427) Specifies font color for the property, that belongs to referenced object

 Ctl3D (see page 427) Determines whether a control has a three-dimensional (3-D) or
two-dimensional look.

 DefPropNameDraw (see page 427) Specifies whether custom property name drawing defined in property editors is
used.

 Designer (see page 427) Specifies current active designer

 DragCursor (see page 428) Indicates the image used to represent the mouse pointer when the control is
being dragged.

 DragKind (see page 428) Specifies whether the control is being dragged normally or for docking.

 DragMode (see page 428) Determines how the control initiates drag-and-drop or drag-and-dock
operations.

 EditorVisible (see page 428) Specifies whether editor is visible in the selected row

 Enabled (see page 428) Controls whether the control responds to mouse, keyboard, and timer events.

 ExpandRefs (see page 428) Specifies whether reference properties may be expanded

 FoldingIcon (see page 429) Holds folding icon images.

 Font (see page 429) Controls the attributes of text written on or in the control.

 IncludeRefs (see page 429) Specifies whether reference properties should be displayed in the inspector list.

 ItemHeight (see page 429) Specifies the height, in pixels, of the items in the dual list

1.25 edcPropCtrl Namespace EControl Form Designer Pro Classes

416

1

 ItemIndex (see page 429) Specifies the index of the selected item.

 Items (see page 429) Reference to root item. Particular root item class may be different in derived
classes. Items are accessible via root item.

 MarkNonDefault (see page 430) Specifies if properties those values differ from default will be marked with bold

 OnAcceptCategory (see page 430) Occurs before adding category to the list.

 OnAcceptProperty (see page 430) Occurs before adding property to the list.

 OnCanResize (see page 430) Occurs when an attempt is made to resize the control.

 OnChangeSelection (see page 431) Occurs when changing selected object in inspector list.

 OnClick (see page 431) Occurs when the user clicks the dual list.

 OnConstrainedResize (see page 431) Adjust resize constraints.

 OnContextPopup (see page 431) Occurs when the user right-clicks the control or otherwise invokes the popup
menu (such as using the keyboard).

 OnDblClick (see page 432) Occurs when the user double-clicks the left mouse button when the mouse
pointer is over the control.

 OnDragDrop (see page 432) Occurs when the user drops an object being dragged.

 OnDragOver (see page 432) Occurs when the user drags an object over a control.

 OnDrawPropCell (see page 433) Draws cell content.

 OnEndDrag (see page 433) Occurs when the dragging of an object ends, either by dropping the object or
by canceling the dragging.

 OnEnter (see page 433) Occurs when a control receives the input focus.

 OnExit (see page 433) Occurs when the input focus shifts away from one control to another.

 OnGetCellParams (see page 433) Occurs to adjust cell properties.

 OnGetPropReadOnly (see page 433) Occurs to determine whether property PropEdit is read-only.

 OnKeyDown (see page 433) Occurs when a user presses any key while the control has focus.

 OnKeyPress (see page 434) Occurs when key pressed.

 OnKeyUp (see page 434) Occurs when the user releases a key that has been pressed.

 OnMouseDown (see page 434) Occurs when the user presses a mouse button with the mouse pointer over a
control.

 OnMouseMove (see page 435) Occurs when the user moves the mouse pointer while the mouse pointer is
over a control.

 OnMouseUp (see page 435) Occurs when the user releases a mouse button that was pressed with the
mouse pointer over a component.

 OnPropListUpdated (see page 435) Occurs after list of properties has been updated

 OnResize (see page 435) Occurs immediately after the control is resized.

 OnSetPropValueA (see page 435) Occurs before changing property value (ANSI version).

 OnSetPropValueW (see page 436) Occurs before changing property value (Unicode version).

 OnStartDrag (see page 436) Occurs when the user begins to drag the control or an object it contains by
left-clicking on the control and holding the mouse button down.

 ParentBiDiMode (see page 436) Specifies whether the control uses its parent’s BiDiMode.

 ParentColor (see page 436) Determines where a control looks for its color information.

 ParentCtl3D (see page 436) Determines where a component looks to determine if it should appear three
dimensional.

 ParentFont (see page 436) Determines where a control looks for its font information.

 ParentShowHint (see page 437) Determines where a control looks to find out if its Help Hint should be shown.

 PopupListAlign (see page 437) Specifies alignment of popup list box relative to edit box.

 PopupMenu (see page 437) Identifies the pop-up menu associated with the control.

 ReadOnly (see page 437) Specifies whether properties may be edited.

 ShowGrid (see page 437) Determines whether lines are drawn separating items in the list

 ShowGutter (see page 437) Specifies whether gutter is visible.

 ShowHint (see page 437) Determines whether the control displays a Help Hint when the mouse pointer
rests momentarily on the control.

 ShowReadOnly (see page 437) Specifies whether read-only properties will be displayed in the inspector list

 ShowSelFrame (see page 438) Specifies whether frame rectangle should be painted around selected item.

 SplitPos (see page 438) Specifies width of the first column in pixels (or splitter position)

 TabOrder (see page 438) Indicates the position of the control in its parent's tab order.

 TabStop (see page 438) Add a summary here...

 TopItem (see page 438) Specifies the topmost row that appears in the dual list.

 TypeKinds (see page 438) Specifies types of properties those will be displayed in the inspector list

 TypeSelector (see page 438) Specifies kind of inspector list. Property TypeKinds is used only when
TypeSelector = tsCustom.

 Visible (see page 439) Determines whether the component appears on screen.

TCustomPropList Events

1.25 edcPropCtrl Namespace EControl Form Designer Pro Classes

417

1

TCustomPropList Class

TCustomPropList Class Description

 OnDrawPropCell (see page 51) Draws cell content.

 OnGetCellParams (see page 52) Occurs to adjust cell properties.

TCustomInspectorList Class

TCustomInspectorList Class Description

 OnAcceptCategory (see page 412) Occurs before adding category to the list.

 OnAcceptProperty (see page 412) Occurs before adding property to the list.

 OnChangeSelection (see page 412) Occurs when changing selected object in inspector list.

 OnGetPropReadOnly (see page 413) Occurs to determine whether property PropEdit is read-only.

 OnPropListUpdated (see page 413) Occurs after list of properties has been updated

 OnPropValueChanged (see page 413) Occurs when property value has been changed.

 OnSetPropValueA (see page 413) Occurs before changing property value (ANSI version).

 OnSetPropValueW (see page 413) Occurs before changing property value (Unicode version).

Legend

Constructor

virtual

protected

Property

read only

Event

TCustomPropList Events

TCustomPropList Class

TCustomPropList Class Description

 OnDrawPropCell (see page 51) Draws cell content.

 OnGetCellParams (see page 52) Occurs to adjust cell properties.

TCustomInspectorList Class

TCustomInspectorList Class Description

 OnAcceptCategory (see page 412) Occurs before adding category to the list.

 OnAcceptProperty (see page 412) Occurs before adding property to the list.

 OnChangeSelection (see page 412) Occurs when changing selected object in inspector list.

 OnGetPropReadOnly (see page 413) Occurs to determine whether property PropEdit is read-only.

 OnPropListUpdated (see page 413) Occurs after list of properties has been updated

 OnPropValueChanged (see page 413) Occurs when property value has been changed.

 OnSetPropValueA (see page 413) Occurs before changing property value (ANSI version).

 OnSetPropValueW (see page 413) Occurs before changing property value (Unicode version).

TDualList Methods

TDualList Methods Description

 Create (see page 54) Creates and initializes an instance of TDualList (see page 52).

 CreateEditor (see page 54) Creates in-place editor. Must be overridden in derived classes.

 CreateHandle (see page 54) Creates underlying screen object.

 Destroy (see page 54) Destroys an instance of TDualList (see page 52).

 DoMouseWheel (see page 54) Processes mouse wheel motion.

 DrawCell (see page 55) Draws a specified cell.

 DrawStr (see page 55) Draws string in the specified rectangle

 DrawStrW (see page 55) Draws Unicode string in the specified rectangle

 ExecuteAction (see page 55) Invokes an action with the component as its target.

 FocusEditor (see page 56) Moves focus from list control to child in-place editor.

 IsHeaderItem (see page 56) Determines if specified item is header.

 ItemRect (see page 56) Returns the rectangle that surrounds the item specified in the Item parameter.

 KeyDown (see page 56) Respond to key press events.

 MouseDown (see page 56) Generates an OnMouseUp event.

 MouseMove (see page 56) Respond to mouse moving over control area..

1.25 edcPropCtrl Namespace EControl Form Designer Pro Classes

418

1

 MouseToItem (see page 57) Returns item index depending on coordinates specified in Y parameter.

 MouseUp (see page 57) Generates an OnMouseUp event.

 Paint (see page 57) Renders the image of a dual list.

 SetItemIndex (see page 57) Set method of ItemIndex (see page 59) property.

 UpdateAction (see page 57) Updates an action component to reflect the current state of the component.

 UpdateEditor (see page 58) Updates current Editor (see page 59).

TCustomPropList Class

TCustomPropList Class Description

 Create (see page 49) Creates and initializes an instance of TDualList.

 CreateItems (see page 49) Creates root item.

 Current (see page 49) Returns current selected item. If there is no item selected Current returns nil.

 Destroy (see page 49) Destroys an instance of TDualList.

 DoPrepareCanvas (see page 50) Prepares Canvas (see page 58) before painting cell.

 DrawCell (see page 50) Draws dual list cell.

 DrawPropCell (see page 50) Draws cell content.

 GutterWidth (see page 50) Returns gutter width for specified row in list.

 IsHeaderItem (see page 50) Determines if specified item is header.

 MouseDown (see page 50) Generates an OnMouseUp event.

TCustomInspectorList Class

TCustomInspectorList Class Description

 AcceptProperty (see page 404) Called before adding property to the list.

 CopyName (see page 404) Copies selected property name to the clipboard.

 CopyValue (see page 405) Copies text of the property editor.

 Create (see page 405)

 CreateEditor (see page 405) Creates TExtEdit inplace object for the current property

 CreateItems (see page 405) Creates root item.

 CutValue (see page 405) Cuts text of the property editor.

 DoPrepareCanvas (see page 405) Prepares Canvas before painting cell.

 DrawPropCell (see page 406) Draws cell content.

 FocusEditor (see page 406) Moves focus from list control to child in-place editor.

 GetDesigner (see page 406) Indicates if item is header one

 IsPropReadOnly (see page 406) Determines whether property editor does not allow changing property value.

 KeyDown (see page 406) Responds to key down when TInspectorList has focus.

 Loaded (see page 406) Updates TCustomInspectorList (see page 399) after loading from stream

 MouseDown (see page 406) Updates TCustomInspectorList (see page 399) depending on mouse
coordinates

 PasteValue (see page 406) Pastes text to the property editor.

 PropValueChanged (see page 407) Updates editor and invalidates TCustomInspectorList (see page 399)

 SaveValue (see page 407) Saves currently edit value.

 SetItemIndex (see page 407) Change active editor

 UpdateEditor (see page 407) Updates editor

 UpdateList (see page 407) Updates list of properties

TDualList Properties

TDualList Properties Description

 BorderStyle (see page 58) Determines the style of the line drawn around the perimeter of the panel
control.

 Canvas (see page 58) Provides access to a drawing surface that represents the TDualList (see
page 52).

 Editor (see page 59) In-place editor

 EditorVisible (see page 59) Specifies whether editor is visible in the selected row

 ItemCount (see page 59) Specifies the number of items in the DualList

 ItemHeight (see page 59) Specifies the height, in pixels, of the items in the dual list

 ItemIndex (see page 59) Specifies the index of the selected item.

 OnClick (see page 60) Occurs when the user clicks the dual list.

 ShowGrid (see page 60) Determines whether lines are drawn separating items in the list

 ShowSelFrame (see page 60) Specifies whether frame rectangle should be painted around selected item.

 SplitPos (see page 60) Specifies width of the first column in pixels (or splitter position)

1.25 edcPropCtrl Namespace EControl Form Designer Pro Classes

419

1

 TabOrder (see page 60) Indicates the position of the control in its parent's tab order.

 TabStop (see page 60) Add a summary here...

 TopItem (see page 60) Specifies the topmost row that appears in the dual list.

TCustomPropList Class

TCustomPropList Class Description

 cGutter (see page 50) Specifies color of gutter background.

 cGutterBnd (see page 51) Specifies color of border which separates gutter from the rest of control.

 cHighlight (see page 51) Specifies background color of selected item.

 cHighlightText (see page 51) Specifies font color of selected item.

 FoldingIcon (see page 51) Holds folding icon images.

 Items (see page 51) Reference to root item. Particular root item class may be different in derived
classes. Items are accessible via root item.

 LeftMargin (see page 51) Specifies left margin.

 LevelWidth (see page 51) Specifies offset for each level of items.

 ShowGutter (see page 51) Specifies whether gutter is visible.

TCustomInspectorList Class

TCustomInspectorList Class Description

 ByCategories (see page 407) Specifies arrangement of properties list. If ByCategories is True, all properties
are arranged by categories

 Categories (see page 408) Determines list of the current available categories for the properties of
selected object(s).
This list does not include empty categories

 cCategories (see page 408) Specifies font color for category items

 cDefValues (see page 408) Specifies font color property values which differ from default.

 cEditBackGround (see page 408) Specifies font color for the in-place editors

 cEditValue (see page 408) Specifies font color for the text in the in-place editor

 Component (see page 408) Specifies editable component

 cPropName (see page 409) Specifies font color for the Property name

 cPropReadOnly (see page 409) Specifies font color for the read-only property

 cPropReference (see page 409) Specifies font color for the reference property

 cPropValue (see page 409) Specifies font color for the property value

 cSubProperty (see page 409) Specifies font color for the property, that belongs to referenced object

 DefPropNameDraw (see page 409) Specifies whether custom property name drawing defined in property editors is
used.

 Designer (see page 409) Specifies current active designer

 EditedObject (see page 410) Specifies editable TPersistent object

 ExpandRefs (see page 410) Specifies whether reference properties may be expanded

 HiddenCount (see page 410) Indicates number of properties those are not visible

 HintProps (see page 410) Provide properties to adjust hints processing.

 IncludeRefs (see page 410) Specifies whether reference properties should be displayed in the inspector list.

 MarkNonDefault (see page 410) Specifies if properties those values differ from default will be marked with bold

 PopupListAlign (see page 411) Specifies alignment of popup list box relative to edit box.

 ReadOnly (see page 411) Specifies whether properties may be edited.

 SearchPropKey (see page 411) Property name search key.

 SearchPropMode (see page 411) Specifies whether inspector list is in property name search mode. This mode is
turned on/off when user presses TAB key.

 Selected (see page 411) Specifies number of selected object in the inspector list.

 SelectedCount (see page 411) Number of selected objects in active designer. Use property Selected (see
page 411)[] to get these objects.

 ShowReadOnly (see page 411) Specifies whether read-only properties will be displayed in the inspector list

 TypeKinds (see page 411) Specifies types of properties those will be displayed in the inspector list

 TypeSelector (see page 412) Specifies kind of inspector list. Property TypeKinds (see page 411) is used
only when TypeSelector = tsCustom.

TInspectorList Class

TInspectorList Class Description

 Align (see page 422) Determines how the control aligns within its container (parent control).

 Anchors (see page 423) Specifies how the control is anchored to its parent.

 BevelEdges (see page 423) Specifies which edges of the control are beveled.

1.25 edcPropCtrl Namespace EControl Form Designer Pro Classes

420

1

 BevelInner (see page 423) Specifies the cut of the inner bevel.

 BevelKind (see page 424) Specifies the control’s bevel style.

 BevelOuter (see page 424) Specifies the cut of the outer bevel.

 BiDiMode (see page 424) Specifies the bi-directional mode for the control.

 BorderStyle (see page 424) Determines the style of the line drawn around the perimeter of the panel
control.

 ByCategories (see page 425) Specifies arrangement of properties list. If ByCategories is True, all properties
are arranged by categories

 cCategories (see page 425) Specifies font color for category items

 cDefValues (see page 425) Specifies font color property values which differ from default.

 cEditBackGround (see page 425) Specifies font color for the in-place editors

 cEditValue (see page 425) Specifies font color for the text in the in-place editor

 cGutter (see page 425) Specifies color of gutter background.

 cGutterBnd (see page 425) Specifies color of border which separates gutter from the rest of control.

 cHighlight (see page 425) Specifies background color of selected item.

 cHighlightText (see page 426) Specifies font color of selected item.

 Color (see page 426) Specifies the background color of the control.

 Component (see page 426) Specifies editable component

 Constraints (see page 426) Specifies the size constraints for the control.

 cPropName (see page 426) Specifies font color for the Property name

 cPropReadOnly (see page 426) Specifies font color for the read-only property

 cPropReference (see page 427) Specifies font color for the reference property

 cPropValue (see page 427) Specifies font color for the property value

 cSubProperty (see page 427) Specifies font color for the property, that belongs to referenced object

 Ctl3D (see page 427) Determines whether a control has a three-dimensional (3-D) or
two-dimensional look.

 DefPropNameDraw (see page 427) Specifies whether custom property name drawing defined in property editors is
used.

 Designer (see page 427) Specifies current active designer

 DragCursor (see page 428) Indicates the image used to represent the mouse pointer when the control is
being dragged.

 DragKind (see page 428) Specifies whether the control is being dragged normally or for docking.

 DragMode (see page 428) Determines how the control initiates drag-and-drop or drag-and-dock
operations.

 EditorVisible (see page 428) Specifies whether editor is visible in the selected row

 Enabled (see page 428) Controls whether the control responds to mouse, keyboard, and timer events.

 ExpandRefs (see page 428) Specifies whether reference properties may be expanded

 FoldingIcon (see page 429) Holds folding icon images.

 Font (see page 429) Controls the attributes of text written on or in the control.

 IncludeRefs (see page 429) Specifies whether reference properties should be displayed in the inspector list.

 ItemHeight (see page 429) Specifies the height, in pixels, of the items in the dual list

 ItemIndex (see page 429) Specifies the index of the selected item.

 Items (see page 429) Reference to root item. Particular root item class may be different in derived
classes. Items are accessible via root item.

 MarkNonDefault (see page 430) Specifies if properties those values differ from default will be marked with bold

 OnAcceptCategory (see page 430) Occurs before adding category to the list.

 OnAcceptProperty (see page 430) Occurs before adding property to the list.

 OnCanResize (see page 430) Occurs when an attempt is made to resize the control.

 OnChangeSelection (see page 431) Occurs when changing selected object in inspector list.

 OnClick (see page 431) Occurs when the user clicks the dual list.

 OnConstrainedResize (see page 431) Adjust resize constraints.

 OnContextPopup (see page 431) Occurs when the user right-clicks the control or otherwise invokes the popup
menu (such as using the keyboard).

 OnDblClick (see page 432) Occurs when the user double-clicks the left mouse button when the mouse
pointer is over the control.

 OnDragDrop (see page 432) Occurs when the user drops an object being dragged.

 OnDragOver (see page 432) Occurs when the user drags an object over a control.

 OnDrawPropCell (see page 433) Draws cell content.

 OnEndDrag (see page 433) Occurs when the dragging of an object ends, either by dropping the object or
by canceling the dragging.

 OnEnter (see page 433) Occurs when a control receives the input focus.

 OnExit (see page 433) Occurs when the input focus shifts away from one control to another.

1.25 edcPropCtrl Namespace EControl Form Designer Pro Classes

421

1

 OnGetCellParams (see page 433) Occurs to adjust cell properties.

 OnGetPropReadOnly (see page 433) Occurs to determine whether property PropEdit is read-only.

 OnKeyDown (see page 433) Occurs when a user presses any key while the control has focus.

 OnKeyPress (see page 434) Occurs when key pressed.

 OnKeyUp (see page 434) Occurs when the user releases a key that has been pressed.

 OnMouseDown (see page 434) Occurs when the user presses a mouse button with the mouse pointer over a
control.

 OnMouseMove (see page 435) Occurs when the user moves the mouse pointer while the mouse pointer is
over a control.

 OnMouseUp (see page 435) Occurs when the user releases a mouse button that was pressed with the
mouse pointer over a component.

 OnPropListUpdated (see page 435) Occurs after list of properties has been updated

 OnResize (see page 435) Occurs immediately after the control is resized.

 OnSetPropValueA (see page 435) Occurs before changing property value (ANSI version).

 OnSetPropValueW (see page 436) Occurs before changing property value (Unicode version).

 OnStartDrag (see page 436) Occurs when the user begins to drag the control or an object it contains by
left-clicking on the control and holding the mouse button down.

 ParentBiDiMode (see page 436) Specifies whether the control uses its parent’s BiDiMode.

 ParentColor (see page 436) Determines where a control looks for its color information.

 ParentCtl3D (see page 436) Determines where a component looks to determine if it should appear three
dimensional.

 ParentFont (see page 436) Determines where a control looks for its font information.

 ParentShowHint (see page 437) Determines where a control looks to find out if its Help Hint should be shown.

 PopupListAlign (see page 437) Specifies alignment of popup list box relative to edit box.

 PopupMenu (see page 437) Identifies the pop-up menu associated with the control.

 ReadOnly (see page 437) Specifies whether properties may be edited.

 ShowGrid (see page 437) Determines whether lines are drawn separating items in the list

 ShowGutter (see page 437) Specifies whether gutter is visible.

 ShowHint (see page 437) Determines whether the control displays a Help Hint when the mouse pointer
rests momentarily on the control.

 ShowReadOnly (see page 437) Specifies whether read-only properties will be displayed in the inspector list

 ShowSelFrame (see page 438) Specifies whether frame rectangle should be painted around selected item.

 SplitPos (see page 438) Specifies width of the first column in pixels (or splitter position)

 TabOrder (see page 438) Indicates the position of the control in its parent's tab order.

 TabStop (see page 438) Add a summary here...

 TopItem (see page 438) Specifies the topmost row that appears in the dual list.

 TypeKinds (see page 438) Specifies types of properties those will be displayed in the inspector list

 TypeSelector (see page 438) Specifies kind of inspector list. Property TypeKinds is used only when
TypeSelector = tsCustom.

 Visible (see page 439) Determines whether the component appears on screen.

1.25.1.3.1 TInspectorList Properties

1.25.1.3.1.1 TInspectorList.Align Property

Determines how the control aligns within its container (parent control).

property Align;

Description

Use Align to align a control to the top, bottom, left, or right of a form or panel and have it remain there even if the size of the
form, panel, or component that contains the control changes. When the parent is resized, an aligned control also resizes so
that it continues to span the top, bottom, left, or right edge of the parent.

For example, to use a panel component with various controls on it as a tool palette, change the panel’s Align value to alLeft.
The value of alLeft for the Align property of the panel guarantees that the tool palette remains on the left side of the form and
always equals the client height of the form.

1.25 edcPropCtrl Namespace EControl Form Designer Pro Classes

422

1

The default value of Align is alNone, which means a control remains where it is positioned on a form or panel.

Tip: If Align is set to alClient, the control fills the entire client area so that it is impossible to select the parent form by clicking
on it. In this case, select the parent by selecting the control on the form and pressing Esc, or by using the Object Inspector.

Any number of child components within a single parent can have the same Align value, in which case they stack up along
the edge of the parent. The child controls stack up in z-order. To adjust the order in which the controls stack up, drag the
controls into their desired positions.

Note: To cause a control to maintain a specified relationship with an edge of its parent, but not necessarily lie along one
edge of the parent, use the Anchors property instead.

1.25.1.3.1.2 TInspectorList.Anchors Property

Specifies how the control is anchored to its parent.

property Anchors;

Description

Use Anchors to ensure that a control maintains its current position relative to an edge of its parent, even if the parent is
resized. When its parent is resized, the control holds its position relative to the edges to which it is anchored.

If a control is anchored to opposite edges of its parent, the control stretches when its parent is resized. For example, if a
control has its Anchors property set to [akLeft, akRight], the control stretches when the width of its parent changes.

Anchors is enforced only when the parent is resized. Thus, for example, if a control is anchored to opposite edges of a form
at design time and the form is created in a maximized state, the control is not stretched because the form is not resized after
the control is created.

Note: If a control should maintain contact with three edges of its parent (hugging one side of the parent and stretching the
length of that side), use the Align property instead. Unlike Anchors, Align allows controls to adjust to changes in the size of
other aligned sibling controls as well as changes to the parent’s size.

1.25.1.3.1.3 TInspectorList.BevelEdges Property

Specifies which edges of the control are beveled.

property BevelEdges;

Description

Use BevelEdges to get or set which edges of the control are beveled. The BevelInner, BevelOuter, and BevelKind properties
determine the appearance of the specified edges.

1.25.1.3.1.4 TInspectorList.BevelInner Property

Specifies the cut of the inner bevel.

property BevelInner;

Description

Use BevelInner to specify whether the inner bevel has a raised, lowered, or flat look.

The inner bevel appears immediately inside the outer bevel. If there is no outer bevel (BevelOuter is bvNone), the inner

1.25 edcPropCtrl Namespace EControl Form Designer Pro Classes

423

1

bevel appears immediately inside the border.

1.25.1.3.1.5 TInspectorList.BevelKind Property

Specifies the control’s bevel style.

property BevelKind;

Description

Use BevelKind to modify the appearance of a bevel. BevelKind influences how sharply the bevel stands out.

BevelKind, in combination with BevelWidth and the cut of the bevel specified by BevelInner or BevelOuter, can create a
variety of effects. Experiment with various combinations to get the look you want.

1.25.1.3.1.6 TInspectorList.BevelOuter Property

Specifies the cut of the outer bevel.

property BevelOuter;

Description

Use BevelInner to specify whether the outer bevel has a raised, lowered, or flat look.

The outer bevel appears immediately inside the border and outside the inner bevel.

1.25.1.3.1.7 TInspectorList.BiDiMode Property

Specifies the bi-directional mode for the control.

property BiDiMode;

Description

Use BiDiMode to enable the control to adjust its appearance and behavior automatically when the application runs in a
locale that reads from right to left instead of left to right. The bi-directional mode controls the reading order for the text, the
placement of the vertical scroll bar, and whether the alignment is changed.

Alignment does not change for controls that are known to contain number, date, time, or currency values. For example, with
data aware controls, the alignment does not change for the following field types: ftSmallint, ftInteger, ftWord, ftFloat,
ftCurrency, ftBCD, ftDate, ftTime, ftDateTime, ftAutoInc.

1.25.1.3.1.8 TInspectorList.BorderStyle Property

Determines the style of the line drawn around the perimeter of the panel control.

property BorderStyle: TBorderStyle;

Description

Use BorderStyle to specify whether the panel has a single line drawn around it. These are the possible values:

Value Meaning

bsNone No visible border

bsSingle Single-line border

Do not confuse the line drawn around the panel with the BorderWidth of the panel. The BorderWidth of the panel is the
distance between the outer and inner bevels.

1.25 edcPropCtrl Namespace EControl Form Designer Pro Classes

424

1

1.25.1.3.1.9 TInspectorList.ByCategories Property

Specifies arrangement of properties list. If ByCategories is True, all properties are arranged by categories

property ByCategories: Boolean;

Description

Set this property to arrange all properties of the selected object(s) by categories.

Default value is False.

1.25.1.3.1.10 TInspectorList.cCategories Property

Specifies font color for category items

property cCategories: TColor;

Description

Default value is clPurple

1.25.1.3.1.11 TInspectorList.cDefValues Property

Specifies font color property values which differ from default.

property cDefValues: TColor;

Description

Default value is clNavy.

1.25.1.3.1.12 TInspectorList.cEditBackGround Property

Specifies font color for the in-place editors

property cEditBackGround: TColor;

Description

Default value is clWindow

1.25.1.3.1.13 TInspectorList.cEditValue Property

Specifies font color for the text in the in-place editor

property cEditValue: TColor;

Description

Default value is clWindowText

1.25.1.3.1.14 TInspectorList.cGutter Property

Specifies color of gutter background.

property cGutter: TColor;

1.25.1.3.1.15 TInspectorList.cGutterBnd Property

Specifies color of border which separates gutter from the rest of control.

property cGutterBnd: TColor;

1.25.1.3.1.16 TInspectorList.cHighlight Property

Specifies background color of selected item.

1.25 edcPropCtrl Namespace EControl Form Designer Pro Classes

425

1

property cHighlight: TColor;

1.25.1.3.1.17 TInspectorList.cHighlightText Property

Specifies font color of selected item.

property cHighlightText: TColor;

1.25.1.3.1.18 TInspectorList.Color Property

Specifies the background color of the control.

property Color;

Description

Use Color to read or change the background color of the control.

If a control's ParentColor property is true, then changing the Color property of the control's parent automatically changes the
Color property of the control. When the value of the Color property is changed, the control's ParentColor property is
automatically set to false.

1.25.1.3.1.19 TInspectorList.Component Property

Specifies editable component

property Component: TComponent;

Description

This property is used for design component without active designer.

Simply set Designer property and Component property and edit properties of the component directly in the Object Inspector.

1.25.1.3.1.20 TInspectorList.Constraints Property

Specifies the size constraints for the control.

property Constraints;

Description

Use Constraints to specify the minimum and maximum width and height of the control. When Constraints contains maximum
or minimum values, the control cannot be resized to violate those constraints.

Warning: Do not set up constraints that conflict with the value of the Align or Anchors property. When these properties
conflict, the response of the control to resize attempts is not well-defined.

1.25.1.3.1.21 TInspectorList.cPropName Property

Specifies font color for the Property name

property cPropName: TColor;

Description

Default value is clBtnText

1.25.1.3.1.22 TInspectorList.cPropReadOnly Property

Specifies font color for the read-only property

property cPropReadOnly: TColor;

Description

Default value is clBtnText

1.25 edcPropCtrl Namespace EControl Form Designer Pro Classes

426

1

1.25.1.3.1.23 TInspectorList.cPropReference Property

Specifies font color for the reference property

property cPropReference: TColor;

Description

Default value is clMaroon

1.25.1.3.1.24 TInspectorList.cPropValue Property

Specifies font color for the property value

property cPropValue: TColor;

Description

Default value is clNavy

1.25.1.3.1.25 TInspectorList.cSubProperty Property

Specifies font color for the property, that belongs to referenced object

property cSubProperty: TColor;

Description

Default value is clGreen

1.25.1.3.1.26 TInspectorList.Ctl3D Property

Determines whether a control has a three-dimensional (3-D) or two-dimensional look.

property Ctl3D;

Description

Ctl3D is provided for backward compatibility. It is not used by 32-bit versions of Windows or NT4.0 and later.

On earlier platforms, Ctl3D controlled whether the control had a flat or beveled appearance.

1.25.1.3.1.27 TInspectorList.DefPropNameDraw Property

Specifies whether custom property name drawing defined in property editors is used.

property DefPropNameDraw: Boolean;

Description

It is possible ti define property name rendering in any property editor by implementing ICustomPropertyDrawing interface. If
you change displayed property names by assigning new values to TPropertyItem.DisplayName (see page 64) this
property drawing implementation will paint default property name and TPropertyItem.DisplayName (see page 64) will not
be used.

To disable using ICustomPropertyDrawing for rendering property names set DefPropNameDraw to False.

1.25.1.3.1.28 TInspectorList.Designer Property

Specifies current active designer

property Designer: TzFormDesigner ;

Description

1.25 edcPropCtrl Namespace EControl Form Designer Pro Classes

427

1

1.25.1.3.1.29 TInspectorList.DragCursor Property

Indicates the image used to represent the mouse pointer when the control is being dragged.

property DragCursor;

Description

Use the DragCursor property to change the cursor image presented when the control is being dragged.

Note: To make a custom cursor available for the DragCursor property, see the Cursor property.

1.25.1.3.1.30 TInspectorList.DragKind Property

Specifies whether the control is being dragged normally or for docking.

property DragKind;

Description

Use DragKind to get or set whether the control participates in drag-and-drop operations, or drag-and-dock operations.

1.25.1.3.1.31 TInspectorList.DragMode Property

Determines how the control initiates drag-and-drop or drag-and-dock operations.

property DragMode;

Description

Use DragMode to control when the user can drag the control. Disable the drag-and-drop or drag-and-dock capability at
runtime by setting the DragMode property value to dmManual. Enable automatic dragging by setting DragMode to
dmAutomatic.

1.25.1.3.1.32 TInspectorList.EditorVisible Property

Specifies whether editor is visible in the selected row

property EditorVisible: Boolean;

Description

Specifies whether editor is visible or not in the selected row.

This property may become False when corresponding property node is not a TPropertyNode type. For example wnen user
switches object inspector's "Property" tab in "By Category" mode.

1.25.1.3.1.33 TInspectorList.Enabled Property

Controls whether the control responds to mouse, keyboard, and timer events.

property Enabled;

Description

Use Enabled to change the availability of the control to the user. To disable a control, set Enabled to false. Disabled controls
appear dimmed. If Enabled is false, the control ignores mouse, keyboard, and timer events.

To re-enable a control, set Enabled to true. The control is no longer dimmed, and the user can use the control.

1.25.1.3.1.34 TInspectorList.ExpandRefs Property

Specifies whether reference properties may be expanded

property ExpandRefs: Boolean;

Description

Default value is True

1.25 edcPropCtrl Namespace EControl Form Designer Pro Classes

428

1

1.25.1.3.1.35 TInspectorList.FoldingIcon Property

Holds folding icon images.

property FoldingIcon: TBitmap;

Description

FoldingIcon should contain two images in a row, first - collapse icon (-), second - expand icon (+).

Color of bottom-left pixel is used as mask color.

Folding icon is initialized from resource when control is created at design time.

1.25.1.3.1.36 TInspectorList.Font Property

Controls the attributes of text written on or in the control.

property Font;

Description

To change to a new font, specify a new TFont object. To modify a font, change the value of the Charset, Color, Height,
Name, Pitch, Size, or Style of the TFont object.

1.25.1.3.1.37 TInspectorList.IncludeRefs Property

Specifies whether reference properties should be displayed in the inspector list.

property IncludeRefs: Boolean;

Description

When IncludeRefs is True, reference properties will be in list even if TypeKinds does not contain tkClass, for example, on the
"Events" page in the object inspector

1.25.1.3.1.38 TInspectorList.ItemHeight Property

Specifies the height, in pixels, of the items in the dual list

property ItemHeight: integer;

Description

Read ItemHeight to determine the height of the items in the dual list. Set this property to change height of the items.

1.25.1.3.1.39 TInspectorList.ItemIndex Property

Specifies the index of the selected item.

property ItemIndex: integer;

Description

Read ItemIndex to determine which item is selected. The first item in the list has index 0, the second item has index 1, and
so on.

Set ItemIndex programmatically to select an item by passing in the index value.

If new value less then 0 and ItemCount > 0 then ItemIndex will be 0,

else if new value exceeds ItemCount-1 then ItemIndex will be ItemCount-1.

Else ItemIndex will be set to new value.

1.25.1.3.1.40 TInspectorList.Items Property

Reference to root item. Particular root item class may be different in derived classes. Items are accessible via root item.

1.25 edcPropCtrl Namespace EControl Form Designer Pro Classes

429

1

property Items: TPropListRoot ;

1.25.1.3.1.41 TInspectorList.MarkNonDefault Property

Specifies if properties those values differ from default will be marked with bold

property MarkNonDefault: Boolean;

Description

Default value is True.

1.25.1.3.1.42 TInspectorList.OnAcceptCategory Property

Occurs before adding category to the list.

property OnAcceptCategory: TAcceptCategoryEvent ;

Description

Write this event handler to take some specific action before category will be added to the list, for example

to localize categories names.

Sender is the TInspectorList object

CategoryName is the name of the category that can be localized

Accept is the flag if category will be added to the list

1.25.1.3.1.43 TInspectorList.OnAcceptProperty Property

Occurs before adding property to the list.

property OnAcceptProperty: TAcceptPropertyEvent ;

Description

Write this event handler to take some specific action before property will be added to the list.

Assign False to Accept parameter to exclude property from the inspector list.

PropEdit is the pointer to the IProperty interface

PropName is the name of property

Accept is the flag if property will be added to the list

1.25.1.3.1.44 TInspectorList.OnCanResize Property

Occurs when an attempt is made to resize the control.

property OnCanResize;

Description

Use OnCanResize to adjust the way a control is resized. If necessary, change the new width and height of the control in the
OnCanResize event handler. The OnCanResize event handler also allows applications to indicate that the entire resize
should be aborted.

1.25 edcPropCtrl Namespace EControl Form Designer Pro Classes

430

1

If there is no OnCanResize event handler, or if the OnCanResize event handler indicates that the resize attempt can
proceed, the OnCanResize event is followed immediately by an OnConstrainedResize event.

1.25.1.3.1.45 TInspectorList.OnChangeSelection Property

Occurs when changing selected object in inspector list.

property OnChangeSelection: TChangeSelectionEvent ;

Description

Write OnChangeSelection event handler to perform any action when selected objects in inspector are to be changed.

It is possible to change selection by creating new IDesignerSelections which will contain another objects.

1.25.1.3.1.46 TInspectorList.OnClick Property

Occurs when the user clicks the dual list.

property OnClick;

Description

OnClick is inherited event from TControl.

Use the OnClick event handler to respond when the user clicks the dual list.

1.25.1.3.1.47 TInspectorList.OnConstrainedResize Property

Adjust resize constraints.

property OnConstrainedResize;

Description

Use OnConstrainedResize to adjust a control’s constraints when an attempt is made to resize it. Upon entry to the
OnConstrainedResize event handler, the parameters of the event handler are set to the corresponding properties of the
control’s Constraints object. The event handler can adjust those values before they are applied to the new height and width
that is being applied to the control. (The CanAutoSize method or an OnCanResize event handler may already have adjusted
this new height and width).

On exit from the OnConstrainedResize event handler, the constraints are applied to the attempted new height and width.
Once the constraints are applied, the control’s height and width are changed. After the control’s height and width change, an
OnResize event occurs to allow any final adjustments or responses.

Notes

The OnConstrainedResize handler is called immediately after the OnCanResize handler.

1.25.1.3.1.48 TInspectorList.OnContextPopup Property

Occurs when the user right-clicks the control or otherwise invokes the popup menu (such as using the keyboard).

property OnContextPopup;

Description

The OnContextPopup handler is called when the user uses the mouse or keyboard to request a popup menu. The
OnContextPopup event is generated by a WM_CONTEXTMENU message, which is itself generated by the user clicking the
right mouse button or by pressing SHIFT+F10 or the Applications key.

This event is especially useful when the control does not have an associated popup menu (the PopupMenu property is not

1.25 edcPropCtrl Namespace EControl Form Designer Pro Classes

431

1

set) or if the AutoPopup property of the control’s associated popup menu is false. However, the OnContextPopup can also
be used to override the automatic context menu that appears when the control has an associated popup menu with an
AutoPopup property of true. In this last case, if the event handler displays its own menu, it should set the Handled parameter
to true to suppress the default context menu.

The handler’s MousePos parameter indicates the position of the mouse, in client coordinates.. If the event was not
generated by a mouse click, MousePos is (-1,-1).

Note: Parent controls receive an OnContextPopup event before their child controls. In addition, for many child controls, the
default window procedure causes the parent control to receive an OnContextPopup event after the child control. As a result,
when parent controls do not set Handled to true in an OnContextPopup event handler, the event handler may be called
multiple times for each context menu invocation.

1.25.1.3.1.49 TInspectorList.OnDblClick Property

Occurs when the user double-clicks the left mouse button when the mouse pointer is over the control.

property OnDblClick;

Description

Use the OnDblClick event to respond to mouse double-clicks.

1.25.1.3.1.50 TInspectorList.OnDragDrop Property

Occurs when the user drops an object being dragged.

property OnDragDrop;

Description

Use the OnDragDrop event handler to specify what happens when the user drops an object. The Source parameter of the
OnDragDrop event is the object being dropped, and the Sender is the control the object is being dropped on. The X and Y
parameters are the coordinates of the mouse positioned over the control.

1.25.1.3.1.51 TInspectorList.OnDragOver Property

Occurs when the user drags an object over a control.

property OnDragOver;

Description

Use an OnDragOver event to signal that the control can accept a dragged object so the user can drop or dock it.

Within the OnDragOver event handler, change the Accept parameter to false to reject the dragged object. Leave Accept as
true to allow the user to drop or dock the dragged object on the control.

To change the shape of the cursor, indicating that the control can accept the dragged object, change the value of the
DragCursor property for the control before the OnDragOver event occurs.

The Source is the object being dragged, the Sender is the potential drop or dock site, and X and Y are screen coordinates in
pixels. The State parameter specifies how the dragged object is moving over the control.

Note: Within the OnDragOver event handler, the Accept parameter defaults to true. However, if an OnDragOver event

1.25 edcPropCtrl Namespace EControl Form Designer Pro Classes

432

1

handler is not supplied, the control rejects the dragged object, as if the Accept parameter were changed to false.

1.25.1.3.1.52 TInspectorList.OnDrawPropCell Property

Draws cell content.

property OnDrawPropCell: TCustomPropDrawEvent ;

Description

Write OnDrawPropCell event handler to implement custom drawing of the cell content. If OnDrawPropCell event is assigned
control does not perform default drawing, but it prepares Canvas for drawing.

1.25.1.3.1.53 TInspectorList.OnEndDrag Property

Occurs when the dragging of an object ends, either by dropping the object or by canceling the dragging.

property OnEndDrag;

Description

Use the OnEndDrag event handler to specify any special processing that occurs when dragging stops.

1.25.1.3.1.54 TInspectorList.OnEnter Property

Occurs when a control receives the input focus.

property OnEnter;

Description

Use the OnEnter event handler to cause any special processing to occur when a control becomes active.

The OnEnter event does not occur when switching between forms or between another application and the application that
includes the control.

1.25.1.3.1.55 TInspectorList.OnExit Property

Occurs when the input focus shifts away from one control to another.

property OnExit;

Description

Use the OnExit event handler to provide special processing when the control ceases to be active.

The OnExit event does not occur when switching between forms or between another application and your application.

1.25.1.3.1.56 TInspectorList.OnGetCellParams Property

Occurs to adjust cell properties.

property OnGetCellParams: TGetCellParamsEvent ;

Description

Write OnGetCellParams event handler to change cell properties by assigning new values to Alignment parameter and to
Pen, Font and Brush of the property list Canvas.

1.25.1.3.1.57 TInspectorList.OnGetPropReadOnly Property

Occurs to determine whether property PropEdit is read-only.

property OnGetPropReadOnly: TGetPropReadonlyEvent ;

1.25.1.3.1.58 TInspectorList.OnKeyDown Property

Occurs when a user presses any key while the control has focus.

1.25 edcPropCtrl Namespace EControl Form Designer Pro Classes

433

1

property OnKeyDown;

Description

Use the OnKeyDown event handler to specify special processing to occur when a key is pressed. The OnKeyDown handler
can respond to all keyboard keys, including function keys and keys combined with the Shift, Alt, and Ctrl keys, and pressed
mouse buttons.

The TKeyEvent type points to a method that handles keyboard events.

The Key parameter is the key on the keyboard. For non-alphanumeric keys, use virtual key codes to determine the key
pressed. For more information, see Virtual Key codes.

The Shift parameter indicates whether the Shift, Alt, or Ctrl keys are combined with the keystroke.

1.25.1.3.1.59 TInspectorList.OnKeyPress Property

Occurs when key pressed.

property OnKeyPress;

Description

Use the OnKeyPress event handler to make something happen as a result of a single character key press.

The Key parameter in the OnKeyPress event handler is of type Char; therefore, the OnKeyPress event registers the ASCII
character of the key pressed. Keys that don't correspond to an ASCII Char value (Shift or F1, for example) don't generate an
OnKeyPress event. Key combinations (such as Shift+A), generate only one OnKeyPress event (for this example, Shift+A
results in a Key value of “A” if Caps Lock is off). To respond to non-ASCII keys or key combinations, use the OnKeyDown or
OnKeyUp event handlers.

1.25.1.3.1.60 TInspectorList.OnKeyUp Property

Occurs when the user releases a key that has been pressed.

property OnKeyUp;

Description

Use the OnKeyUp event handler to provide special processing that occurs when a key is released. The OnKeyUp handler
can respond to all keyboard keys, including function keys and keys combined with the Shift, Alt, and Ctrl keys.

The TKeyEvent type points to a method that handles keyboard events. The Key parameter is the key on the keyboard. For
non-alphanumeric keys, you must use virtual key codes to determine the key pressed. For more information, see Virtual Key
codes.

The Shift parameter indicates whether the Shift, Alt, or Ctrl keys are combined with the keystroke.

1.25.1.3.1.61 TInspectorList.OnMouseDown Property

Occurs when the user presses a mouse button with the mouse pointer over a control.

property OnMouseDown;

Description

Use the OnMouseDown event handler to implement any special processing that should occur as a result of pressing a

1.25 edcPropCtrl Namespace EControl Form Designer Pro Classes

434

1

mouse button.

The OnMouseDown event handler can respond to left, right, or center mouse button presses and shift key plus
mouse-button combinations. Shift keys are the Shift, Ctrl, and Alt keys. X and Y are the pixel coordinates of the mouse
pointer in the client area of the Sender.

1.25.1.3.1.62 TInspectorList.OnMouseMove Property

Occurs when the user moves the mouse pointer while the mouse pointer is over a control.

property OnMouseMove;

Description

Use the OnMouseMove event handler to respond when the mouse pointer moves after the control has captured the mouse.

Use the Shift parameter of the OnMouseDown event handler, to determine to the state of the shift keys and mouse buttons.
Shift keys are the Shift, Ctrl, and Alt keys or shift key-mouse button combinations. X and Y are pixel coordinates of the new
location of the mouse pointer in the client area of the Sender.

1.25.1.3.1.63 TInspectorList.OnMouseUp Property

Occurs when the user releases a mouse button that was pressed with the mouse pointer over a component.

property OnMouseUp;

Description

Use an OnMouseUp event handler to implement special processing when the user releases a mouse button.

The OnMouseUp event handler can respond to left, right, or center mouse button presses and shift key plus mouse-button
combinations. Shift keys are the Shift, Ctrl, and Alt keys. X and Y are the pixel coordinates of the mouse pointer in the client
area of the Sender.

1.25.1.3.1.64 TInspectorList.OnPropListUpdated Property

Occurs after list of properties has been updated

property OnPropListUpdated: TNotifyEvent;

Description

Write this event handler to take some specific action after list of properties has been updated.

1.25.1.3.1.65 TInspectorList.OnResize Property

Occurs immediately after the control is resized.

property OnResize;

Description

Use OnResize to make any final adjustments after a control is resized.

To modify the way a control responds when an attempt is made to resize it, use OnCanResize or OnConstrainedResize.

1.25.1.3.1.66 TInspectorList.OnSetPropValueA Property

Occurs before changing property value (ANSI version).

property OnSetPropValueA: TOnInspSetPropValueEventA ;

Description

Write OnSetPropValueA to change value to be written to property of selected objects.

1.25 edcPropCtrl Namespace EControl Form Designer Pro Classes

435

1

1.25.1.3.1.67 TInspectorList.OnSetPropValueW Property

Occurs before changing property value (Unicode version).

property OnSetPropValueW: TOnInspSetPropValueEventW ;

Description

Write OnSetPropValueW to change value to be written to property of selected objects.

1.25.1.3.1.68 TInspectorList.OnStartDrag Property

Occurs when the user begins to drag the control or an object it contains by left-clicking on the control and holding the mouse
button down.

property OnStartDrag;

Description

Use the OnStartDrag event handler to implement special processing when the user starts to drag the control or an object it
contains. OnStartDrag only occurs if DragKind is dkDrag.

Sender is the control that is about to be dragged, or that contains the object about to be dragged.

The OnStartDrag event handler can create a TDragControlObjectEx instance for the DragObject parameter to specify the
drag cursor, or, optionally, a drag image list. If you create a TDragControlObjectEx instance, there is no need to call the Free
method for the DragObject when dragging is over. If you create, instead, a TDragControlObject instance, your application is
responsible for freeing the drag object instance.

If the OnStartDrag event handler sets the DragObject parameter to nil (Delphi) or NULL (C++), a TDragControlObject object
is automatically created and dragging begins on the control itse

1.25.1.3.1.69 TInspectorList.ParentBiDiMode Property

Specifies whether the control uses its parent’s BiDiMode.

property ParentBiDiMode;

1.25.1.3.1.70 TInspectorList.ParentColor Property

Determines where a control looks for its color information.

property ParentColor;

1.25.1.3.1.71 TInspectorList.ParentCtl3D Property

Determines where a component looks to determine if it should appear three dimensional.

property ParentCtl3D;

Description

ParentCtl3D is provided for backwards compatibility. It has no effect on 32-bit versions of Windows or NT 4.0 and later.

ParentCtl3D determines whether the control uses its parent’s Ctl3D property.

1.25.1.3.1.72 TInspectorList.ParentFont Property

Determines where a control looks for its font information.

1.25 edcPropCtrl Namespace EControl Form Designer Pro Classes

436

1

property ParentFont;

1.25.1.3.1.73 TInspectorList.ParentShowHint Property

Determines where a control looks to find out if its Help Hint should be shown.

property ParentShowHint;

1.25.1.3.1.74 TInspectorList.PopupListAlign Property

Specifies alignment of popup list box relative to edit box.

property PopupListAlign: TAlignment;

1.25.1.3.1.75 TInspectorList.PopupMenu Property

Identifies the pop-up menu associated with the control.

property PopupMenu;

Description

Assign a value to PopupMenu to make a pop-up menu appear when the user selects the control and clicks the right mouse
button. If the TPopupMenu’s AutoPopup property is true, the pop-up menu appears automatically. If the menu’s AutoPopup
property is false, display the menu with a call to its Popup method from the control’s OnContextPopup event handler.

1.25.1.3.1.76 TInspectorList.ReadOnly Property

Specifies whether properties may be edited.

property ReadOnly : Boolean;

Description

Use this property to enable/disable editing of properties. When ReadOnly is true editor will not be shown for selected item
and property can not be edited.

1.25.1.3.1.77 TInspectorList.ShowGrid Property

Determines whether lines are drawn separating items in the list

property ShowGrid: Boolean;

Description

Specifies whether horizontal grid lines is visible.

Set ShowGrid to True to add lines that separate the items in the dual list.

1.25.1.3.1.78 TInspectorList.ShowGutter Property

Specifies whether gutter is visible.

property ShowGutter: Boolean;

1.25.1.3.1.79 TInspectorList.ShowHint Property

Determines whether the control displays a Help Hint when the mouse pointer rests momentarily on the control.

property ShowHint;

1.25.1.3.1.80 TInspectorList.ShowReadOnly Property

Specifies whether read-only properties will be displayed in the inspector list

property ShowReadOnly: Boolean;

Description

Default value is False

1.25 edcPropCtrl Namespace EControl Form Designer Pro Classes

437

1

1.25.1.3.1.81 TInspectorList.ShowSelFrame Property

Specifies whether frame rectangle should be painted around selected item.

property ShowSelFrame: Boolean;

1.25.1.3.1.82 TInspectorList.SplitPos Property

Specifies width of the first column in pixels (or splitter position)

property SplitPos: integer;

Description

Specifies width of the first column (or splitter position). Width of the second column equals to Width - SplitPos.

Set SplitPos programmatically to change width of columns.

Minimal value of SplitPos is 20;

1.25.1.3.1.83 TInspectorList.TabOrder Property

Indicates the position of the control in its parent's tab order.

property TabOrder;

Description

It is inherited property from TWinControl. See the TWinControl.TabOrder for description.

1.25.1.3.1.84 TInspectorList.TabStop Property

Add a summary here...

property TabStop;

Description

It is inherited property from TWinControl. See the TWinControl.Stop for description.

1.25.1.3.1.85 TInspectorList.TopItem Property

Specifies the topmost row that appears in the dual list.

property TopItem: integer;

Description

When TopItem is changed, the dual list scrolls vertically so that the specified row is topmost in the view.

1.25.1.3.1.86 TInspectorList.TypeKinds Property

Specifies types of properties those will be displayed in the inspector list

property TypeKinds: TTypeKinds;

Description

Default value is tkProperties

1.25.1.3.1.87 TInspectorList.TypeSelector Property

Specifies kind of inspector list. Property TypeKinds is used only when TypeSelector = tsCustom.

property TypeSelector: TTypeSelector ;

1.25 edcPropCtrl Namespace EControl Form Designer Pro Classes

438

1

1.25.1.3.1.88 TInspectorList.Visible Property

Determines whether the component appears on screen.

property Visible;

Description

Use the Visible property to control the visibility of the control at runtime. If Visible is true, the control appears. If Visible is
false, the control is not visible.

Calling the Show method sets the control's Visible property to true. Calling the Hide method sets it to false.

1.25.1.4 TPropertyNode Class
Represents single node associated with property

Class Hierarchy

TPropertyNode = class (TPropertyItem);

File

edcPropCtrl

Description

Members

TPropertyItem Methods

TPropertyItem Methods Description

 Add (see page 62) Adds new property item.

 Changed (see page 62) Called when property item was changed.

 Clear (see page 62) Deletes all items from the node.

 Create (see page 62) Creates and initializes a TPropertyItem instance.

 Delete (see page 63) Deletes Item at index

 Destroy (see page 63) Destroys an instance of TPropertyItem.

 Expandable (see page 63) Specifies whether property item can be expanded.

 GetName (see page 63) Returns name of the item. May be overridden in derived class.

 HasValue (see page 63) Specifies whether property item has value. For example, category item does
not have value.

 IndexOf (see page 63) Returns index of child item. If Item is not a child returns -1.

 Insert (see page 63) Adds a property item to the Items (see page 64) array at the position
specified by Index.

 IsEqual (see page 63) Returns True if property items are equal.

 IsRoot (see page 63) Returns True if the item is root (see page 64) item.

 Move (see page 63) Changes the position of an item in the Items (see page 64) array.

 Root (see page 64) Specifies Root item.

TPropertyNode Class

TPropertyNode Class Description

 Create (see page 441) Creates and initializes a TPropertyNode instance.

 Expandable (see page 441) Specifies whether property item can be expanded.

 GetName (see page 441) Returns name of the property.

 Owner (see page 441) Returns the Owner of the TPropertyNode.

 ReflectModified (see page 441) ReflectModified used for refreshing node with reference type property

TPropertyItem Properties

TPropertyItem Properties Description

 Count (see page 64) Determines count of child items.

1.25 edcPropCtrl Namespace EControl Form Designer Pro Classes

439

1

 DisplayName (see page 64) Specifies name displayed on screen

 Expanded (see page 64) Specifies if node is expanded or not.

 Items (see page 64) Provides indexed access to the child items.

 Level (see page 64) Indicates the level of indentation of a item within the property list control..

 Name (see page 64) Specifies the name of the property node.

 Parent (see page 65) Indicates the parent property of the node.

 PathName (see page 65) Returns path of the item. Path is combined from the item name and all parent
names.

 Visible (see page 65) Specifies whether item is selected.

TPropertyNode Class

TPropertyNode Class Description

 Editor (see page 442) Represents the interface that the Object Inspector uses to communicate with
this property editor

 IsDefault (see page 442) Indicates if property has default value.

 IsReference (see page 442) Indicates whether the property is reference.

 IsSubProperty (see page 442) Indicates whether the property is a sub-property.

 PropInfo (see page 442) Returns PPropInfo associated with this property

Legend

Method

protected

virtual

Property

read only

TPropertyItem Methods

TPropertyItem Methods Description

 Add (see page 62) Adds new property item.

 Changed (see page 62) Called when property item was changed.

 Clear (see page 62) Deletes all items from the node.

 Create (see page 62) Creates and initializes a TPropertyItem instance.

 Delete (see page 63) Deletes Item at index

 Destroy (see page 63) Destroys an instance of TPropertyItem.

 Expandable (see page 63) Specifies whether property item can be expanded.

 GetName (see page 63) Returns name of the item. May be overridden in derived class.

 HasValue (see page 63) Specifies whether property item has value. For example, category item does
not have value.

 IndexOf (see page 63) Returns index of child item. If Item is not a child returns -1.

 Insert (see page 63) Adds a property item to the Items (see page 64) array at the position
specified by Index.

 IsEqual (see page 63) Returns True if property items are equal.

 IsRoot (see page 63) Returns True if the item is root (see page 64) item.

 Move (see page 63) Changes the position of an item in the Items (see page 64) array.

 Root (see page 64) Specifies Root item.

TPropertyNode Class

TPropertyNode Class Description

 Create (see page 441) Creates and initializes a TPropertyNode instance.

 Expandable (see page 441) Specifies whether property item can be expanded.

 GetName (see page 441) Returns name of the property.

 Owner (see page 441) Returns the Owner of the TPropertyNode.

 ReflectModified (see page 441) ReflectModified used for refreshing node with reference type property

TPropertyItem Properties

TPropertyItem Properties Description

 Count (see page 64) Determines count of child items.

 DisplayName (see page 64) Specifies name displayed on screen

 Expanded (see page 64) Specifies if node is expanded or not.

 Items (see page 64) Provides indexed access to the child items.

1.25 edcPropCtrl Namespace EControl Form Designer Pro Classes

440

1

 Level (see page 64) Indicates the level of indentation of a item within the property list control..

 Name (see page 64) Specifies the name of the property node.

 Parent (see page 65) Indicates the parent property of the node.

 PathName (see page 65) Returns path of the item. Path is combined from the item name and all parent
names.

 Visible (see page 65) Specifies whether item is selected.

TPropertyNode Class

TPropertyNode Class Description

 Editor (see page 442) Represents the interface that the Object Inspector uses to communicate with
this property editor

 IsDefault (see page 442) Indicates if property has default value.

 IsReference (see page 442) Indicates whether the property is reference.

 IsSubProperty (see page 442) Indicates whether the property is a sub-property.

 PropInfo (see page 442) Returns PPropInfo associated with this property

1.25.1.4.1 TPropertyNode Methods

1.25.1.4.1.1 TPropertyNode.Create Constructor

Creates and initializes a TPropertyNode instance.

constructor Create(const Prop: IProperty ; const ADispName: WideString);

Description

Use Create to programmatically instantiate a TPropertyNode object.

1.25.1.4.1.2 TPropertyNode.Expandable Method

Specifies whether property item can be expanded.

function Expandable: Boolean; override ;

1.25.1.4.1.3 TPropertyNode.GetName Method

Returns name of the property.

function GetName: string ; override ;

1.25.1.4.1.4 TPropertyNode.Owner Method

Returns the Owner of the TPropertyNode (see page 439).

function Owner: TObject;

Description

1.25.1.4.1.5 TPropertyNode.ReflectModified Method

ReflectModified used for refreshing node with reference type property

function ReflectModified: Boolean;

Description

Whenever value of reference property has been changed it must change value of appropriate TPropertyNode (see page
439).

1.25.1.4.2 TPropertyNode Properties

1.25 edcPropCtrl Namespace EControl Form Designer Pro Classes

441

1

1.25.1.4.2.1 TPropertyNode.Editor Property

Represents the interface that the Object Inspector uses to communicate with this property editor

property Editor: IProperty ;

Description

The Object Inspector uses this property to interact with certain property editor.

1.25.1.4.2.2 TPropertyNode.IsDefault Property

Indicates if property has default value.

property IsDefault: Boolean;

1.25.1.4.2.3 TPropertyNode.IsReference Property

Indicates whether the property is reference.

property IsReference: Boolean;

1.25.1.4.2.4 TPropertyNode.IsSubProperty Property

Indicates whether the property is a sub-property.

property IsSubProperty: Boolean;

1.25.1.4.2.5 TPropertyNode.PropInfo Property

Returns PPropInfo associated with this property

property PropInfo: PPropInfo;

1.25.1.5 TPropertyNodes Class
TPropertyNodes represents collection of property

Class Hierarchy

TPropertyNodes = class (TPropListRoot);

File

edcPropCtrl

Description

TPropertyNodes represents collection of property associated with the certain TCustomInspectorList (see page 399).

Members

TPropertyItem Methods

TPropertyItem Methods Description

 Add (see page 62) Adds new property item.

 Changed (see page 62) Called when property item was changed.

 Clear (see page 62) Deletes all items from the node.

 Create (see page 62) Creates and initializes a TPropertyItem instance.

 Delete (see page 63) Deletes Item at index

 Destroy (see page 63) Destroys an instance of TPropertyItem.

 Expandable (see page 63) Specifies whether property item can be expanded.

 GetName (see page 63) Returns name of the item. May be overridden in derived class.

 HasValue (see page 63) Specifies whether property item has value. For example, category item does
not have value.

 IndexOf (see page 63) Returns index of child item. If Item is not a child returns -1.

1.25 edcPropCtrl Namespace EControl Form Designer Pro Classes

442

1

 Insert (see page 63) Adds a property item to the Items (see page 64) array at the position
specified by Index.

 IsEqual (see page 63) Returns True if property items are equal.

 IsRoot (see page 63) Returns True if the item is root (see page 64) item.

 Move (see page 63) Changes the position of an item in the Items (see page 64) array.

 Root (see page 64) Specifies Root item.

TPropListRoot Class

TPropListRoot Class Description

 BeginUpdate (see page 67) Suspends updating of property list.

 Changed (see page 67) Called when property item was changed.

 Create (see page 67) Creates and initializes a TPropListRoot instance.

 Destroy (see page 68) Destroys an instance of TPropListRoot.

 EndUpdate (see page 68) Re-enables screen repainting.

 ExpandItem (see page 68) Called when item is to be expanded.

 ExpIndexOf (see page 68) Returns visible index (expanded) of specified property node.

 RestoreState (see page 68) Restores previously saved state.

 SaveState (see page 68) Saves state, i.e. expanded items and select item.

 UpdateList (see page 68) Updates property list.

TPropertyNodes Class

TPropertyNodes Class Description

 Clear (see page 445) Deletes all items from the node.

 Create (see page 445) Creates and initializes a TPropertyNodes instance.

 Destroy (see page 445) Destroys an instance of TPropertyNodes.

 ExpandItem (see page 445) Called when item is to be expanded.

 GetProps (see page 445) Fills list of the property nodes according to Components and Designer passed
as parameters

TPropertyItem Properties

TPropertyItem Properties Description

 Count (see page 64) Determines count of child items.

 DisplayName (see page 64) Specifies name displayed on screen

 Expanded (see page 64) Specifies if node is expanded or not.

 Items (see page 64) Provides indexed access to the child items.

 Level (see page 64) Indicates the level of indentation of a item within the property list control..

 Name (see page 64) Specifies the name of the property node.

 Parent (see page 65) Indicates the parent property of the node.

 PathName (see page 65) Returns path of the item. Path is combined from the item name and all parent
names.

 Visible (see page 65) Specifies whether item is selected.

TPropListRoot Class

TPropListRoot Class Description

 ExpCount (see page 68) Returns count of child nodes and their nodes recursively

 ExpItems (see page 68) Provides indexed access to the list of visible items.

 Owner (see page 69) Specifies custom property list - owner of property items collection.

Legend

Method

protected

virtual

Property

read only

TPropertyItem Methods

TPropertyItem Methods Description

 Add (see page 62) Adds new property item.

 Changed (see page 62) Called when property item was changed.

 Clear (see page 62) Deletes all items from the node.

1.25 edcPropCtrl Namespace EControl Form Designer Pro Classes

443

1

 Create (see page 62) Creates and initializes a TPropertyItem instance.

 Delete (see page 63) Deletes Item at index

 Destroy (see page 63) Destroys an instance of TPropertyItem.

 Expandable (see page 63) Specifies whether property item can be expanded.

 GetName (see page 63) Returns name of the item. May be overridden in derived class.

 HasValue (see page 63) Specifies whether property item has value. For example, category item does
not have value.

 IndexOf (see page 63) Returns index of child item. If Item is not a child returns -1.

 Insert (see page 63) Adds a property item to the Items (see page 64) array at the position
specified by Index.

 IsEqual (see page 63) Returns True if property items are equal.

 IsRoot (see page 63) Returns True if the item is root (see page 64) item.

 Move (see page 63) Changes the position of an item in the Items (see page 64) array.

 Root (see page 64) Specifies Root item.

TPropListRoot Class

TPropListRoot Class Description

 BeginUpdate (see page 67) Suspends updating of property list.

 Changed (see page 67) Called when property item was changed.

 Create (see page 67) Creates and initializes a TPropListRoot instance.

 Destroy (see page 68) Destroys an instance of TPropListRoot.

 EndUpdate (see page 68) Re-enables screen repainting.

 ExpandItem (see page 68) Called when item is to be expanded.

 ExpIndexOf (see page 68) Returns visible index (expanded) of specified property node.

 RestoreState (see page 68) Restores previously saved state.

 SaveState (see page 68) Saves state, i.e. expanded items and select item.

 UpdateList (see page 68) Updates property list.

TPropertyNodes Class

TPropertyNodes Class Description

 Clear (see page 445) Deletes all items from the node.

 Create (see page 445) Creates and initializes a TPropertyNodes instance.

 Destroy (see page 445) Destroys an instance of TPropertyNodes.

 ExpandItem (see page 445) Called when item is to be expanded.

 GetProps (see page 445) Fills list of the property nodes according to Components and Designer passed
as parameters

TPropertyItem Properties

TPropertyItem Properties Description

 Count (see page 64) Determines count of child items.

 DisplayName (see page 64) Specifies name displayed on screen

 Expanded (see page 64) Specifies if node is expanded or not.

 Items (see page 64) Provides indexed access to the child items.

 Level (see page 64) Indicates the level of indentation of a item within the property list control..

 Name (see page 64) Specifies the name of the property node.

 Parent (see page 65) Indicates the parent property of the node.

 PathName (see page 65) Returns path of the item. Path is combined from the item name and all parent
names.

 Visible (see page 65) Specifies whether item is selected.

TPropListRoot Class

TPropListRoot Class Description

 ExpCount (see page 68) Returns count of child nodes and their nodes recursively

 ExpItems (see page 68) Provides indexed access to the list of visible items.

 Owner (see page 69) Specifies custom property list - owner of property items collection.

1.25.1.5.1 TPropertyNodes Methods

1.25 edcPropCtrl Namespace EControl Form Designer Pro Classes

444

1

1.25.1.5.1.1 TPropertyNodes.Clear Method

Deletes all items from the node.

procedure Clear; override ;

1.25.1.5.1.2 TPropertyNodes.Create Constructor

Creates and initializes a TPropertyNodes instance.

constructor Create(AOwner: TDualList);

Description

Use Create to programmatically instantiate a TPropertyNodes object.

1.25.1.5.1.3 TPropertyNodes.Destroy Destructor

Destroys an instance of TPropertyNodes.

destructor Destroy; override ;

Description

Do not call Destroy directly. Call Free instead. Free verifies that the object reference is not nil before calling Destroy.

1.25.1.5.1.4 TPropertyNodes.ExpandItem Method

Called when item is to be expanded.

procedure ExpandItem(Item: TPropertyItem); override ;

1.25.1.5.1.5 TPropertyNodes.GetProps Method

Fills list of the property nodes according to Components and Designer passed as parameters

procedure GetProps(Components: IDesignerSelections; const Designer: IFormDesigner);

Description

1.25.1.6 TzDesignerSelections Class
TzDesignerSelections is the same to TDesignerSelectionList class.

Class Hierarchy

TzDesignerSelections = class (TDesignerSelections);

File

edcPropCtrl

1.25.2 Structs, Records, Enums

The following table lists structs, records, enums in this documentation.

Enumerations

Enumeration Description

 TTypeSelector (see page 446) Specifies kind of selector list.

1.25 edcPropCtrl Namespace EControl Form Designer Pro Structs, Records, Enums

445

1

Legend

Enumeration

1.25.2.1 edcPropCtrl.TTypeSelector Enumeration
Specifies kind of selector list.

TTypeSelector = (
 tsProperties,
 tsEvents,
 tsCustom
);

File

edcPropCtrl

Members

Members Description

tsProperties Only properties (tkProperties)

tsEvents Only events (tkEvents)

tsCustom Custom property kinds defined by TCustomInspectorList.TypeKinds Property
(see page 411).

1.25.3 Types

The following table lists types in this documentation.

Types

Type Description

IFormDesigner (see page 446) IFormDesigner is an alias for IDesigner

IProperty (see page 446) IProperty is an alias for TPropertyEditor

TAcceptCategoryEvent (see page 447) See TCustomInspectorList.OnAcceptCategory Event (see page 412)

TAcceptPropertyEvent (see page 447) See TCustomInspectorList.OnAcceptProperty Event (see page 412)

TChangeSelectionEvent (see page 447) See TCustomInspectorList.OnChangeSelection Event (see page 412)

TGetPropReadonlyEvent (see page 447) See TCustomInspectorList.OnGetPropReadOnly Event (see page 413)

TOnInspSetPropValueEventA (see page 447) See TCustomInspectorList.OnSetPropValueA Event (see page 413)

TOnInspSetPropValueEventW (see page 448) See TCustomInspectorList.OnSetPropValueW Event (see page 413)

1.25.3.1 edcPropCtrl.IFormDesigner Type
IFormDesigner is an alias for IDesigner

IFormDesigner = IDesigner;

File

edcPropCtrl

Description

1.25.3.2 edcPropCtrl.IProperty Type
IProperty is an alias for TPropertyEditor

IProperty = TPropertyEditor;

1.25 edcPropCtrl Namespace EControl Form Designer Pro Types

446

1

File

edcPropCtrl

Description

1.25.3.3 edcPropCtrl.TAcceptCategoryEvent Type
TAcceptCategoryEvent = procedure (Sender: TObject; var CategoryName: WideString; var
Accept: boolean) of object ;

File

edcPropCtrl

Description

See TCustomInspectorList.OnAcceptCategory Event (see page 412)

1.25.3.4 edcPropCtrl.TAcceptPropertyEvent Type
TAcceptPropertyEvent = procedure (const PropEdit: IProperty ; var PropName: WideString; var
Accept: Boolean) of object ;

File

edcPropCtrl

Description

See TCustomInspectorList.OnAcceptProperty Event (see page 412)

1.25.3.5 edcPropCtrl.TChangeSelectionEvent Type
See TCustomInspectorList.OnChangeSelection Event (see page 412)

TChangeSelectionEvent = procedure (Sender: TObject; var Selection: IDesignerSelections) of
object ;

File

edcPropCtrl

1.25.3.6 edcPropCtrl.TGetPropReadonlyEvent Type
See TCustomInspectorList.OnGetPropReadOnly Event (see page 413)

TGetPropReadonlyEvent = procedure (Sender: TObject; const PropEdit: IProperty ; var
IsReadOnly: Boolean) of object ;

File

edcPropCtrl

1.25.3.7 edcPropCtrl.TOnInspSetPropValueEventA Type
See TCustomInspectorList.OnSetPropValueA Event (see page 413)

TOnInspSetPropValueEventA = procedure (Sender: TObject; Node: TPropertyNode ; var Value:
string) of object ;

1.25 edcPropCtrl Namespace EControl Form Designer Pro Types

447

1

File

edcPropCtrl

1.25.3.8 edcPropCtrl.TOnInspSetPropValueEventW Type
See TCustomInspectorList.OnSetPropValueW Event (see page 413)

TOnInspSetPropValueEventW = procedure (Sender: TObject; Node: TPropertyNode ; var Value:
WideString) of object ;

File

edcPropCtrl

1.26 edcPropEdit Namespace

1.26.1 Classes

The following table lists classes in this documentation.

Classes

Class Description

TCustomPropertyEdit (see page 448) Base class for controls to edit specified property

TPropertyEdit (see page 457) Edit control to edit specified property.

TPropertyNameProperty (see page 463) TPropertyNameProperty is the editor for string property with name
"PropertyName"

1.26.1.1 TCustomPropertyEdit Class
Base class for controls to edit specified property

Class Hierarchy

TCustomPropertyEdit = class (TCustomEditEx);

File

edcPropEdit

Description

TCustomPropertyEdit is used as the base class for TPropertyEdit (see page 457).

It introduces all the functionality for editing specified property.

Members

TUnicodeEdit Methods

TUnicodeEdit Methods Description

 Create (see page 108) Creates and initializes a TUnicodeEdit instance.

 Destroy (see page 108) Destroys an instance of TUnicodeEdit.

1.26 edcPropEdit Namespace EControl Form Designer Pro Classes

448

1

TBtnEdit Class

TBtnEdit Class Description

 AdjustClientRect (see page 73) Overrides the inherited method.

 ButtonClick (see page 73) Simulates a button click, as if the user had clicked the button.

 Create (see page 73) Creates and initializes a TBtnEdit (see page 70) instance.

 CreateParams (see page 73) Overrides the inherited method.

 CreateWnd (see page 73) Overrides the inherited method.

 Destroy (see page 74) Destroys an instance of TBtnEdit (see page 70)

 EndTracking (see page 74) Called after finishing the mouse tracking

 KeyDown (see page 74) Overrides the inherited method.

 KeyPress (see page 74) Overrides the inherited method.

 MouseMove (see page 74) Overrides the inherited method.

 MouseUp (see page 75) Overrides the inherited method.

 Paint (see page 75) Overrides the base rendering method.

 PaintBtnGlyph (see page 75) Renders the image of the button.

 PaintStatus (see page 75) Paints status area. This method is called only if StatusWidth (see page 77)
is greater 0.

 PaintWindow (see page 75) Overrides the inherited method.

 PtInButton (see page 75) Checks if specified point is over the button

 StartTracking (see page 76) Calls immediately after user pushes the button.

 StopTracking (see page 76) Calls immediately after user releases the button.

 TrackButton (see page 76) Controls tracking button process.

TCustomEditEx Class

TCustomEditEx Class Description

 AcceptListValue (see page 82) Active pop-up window.

 ButtonClick (see page 82) Simulates a button click, as if the user had clicked the button.

 CloseUp (see page 82) Generates an OnCloseUp (see page 85) event and makes some other
actions.

 Create (see page 82) Creates and initializes a TBtnEdit instance.

 Destroy (see page 82) Destroys an instance of TBtnEdit

 DoDropDownKeys (see page 83) Works as a method dispatcher depending on parameter values.

 DropDown (see page 83) Generates an OnDropDown (see page 85) event.

 EndTracking (see page 83) Called after finishing the mouse tracking

 KeyPress (see page 83) Respond to keyboard input.

 MouseDown (see page 83) Overrides inherited method

 MouseMove (see page 83) Overrides the inherited method.

 PaintBtnGlyph (see page 84) Overrides inherited method

 StartTracking (see page 84) Overrides inherited property

TCustomPropertyEdit Class

TCustomPropertyEdit Class Description

 AcceptListValue (see page 453) Called when item was selected in drop-down list.

 ButtonClick (see page 453) Called when button was clicked.

 Change (see page 453) Reflects changes in property editor to property

 ChangePropertyValue (see page 453) Writes current text to property.

 Create (see page 453) Creates and initializes a TCustomPropertyEdit instance.

 DblClick (see page 453) Calls corresponding property editor

 DoEdit (see page 454) Calls corresponding property editor

 DoExit (see page 454) Sets value to corresponding property

 DropDown (see page 454) Opens drop down list.

 GetEditor (see page 454) Gets the corresponding editor for the property

 GetStr (see page 454) Adds string to the pick list of the TCustomPropertyEdit

 GetWStr (see page 454) Adds Unicode string to the pick list of the TCustomPropertyEdit

 MouseDown (see page 454) Overrides inherited method

 Notification (see page 455) Responds to notifications that components are being created or destroyed.

 PaintStatus (see page 455) Paints status area. This method is called only if StatusWidth is greater 0.

 SetValue (see page 455) Sets Value to the property editor and invokes OnChange if assigned.

 UpdateEditState (see page 455) Updates all the properties of the TCustomPropertyEdit object

1.26 edcPropEdit Namespace EControl Form Designer Pro Classes

449

1

TUnicodeEdit Properties

TUnicodeEdit Properties Description

 IsUnicode (see page 108) Specifies whether control is Unicode edit.

 SelTextW (see page 109) Specifies the selected portion of the edit control’s text (Unicode version).

 Text (see page 109) Specifies the text string that is displayed in the edit box (Ansi version).

 TextW (see page 109) Specifies the text string that is displayed in the edit box (Ansi version).

TBtnEdit Class

TBtnEdit Class Description

 Alignment (see page 76) Determines how the text is aligned within the editor control.

 ButtonVisible (see page 76) Specifies if button-like rectangle at the right edge of the control is visible.

 ButtonWidth (see page 77) Specifies width in pixels of the button.

 Canvas (see page 77) Provides access to the drawing surface of the TBtnEdit (see page 70).

 MultiLine (see page 77) Designates a multiline edit control. The default is single-line edit control.

 StatusWidth (see page 77) Specifies width of status area. If StatusWidth is equal to 0 - status area is not
processed.

 WantReturns (see page 77) Determines whether the user can insert return characters into the text.

 WantTabs (see page 78) Determines whether the user can insert tab characters into the text.

 WordWrap (see page 78) Determines whether the edit control inserts soft carriage returns so text wraps
at the right margin.

TCustomEditEx Class

TCustomEditEx Class Description

 ActiveList (see page 84) Specifies current popup control.

 EditStyle (see page 84) Specifies edit style of the button

 ListAlign (see page 84) Specifies relative align of popup control.

 PickList (see page 84) Determines the drop-down list.

TCustomPropertyEdit Class

TCustomPropertyEdit Class Description

 AcceptTab (see page 455) Specifies whether edit control should process TAB key.

 Component (see page 456) Specifies owner of the property will be edited

 Designer (see page 456) Specifies active designer.

 PropertyEditor (see page 456) Specifies interface for property editor (IProperty)

 PropertyName (see page 456) Specifies name of the property which will be edited

 ReadOnly (see page 456) Specifies whether property can not be edited.

 TypeKinds (see page 456) Set of types of editable properties.

TBtnEdit Events

TBtnEdit Class

TBtnEdit Class Description

 OnButtonClick (see page 78) Occurs when the user clicks the button.

TCustomEditEx Class

TCustomEditEx Class Description

 OnAcceptListValue (see page 85) Occurs when the user makes right choice in the drop-down list.

 OnCloseUp (see page 85) Occurs when the drop-down list closes up due to some user action.

 OnDropDown (see page 85) Occurs when the user opens the drop-down list.

 OnMeasureWidth (see page 85) Occurs when width of controls needs to be calculated.

TCustomPropertyEdit Class

TCustomPropertyEdit Class Description

 OnSetPropValueA (see page 457) Occurs before changing property value (ANSI version).

 OnSetPropValueW (see page 457) Occurs before changing property value (Unicode version).

Legend

Constructor

virtual

protected

1.26 edcPropEdit Namespace EControl Form Designer Pro Classes

450

1

Property

read only

Event

TBtnEdit Events

TBtnEdit Class

TBtnEdit Class Description

 OnButtonClick (see page 78) Occurs when the user clicks the button.

TCustomEditEx Class

TCustomEditEx Class Description

 OnAcceptListValue (see page 85) Occurs when the user makes right choice in the drop-down list.

 OnCloseUp (see page 85) Occurs when the drop-down list closes up due to some user action.

 OnDropDown (see page 85) Occurs when the user opens the drop-down list.

 OnMeasureWidth (see page 85) Occurs when width of controls needs to be calculated.

TCustomPropertyEdit Class

TCustomPropertyEdit Class Description

 OnSetPropValueA (see page 457) Occurs before changing property value (ANSI version).

 OnSetPropValueW (see page 457) Occurs before changing property value (Unicode version).

TUnicodeEdit Methods

TUnicodeEdit Methods Description

 Create (see page 108) Creates and initializes a TUnicodeEdit instance.

 Destroy (see page 108) Destroys an instance of TUnicodeEdit.

TBtnEdit Class

TBtnEdit Class Description

 AdjustClientRect (see page 73) Overrides the inherited method.

 ButtonClick (see page 73) Simulates a button click, as if the user had clicked the button.

 Create (see page 73) Creates and initializes a TBtnEdit (see page 70) instance.

 CreateParams (see page 73) Overrides the inherited method.

 CreateWnd (see page 73) Overrides the inherited method.

 Destroy (see page 74) Destroys an instance of TBtnEdit (see page 70)

 EndTracking (see page 74) Called after finishing the mouse tracking

 KeyDown (see page 74) Overrides the inherited method.

 KeyPress (see page 74) Overrides the inherited method.

 MouseMove (see page 74) Overrides the inherited method.

 MouseUp (see page 75) Overrides the inherited method.

 Paint (see page 75) Overrides the base rendering method.

 PaintBtnGlyph (see page 75) Renders the image of the button.

 PaintStatus (see page 75) Paints status area. This method is called only if StatusWidth (see page 77)
is greater 0.

 PaintWindow (see page 75) Overrides the inherited method.

 PtInButton (see page 75) Checks if specified point is over the button

 StartTracking (see page 76) Calls immediately after user pushes the button.

 StopTracking (see page 76) Calls immediately after user releases the button.

 TrackButton (see page 76) Controls tracking button process.

TCustomEditEx Class

TCustomEditEx Class Description

 AcceptListValue (see page 82) Active pop-up window.

 ButtonClick (see page 82) Simulates a button click, as if the user had clicked the button.

 CloseUp (see page 82) Generates an OnCloseUp (see page 85) event and makes some other
actions.

 Create (see page 82) Creates and initializes a TBtnEdit instance.

 Destroy (see page 82) Destroys an instance of TBtnEdit

 DoDropDownKeys (see page 83) Works as a method dispatcher depending on parameter values.

 DropDown (see page 83) Generates an OnDropDown (see page 85) event.

1.26 edcPropEdit Namespace EControl Form Designer Pro Classes

451

1

 EndTracking (see page 83) Called after finishing the mouse tracking

 KeyPress (see page 83) Respond to keyboard input.

 MouseDown (see page 83) Overrides inherited method

 MouseMove (see page 83) Overrides the inherited method.

 PaintBtnGlyph (see page 84) Overrides inherited method

 StartTracking (see page 84) Overrides inherited property

TCustomPropertyEdit Class

TCustomPropertyEdit Class Description

 AcceptListValue (see page 453) Called when item was selected in drop-down list.

 ButtonClick (see page 453) Called when button was clicked.

 Change (see page 453) Reflects changes in property editor to property

 ChangePropertyValue (see page 453) Writes current text to property.

 Create (see page 453) Creates and initializes a TCustomPropertyEdit instance.

 DblClick (see page 453) Calls corresponding property editor

 DoEdit (see page 454) Calls corresponding property editor

 DoExit (see page 454) Sets value to corresponding property

 DropDown (see page 454) Opens drop down list.

 GetEditor (see page 454) Gets the corresponding editor for the property

 GetStr (see page 454) Adds string to the pick list of the TCustomPropertyEdit

 GetWStr (see page 454) Adds Unicode string to the pick list of the TCustomPropertyEdit

 MouseDown (see page 454) Overrides inherited method

 Notification (see page 455) Responds to notifications that components are being created or destroyed.

 PaintStatus (see page 455) Paints status area. This method is called only if StatusWidth is greater 0.

 SetValue (see page 455) Sets Value to the property editor and invokes OnChange if assigned.

 UpdateEditState (see page 455) Updates all the properties of the TCustomPropertyEdit object

TUnicodeEdit Properties

TUnicodeEdit Properties Description

 IsUnicode (see page 108) Specifies whether control is Unicode edit.

 SelTextW (see page 109) Specifies the selected portion of the edit control’s text (Unicode version).

 Text (see page 109) Specifies the text string that is displayed in the edit box (Ansi version).

 TextW (see page 109) Specifies the text string that is displayed in the edit box (Ansi version).

TBtnEdit Class

TBtnEdit Class Description

 Alignment (see page 76) Determines how the text is aligned within the editor control.

 ButtonVisible (see page 76) Specifies if button-like rectangle at the right edge of the control is visible.

 ButtonWidth (see page 77) Specifies width in pixels of the button.

 Canvas (see page 77) Provides access to the drawing surface of the TBtnEdit (see page 70).

 MultiLine (see page 77) Designates a multiline edit control. The default is single-line edit control.

 StatusWidth (see page 77) Specifies width of status area. If StatusWidth is equal to 0 - status area is not
processed.

 WantReturns (see page 77) Determines whether the user can insert return characters into the text.

 WantTabs (see page 78) Determines whether the user can insert tab characters into the text.

 WordWrap (see page 78) Determines whether the edit control inserts soft carriage returns so text wraps
at the right margin.

TCustomEditEx Class

TCustomEditEx Class Description

 ActiveList (see page 84) Specifies current popup control.

 EditStyle (see page 84) Specifies edit style of the button

 ListAlign (see page 84) Specifies relative align of popup control.

 PickList (see page 84) Determines the drop-down list.

TCustomPropertyEdit Class

TCustomPropertyEdit Class Description

 AcceptTab (see page 455) Specifies whether edit control should process TAB key.

 Component (see page 456) Specifies owner of the property will be edited

 Designer (see page 456) Specifies active designer.

1.26 edcPropEdit Namespace EControl Form Designer Pro Classes

452

1

 PropertyEditor (see page 456) Specifies interface for property editor (IProperty)

 PropertyName (see page 456) Specifies name of the property which will be edited

 ReadOnly (see page 456) Specifies whether property can not be edited.

 TypeKinds (see page 456) Set of types of editable properties.

1.26.1.1.1 TCustomPropertyEdit Methods

1.26.1.1.1.1 TCustomPropertyEdit.AcceptListValue Method

Called when item was selected in drop-down list.

procedure AcceptListValue(var ListValue: string); override ;

Description

1.26.1.1.1.2 TCustomPropertyEdit.ButtonClick Method

Called when button was clicked.

procedure ButtonClick; override ;

Description

1.26.1.1.1.3 TCustomPropertyEdit.Change Method

Reflects changes in property editor to property

procedure Change; override ;

Description

If property attributes include paAutoUpdate then sets editor's value to property and invokes OnChange event

1.26.1.1.1.4 TCustomPropertyEdit.ChangePropertyValue Method

Writes current text to property.

procedure ChangePropertyValue; virtual ;

Description

Override ChangePropertyValue to perform any actions before updating property value.

1.26.1.1.1.5 TCustomPropertyEdit.Create Constructor

Creates and initializes a TCustomPropertyEdit instance.

constructor Create(AOwner: TComponent); override ;

Description

Use Create to programmatically instantiate a TCustomPropertyEdit component. Components added in the form designer are
created automatically.

AOwner is the component that is responsible for freeing the component instance. It becomes the value of the Owner
property.

1.26.1.1.1.6 TCustomPropertyEdit.DblClick Method

Calls corresponding property editor

procedure DblClick; override ;

1.26 edcPropEdit Namespace EControl Form Designer Pro Classes

453

1

Description

1.26.1.1.1.7 TCustomPropertyEdit.DoEdit Method

Calls corresponding property editor

procedure DoEdit; dynamic ;

Description

This method is called after double clicking on the editor or after mouse click on the editor's button

1.26.1.1.1.8 TCustomPropertyEdit.DoExit Method

Sets value to corresponding property

procedure DoExit; override ;

Description

1.26.1.1.1.9 TCustomPropertyEdit.DropDown Method

Opens drop down list.

procedure DropDown; override ;

Description

1.26.1.1.1.10 TCustomPropertyEdit.GetEditor Method

Gets the corresponding editor for the property

procedure GetEditor;

Description

By means of this method there is accessible a manual updating after loading new packages.

1.26.1.1.1.11 TCustomPropertyEdit.GetStr Method

Adds string to the pick list of the TCustomPropertyEdit (see page 448)

procedure GetStr(const S: string);

Description

1.26.1.1.1.12 TCustomPropertyEdit.GetWStr Method

Adds Unicode string to the pick list of the TCustomPropertyEdit (see page 448)

procedure GetWStr(const S: WideString);

Description

1.26.1.1.1.13 TCustomPropertyEdit.MouseDown Method

Overrides inherited method

1.26 edcPropEdit Namespace EControl Form Designer Pro Classes

454

1

procedure MouseDown(Button: TMouseButton; Shift: TShiftState; X: Integer; Y: Integer);
override ;

Description

Closes drop-down list up and calls inherited method.

1.26.1.1.1.14 TCustomPropertyEdit.Notification Method

Responds to notifications that components are being created or destroyed.

procedure Notification(AComponent: TComponent; Operation: TOperation); override ;

Description

If Operation is opRemove

• and AComponent is Designer (see page 456) then zeroing Designer (see page 456) property

• else if AComponent is Component (see page 456) then zeroing Component (see page 456) property

and calls GetEditor (see page 454) after that

1.26.1.1.1.15 TCustomPropertyEdit.PaintStatus Method

Paints status area. This method is called only if StatusWidth is greater 0.

procedure PaintStatus(Canvas: TCanvas; Rect: TRect); override ;

1.26.1.1.1.16 SetValue Method

1.26.1.1.1.16.1 TCustomPropertyEdit.SetValue Method (WideString)

Sets Value to the property editor and invokes OnChange if assigned.

procedure SetValue(Value: WideString); overload ;

Description

Use this method to set Unicode property value and update edit control.

1.26.1.1.1.16.2 TCustomPropertyEdit.SetValue Method (string)

Sets Value to the property editor and invokes OnChange if assigned.

procedure SetValue(Value: string); overload ;

Description

Use this method to set property value and update edit control.

1.26.1.1.1.17 TCustomPropertyEdit.UpdateEditState Method

Updates all the properties of the TCustomPropertyEdit (see page 448) object

procedure UpdateEditState(Reset: Boolean);

Description

Updates all the properties of the TCustomPropertyEdit (see page 448) object such as EditStyle, Text, Enabled,

PropertyEditor (see page 456) itself and so on.

1.26.1.1.2 TCustomPropertyEdit Properties

1.26.1.1.2.1 TCustomPropertyEdit.AcceptTab Property

Specifies whether edit control should process TAB key.

1.26 edcPropEdit Namespace EControl Form Designer Pro Classes

455

1

property AcceptTab: Boolean;

1.26.1.1.2.2 TCustomPropertyEdit.Component Property

Specifies owner of the property will be edited

property Component: TComponent;

Description

1.26.1.1.2.3 TCustomPropertyEdit.Designer Property

Specifies active designer.

property Designer: TzFormDesigner ;

Description

This property is used for some property editors demanding transfer IDesigner as parameter

1.26.1.1.2.4 TCustomPropertyEdit.PropertyEditor Property

Specifies interface for property editor (IProperty)

property PropertyEditor: IProperty;

Description

The Object Inspector uses the methods on the IProperty interface to interact with property editors.

1.26.1.1.2.5 TCustomPropertyEdit.PropertyName Property

Specifies name of the property which will be edited

property PropertyName: string ;

Description

1.26.1.1.2.6 TCustomPropertyEdit.ReadOnly Property

Specifies whether property can not be edited.

property ReadOnly : Boolean;

Description

1.26.1.1.2.7 TCustomPropertyEdit.TypeKinds Property

Set of types of editable properties.

property TypeKinds: TTypeKinds;

Description

This property used to determine if assigned property editor does will be accessible or not.

If assigned property editor does not suit this TypeKinds, it will be inaccessible.

1.26.1.1.3 TCustomPropertyEdit Events

1.26 edcPropEdit Namespace EControl Form Designer Pro Classes

456

1

1.26.1.1.3.1 TCustomPropertyEdit.OnSetPropValueA Event

Occurs before changing property value (ANSI version).

property OnSetPropValueA: TOnSetPropValueEventA ;

Description

Write OnSetPropValueA to change (see page 453) value to be written to property.

1.26.1.1.3.2 TCustomPropertyEdit.OnSetPropValueW Event

Occurs before changing property value (Unicode version).

property OnSetPropValueW: TOnSetPropValueEventW ;

Description

Write OnSetPropValueW to change (see page 453) value to be written to property.

1.26.1.2 TPropertyEdit Class
Edit control to edit specified property.

Class Hierarchy

TPropertyEdit = class (TCustomPropertyEdit);

File

edcPropEdit

Description

TPropertyEdit is the immediate descendant of the TCustomPropertyEdit (see page 448) type.

It publishes some of the TCustomPropertyEdit (see page 448) protected property.

Edit control to edit specified property. This control uses property editors (IProperty).

Style of the control depends on property editor and may be: simple, ellipsis or combo-box.

Style and some other settings are initialized from property editor.

Use Component (see page 462) and PropertyName (see page 463) properties to specify which property to edit.

To register new property editor use standard Delphi function RegisterPropertyEditor.

Members

TUnicodeEdit Methods

TUnicodeEdit Methods Description

 Create (see page 108) Creates and initializes a TUnicodeEdit instance.

 Destroy (see page 108) Destroys an instance of TUnicodeEdit.

TBtnEdit Class

TBtnEdit Class Description

 AdjustClientRect (see page 73) Overrides the inherited method.

 ButtonClick (see page 73) Simulates a button click, as if the user had clicked the button.

 Create (see page 73) Creates and initializes a TBtnEdit (see page 70) instance.

1.26 edcPropEdit Namespace EControl Form Designer Pro Classes

457

1

 CreateParams (see page 73) Overrides the inherited method.

 CreateWnd (see page 73) Overrides the inherited method.

 Destroy (see page 74) Destroys an instance of TBtnEdit (see page 70)

 EndTracking (see page 74) Called after finishing the mouse tracking

 KeyDown (see page 74) Overrides the inherited method.

 KeyPress (see page 74) Overrides the inherited method.

 MouseMove (see page 74) Overrides the inherited method.

 MouseUp (see page 75) Overrides the inherited method.

 Paint (see page 75) Overrides the base rendering method.

 PaintBtnGlyph (see page 75) Renders the image of the button.

 PaintStatus (see page 75) Paints status area. This method is called only if StatusWidth (see page 77)
is greater 0.

 PaintWindow (see page 75) Overrides the inherited method.

 PtInButton (see page 75) Checks if specified point is over the button

 StartTracking (see page 76) Calls immediately after user pushes the button.

 StopTracking (see page 76) Calls immediately after user releases the button.

 TrackButton (see page 76) Controls tracking button process.

TCustomEditEx Class

TCustomEditEx Class Description

 AcceptListValue (see page 82) Active pop-up window.

 ButtonClick (see page 82) Simulates a button click, as if the user had clicked the button.

 CloseUp (see page 82) Generates an OnCloseUp (see page 85) event and makes some other
actions.

 Create (see page 82) Creates and initializes a TBtnEdit instance.

 Destroy (see page 82) Destroys an instance of TBtnEdit

 DoDropDownKeys (see page 83) Works as a method dispatcher depending on parameter values.

 DropDown (see page 83) Generates an OnDropDown (see page 85) event.

 EndTracking (see page 83) Called after finishing the mouse tracking

 KeyPress (see page 83) Respond to keyboard input.

 MouseDown (see page 83) Overrides inherited method

 MouseMove (see page 83) Overrides the inherited method.

 PaintBtnGlyph (see page 84) Overrides inherited method

 StartTracking (see page 84) Overrides inherited property

TCustomPropertyEdit Class

TCustomPropertyEdit Class Description

 AcceptListValue (see page 453) Called when item was selected in drop-down list.

 ButtonClick (see page 453) Called when button was clicked.

 Change (see page 453) Reflects changes in property editor to property

 ChangePropertyValue (see page 453) Writes current text to property.

 Create (see page 453) Creates and initializes a TCustomPropertyEdit instance.

 DblClick (see page 453) Calls corresponding property editor

 DoEdit (see page 454) Calls corresponding property editor

 DoExit (see page 454) Sets value to corresponding property

 DropDown (see page 454) Opens drop down list.

 GetEditor (see page 454) Gets the corresponding editor for the property

 GetStr (see page 454) Adds string to the pick list of the TCustomPropertyEdit (see page 448)

 GetWStr (see page 454) Adds Unicode string to the pick list of the TCustomPropertyEdit (see page
448)

 MouseDown (see page 454) Overrides inherited method

 Notification (see page 455) Responds to notifications that components are being created or destroyed.

 PaintStatus (see page 455) Paints status area. This method is called only if StatusWidth is greater 0.

 SetValue (see page 455) Sets Value to the property editor and invokes OnChange if assigned.

 UpdateEditState (see page 455) Updates all the properties of the TCustomPropertyEdit (see page 448)
object

TUnicodeEdit Properties

TUnicodeEdit Properties Description

 IsUnicode (see page 108) Specifies whether control is Unicode edit.

1.26 edcPropEdit Namespace EControl Form Designer Pro Classes

458

1

 SelTextW (see page 109) Specifies the selected portion of the edit control’s text (Unicode version).

 Text (see page 109) Specifies the text string that is displayed in the edit box (Ansi version).

 TextW (see page 109) Specifies the text string that is displayed in the edit box (Ansi version).

TBtnEdit Class

TBtnEdit Class Description

 Alignment (see page 76) Determines how the text is aligned within the editor control.

 ButtonVisible (see page 76) Specifies if button-like rectangle at the right edge of the control is visible.

 ButtonWidth (see page 77) Specifies width in pixels of the button.

 Canvas (see page 77) Provides access to the drawing surface of the TBtnEdit (see page 70).

 MultiLine (see page 77) Designates a multiline edit control. The default is single-line edit control.

 StatusWidth (see page 77) Specifies width of status area. If StatusWidth is equal to 0 - status area is not
processed.

 WantReturns (see page 77) Determines whether the user can insert return characters into the text.

 WantTabs (see page 78) Determines whether the user can insert tab characters into the text.

 WordWrap (see page 78) Determines whether the edit control inserts soft carriage returns so text wraps
at the right margin.

TCustomEditEx Class

TCustomEditEx Class Description

 ActiveList (see page 84) Specifies current popup control.

 EditStyle (see page 84) Specifies edit style of the button

 ListAlign (see page 84) Specifies relative align of popup control.

 PickList (see page 84) Determines the drop-down list.

TCustomPropertyEdit Class

TCustomPropertyEdit Class Description

 AcceptTab (see page 455) Specifies whether edit control should process TAB key.

 Component (see page 456) Specifies owner of the property will be edited

 Designer (see page 456) Specifies active designer.

 PropertyEditor (see page 456) Specifies interface for property editor (IProperty)

 PropertyName (see page 456) Specifies name of the property which will be edited

 ReadOnly (see page 456) Specifies whether property can not be edited.

 TypeKinds (see page 456) Set of types of editable properties.

TPropertyEdit Class

TPropertyEdit Class Description

 Component (see page 462) Specifies owner of the property will be edited

 Designer (see page 462) Specifies active designer.

 ListAlign (see page 462) Specifies relative align of popup control.

 OnSetPropValueA (see page 462) Occurs before changing property value (ANSI version).

 OnSetPropValueW (see page 463) Occurs before changing property value (Unicode version).

 PropertyName (see page 463) Specifies name of the property which will be edited

 ReadOnly (see page 463) Specifies whether property can not be edited.

 TypeKinds (see page 463) Set of types of editable properties.

TBtnEdit Events

TBtnEdit Class

TBtnEdit Class Description

 OnButtonClick (see page 78) Occurs when the user clicks the button.

TCustomEditEx Class

TCustomEditEx Class Description

 OnAcceptListValue (see page 85) Occurs when the user makes right choice in the drop-down list.

 OnCloseUp (see page 85) Occurs when the drop-down list closes up due to some user action.

 OnDropDown (see page 85) Occurs when the user opens the drop-down list.

 OnMeasureWidth (see page 85) Occurs when width of controls needs to be calculated.

1.26 edcPropEdit Namespace EControl Form Designer Pro Classes

459

1

TCustomPropertyEdit Class

TCustomPropertyEdit Class Description

 OnSetPropValueA (see page 457) Occurs before changing property value (ANSI version).

 OnSetPropValueW (see page 457) Occurs before changing property value (Unicode version).

Legend

Constructor

virtual

protected

Property

read only

Event

TBtnEdit Events

TBtnEdit Class

TBtnEdit Class Description

 OnButtonClick (see page 78) Occurs when the user clicks the button.

TCustomEditEx Class

TCustomEditEx Class Description

 OnAcceptListValue (see page 85) Occurs when the user makes right choice in the drop-down list.

 OnCloseUp (see page 85) Occurs when the drop-down list closes up due to some user action.

 OnDropDown (see page 85) Occurs when the user opens the drop-down list.

 OnMeasureWidth (see page 85) Occurs when width of controls needs to be calculated.

TCustomPropertyEdit Class

TCustomPropertyEdit Class Description

 OnSetPropValueA (see page 457) Occurs before changing property value (ANSI version).

 OnSetPropValueW (see page 457) Occurs before changing property value (Unicode version).

TUnicodeEdit Methods

TUnicodeEdit Methods Description

 Create (see page 108) Creates and initializes a TUnicodeEdit instance.

 Destroy (see page 108) Destroys an instance of TUnicodeEdit.

TBtnEdit Class

TBtnEdit Class Description

 AdjustClientRect (see page 73) Overrides the inherited method.

 ButtonClick (see page 73) Simulates a button click, as if the user had clicked the button.

 Create (see page 73) Creates and initializes a TBtnEdit (see page 70) instance.

 CreateParams (see page 73) Overrides the inherited method.

 CreateWnd (see page 73) Overrides the inherited method.

 Destroy (see page 74) Destroys an instance of TBtnEdit (see page 70)

 EndTracking (see page 74) Called after finishing the mouse tracking

 KeyDown (see page 74) Overrides the inherited method.

 KeyPress (see page 74) Overrides the inherited method.

 MouseMove (see page 74) Overrides the inherited method.

 MouseUp (see page 75) Overrides the inherited method.

 Paint (see page 75) Overrides the base rendering method.

 PaintBtnGlyph (see page 75) Renders the image of the button.

 PaintStatus (see page 75) Paints status area. This method is called only if StatusWidth (see page 77)
is greater 0.

 PaintWindow (see page 75) Overrides the inherited method.

 PtInButton (see page 75) Checks if specified point is over the button

 StartTracking (see page 76) Calls immediately after user pushes the button.

 StopTracking (see page 76) Calls immediately after user releases the button.

 TrackButton (see page 76) Controls tracking button process.

1.26 edcPropEdit Namespace EControl Form Designer Pro Classes

460

1

TCustomEditEx Class

TCustomEditEx Class Description

 AcceptListValue (see page 82) Active pop-up window.

 ButtonClick (see page 82) Simulates a button click, as if the user had clicked the button.

 CloseUp (see page 82) Generates an OnCloseUp (see page 85) event and makes some other
actions.

 Create (see page 82) Creates and initializes a TBtnEdit instance.

 Destroy (see page 82) Destroys an instance of TBtnEdit

 DoDropDownKeys (see page 83) Works as a method dispatcher depending on parameter values.

 DropDown (see page 83) Generates an OnDropDown (see page 85) event.

 EndTracking (see page 83) Called after finishing the mouse tracking

 KeyPress (see page 83) Respond to keyboard input.

 MouseDown (see page 83) Overrides inherited method

 MouseMove (see page 83) Overrides the inherited method.

 PaintBtnGlyph (see page 84) Overrides inherited method

 StartTracking (see page 84) Overrides inherited property

TCustomPropertyEdit Class

TCustomPropertyEdit Class Description

 AcceptListValue (see page 453) Called when item was selected in drop-down list.

 ButtonClick (see page 453) Called when button was clicked.

 Change (see page 453) Reflects changes in property editor to property

 ChangePropertyValue (see page 453) Writes current text to property.

 Create (see page 453) Creates and initializes a TCustomPropertyEdit instance.

 DblClick (see page 453) Calls corresponding property editor

 DoEdit (see page 454) Calls corresponding property editor

 DoExit (see page 454) Sets value to corresponding property

 DropDown (see page 454) Opens drop down list.

 GetEditor (see page 454) Gets the corresponding editor for the property

 GetStr (see page 454) Adds string to the pick list of the TCustomPropertyEdit (see page 448)

 GetWStr (see page 454) Adds Unicode string to the pick list of the TCustomPropertyEdit (see page
448)

 MouseDown (see page 454) Overrides inherited method

 Notification (see page 455) Responds to notifications that components are being created or destroyed.

 PaintStatus (see page 455) Paints status area. This method is called only if StatusWidth is greater 0.

 SetValue (see page 455) Sets Value to the property editor and invokes OnChange if assigned.

 UpdateEditState (see page 455) Updates all the properties of the TCustomPropertyEdit (see page 448)
object

TUnicodeEdit Properties

TUnicodeEdit Properties Description

 IsUnicode (see page 108) Specifies whether control is Unicode edit.

 SelTextW (see page 109) Specifies the selected portion of the edit control’s text (Unicode version).

 Text (see page 109) Specifies the text string that is displayed in the edit box (Ansi version).

 TextW (see page 109) Specifies the text string that is displayed in the edit box (Ansi version).

TBtnEdit Class

TBtnEdit Class Description

 Alignment (see page 76) Determines how the text is aligned within the editor control.

 ButtonVisible (see page 76) Specifies if button-like rectangle at the right edge of the control is visible.

 ButtonWidth (see page 77) Specifies width in pixels of the button.

 Canvas (see page 77) Provides access to the drawing surface of the TBtnEdit (see page 70).

 MultiLine (see page 77) Designates a multiline edit control. The default is single-line edit control.

 StatusWidth (see page 77) Specifies width of status area. If StatusWidth is equal to 0 - status area is not
processed.

 WantReturns (see page 77) Determines whether the user can insert return characters into the text.

 WantTabs (see page 78) Determines whether the user can insert tab characters into the text.

 WordWrap (see page 78) Determines whether the edit control inserts soft carriage returns so text wraps
at the right margin.

1.26 edcPropEdit Namespace EControl Form Designer Pro Classes

461

1

TCustomEditEx Class

TCustomEditEx Class Description

 ActiveList (see page 84) Specifies current popup control.

 EditStyle (see page 84) Specifies edit style of the button

 ListAlign (see page 84) Specifies relative align of popup control.

 PickList (see page 84) Determines the drop-down list.

TCustomPropertyEdit Class

TCustomPropertyEdit Class Description

 AcceptTab (see page 455) Specifies whether edit control should process TAB key.

 Component (see page 456) Specifies owner of the property will be edited

 Designer (see page 456) Specifies active designer.

 PropertyEditor (see page 456) Specifies interface for property editor (IProperty)

 PropertyName (see page 456) Specifies name of the property which will be edited

 ReadOnly (see page 456) Specifies whether property can not be edited.

 TypeKinds (see page 456) Set of types of editable properties.

TPropertyEdit Class

TPropertyEdit Class Description

 Component (see page 462) Specifies owner of the property will be edited

 Designer (see page 462) Specifies active designer.

 ListAlign (see page 462) Specifies relative align of popup control.

 OnSetPropValueA (see page 462) Occurs before changing property value (ANSI version).

 OnSetPropValueW (see page 463) Occurs before changing property value (Unicode version).

 PropertyName (see page 463) Specifies name of the property which will be edited

 ReadOnly (see page 463) Specifies whether property can not be edited.

 TypeKinds (see page 463) Set of types of editable properties.

1.26.1.2.1 TPropertyEdit Properties

1.26.1.2.1.1 TPropertyEdit.Component Property

Specifies owner of the property will be edited

property Component: TComponent;

Description

1.26.1.2.1.2 TPropertyEdit.Designer Property

Specifies active designer.

property Designer: TzFormDesigner ;

Description

This property is used for some property editors demanding transfer IDesigner as parameter

1.26.1.2.1.3 TPropertyEdit.ListAlign Property

Specifies relative align of popup control.

property ListAlign: TAlignment;

1.26.1.2.1.4 TPropertyEdit.OnSetPropValueA Property

Occurs before changing property value (ANSI version).

property OnSetPropValueA: TOnSetPropValueEventA ;

1.26 edcPropEdit Namespace EControl Form Designer Pro Classes

462

1

Description

Write OnSetPropValueA to change value to be written to property.

1.26.1.2.1.5 TPropertyEdit.OnSetPropValueW Property

Occurs before changing property value (Unicode version).

property OnSetPropValueW: TOnSetPropValueEventW ;

Description

Write OnSetPropValueW to change value to be written to property.

1.26.1.2.1.6 TPropertyEdit.PropertyName Property

Specifies name of the property which will be edited

property PropertyName: string ;

Description

1.26.1.2.1.7 TPropertyEdit.ReadOnly Property

Specifies whether property can not be edited.

property ReadOnly : Boolean;

Description

1.26.1.2.1.8 TPropertyEdit.TypeKinds Property

Set of types of editable properties.

property TypeKinds: TTypeKinds;

Description

This property used to determine if assigned property editor does will be accessible or not.

If assigned property editor does not suit this TypeKinds, it will be inaccessible.

1.26.1.3 TPropertyNameProperty Class
TPropertyNameProperty is the editor for string property with name "PropertyName"

Class Hierarchy

TPropertyNameProperty = class (TStringProperty);

File

edcPropEdit

Description

1.26 edcPropEdit Namespace EControl Form Designer Pro Interfaces

463

1

1.26.2 Interfaces

The following table lists interfaces in this documentation.

Interfaces

Interface Description

 IPropertyStatusImage (see page 464) Provides status image information.

Legend

Interface

1.26.2.1 IPropertyStatusImage Interface
Provides status image information.

Class Hierarchy

IPropertyStatusImage = interface ;

File

edcPropEdit

Description

Add this interface to property editors to support status region in property edit (special area at the left of edit control).

Members

IPropertyStatusImage Methods

IPropertyStatusImage Methods Description

 DrawStatus (see page 464) Draws status image.

 GetStatusWidth (see page 464) Returns width of status image.

 StatusClick (see page 465) Called when user clicks on status region in edit control.

Legend

Method

IPropertyStatusImage Methods

IPropertyStatusImage Methods Description

 DrawStatus (see page 464) Draws status image.

 GetStatusWidth (see page 464) Returns width of status image.

 StatusClick (see page 465) Called when user clicks on status region in edit control.

1.26.2.1.1 IPropertyStatusImage Methods

1.26.2.1.1.1 IPropertyStatusImage.DrawStatus Method

Draws status image.

procedure DrawStatus(Canvas: TCanvas; const R: TRect);

1.26.2.1.1.2 IPropertyStatusImage.GetStatusWidth Method

Returns width of status image.

function GetStatusWidth: integer;

1.26 edcPropEdit Namespace EControl Form Designer Pro Interfaces

464

1

1.26.2.1.1.3 IPropertyStatusImage.StatusClick Method

Called when user clicks on status region in edit control.

procedure StatusClick(Button: TMouseButton; pt: TPoint);

1.26.3 Types

The following table lists types in this documentation.

Types

Type Description

TOnSetPropValueEventA (see page 465) See TCustomPropertyEdit.OnSetPropValueA Event (see page 457)

TOnSetPropValueEventW (see page 465) See TCustomPropertyEdit.OnSetPropValueW Event (see page 457)

1.26.3.1 edcPropEdit.TOnSetPropValueEventA Type
See TCustomPropertyEdit.OnSetPropValueA Event (see page 457)

TOnSetPropValueEventA = procedure (Sender: TObject; var Value: string) of object ;

File

edcPropEdit

1.26.3.2 edcPropEdit.TOnSetPropValueEventW Type
See TCustomPropertyEdit.OnSetPropValueW Event (see page 457)

TOnSetPropValueEventW = procedure (Sender: TObject; var Value: WideString) of object ;

File

edcPropEdit

1.27 eddAlignDlg Namespace

1.27.1 Classes

The following table lists classes in this documentation.

Classes

Class Description

TAlignmentDlg (see page 465) Alignment dialog box

1.27.1.1 TAlignmentDlg Class
Alignment dialog box

1.27 eddAlignDlg Namespace EControl Form Designer Pro Classes

465

1

Class Hierarchy

TAlignmentDlg = class (TForm);

File

eddAlignDlg

Description

Use this dialog box to line up selected components in relation to each other or to the form. The options for horizontal or
vertical alignment are:

Option Description

No change Does not change the alignment of the component

Left sides Lines up the left edges of the selected components (horizontal only)

Centers Lines up the centers of the selected components

Right sides Lines up the right edges of the selected components (horizontal only)

Tops Lines up the top edges of the selected components (vertical only)

Bottoms Lines up the bottom edges of the selected components (vertical only)

Space equally Lines up the selected components equidistant from each other

Center in
window

Lines up the selected components with the center of the window

You can also invoke Align by right clicking in an active form.

1.28 eddAlignPal Namespace

1.28.1 Classes

The following table lists classes in this documentation.

Classes

Class Description

TAlignPalette (see page 466) Alignment palette

1.28.1.1 TAlignPalette Class
Alignment palette

Class Hierarchy

TAlignPalette = class (TForm);

1.28 eddAlignPal Namespace EControl Form Designer Pro Classes

466

1

File

eddAlignPal

Description

Use the alignment palette to align components to the form, or with each other.

The alignment palette has Tool Help for each button.

Icon Effect

Aligns the selected components to the left edge of the component first selected. (Not applicable for single
components.)

Moves the selected components horizontally until their centers are aligned with the component first
selected. (Not applicable for single components.)

Aligns the selected component(s) to the center of the form along a horizontal line.

Horizontally aligns three or more selected components so that the middle components are equidistantly
spaced between the outer components

Aligns the selected components to the right edge of the component first selected. (Not applicable for single
components.)

Aligns the selected components to the top edge of the component first selected. (Not applicable for single
components.)

Moves the selected components vertically until their centers are aligned with component first selected. (Not
applicable for single components.)

Aligns the selected component(s) to the center of the form along a vertical line.

Vertically aligns three or more selected components so that the middle components are equally spaced
between the outer components.

Aligns the selected components to the bottom edge of the component first selected. (Not applicable for
single components.)

If you are unsure of how a particular button on the alignment palette acts, click and hold on to the button. The icon on the
button changes to show you how it will align the selected components. To apply the button’s alignment to a selection,
release the button. To prevent alignment after you click and hold the button, drag the mouse off the palette before releasing
the mouse button.

Note: You can also use the Alignment dialog box to align components.

1.29 eddCrOrdDl Namespace

1.29.1 Classes

The following table lists classes in this documentation.

Classes

Class Description

TCreateOrderDlg (see page 468) Creation Order dialog box

1.29 eddCrOrdDl Namespace EControl Form Designer Pro Classes

467

1

1.29.1.1 TCreateOrderDlg Class
Creation Order dialog box

Class Hierarchy

TCreateOrderDlg = class (TForm);

File

eddCrOrdDl

Description

Use this dialog box to specify the order in which your application creates nonvisual components when you load the form at
design time or runtime.

The list box displays only those nonvisual components on the active form, their type, and their current creation order. The
default creation order is determined by the order in which you placed the nonvisual components on the form.

To change the creation order:

1. Select a component name.

2. Click the up button to move the component creation order up, or click the down arrow to move its creation order down.

You can also drag the selected component to its new position in the creation order.

3. To save your changes, click OK.

1.30 eddCustomPal Namespace

1.30.1 Classes

The following table lists classes in this documentation.

Classes

Class Description

TCustomizePaletteDlg (see page 468) Customizing the way the Component palette appears

1.30.1.1 TCustomizePaletteDlg Class
Customizing the way the Component palette appears

Class Hierarchy

TCustomizePaletteDlg = class (TForm);

1.30 eddCustomPal Namespace EControl Form Designer Pro Classes

468

1

File

eddCustomPal

Description

Use the Palette page of the Environment Options dialog box to customize the way the Component palette appears. You can
rename, add, remove, or reorder pages and components.

Pages Lists the pages in the Component palette, in the order in which they currently appear. You can rearrange
these pages or view and rearrange their components in the Components list. The last item in the Pages list
is [All]; when you select [All], the Components list shows components from every page as well as hidden
components.

Components Lists the components on the currently selected Component palette page in the Pages list. Components may
come from installed packages or they may be component templates created with the Component|Create
Component Template command. Components appear in their current order on the palette. You can
rearrange components, or move them to a different page by dragging them. When [All] is selected in the
Pages list, you can sort by component name, package, or palette page by clicking on the appropriate
column heading

Use the following buttons when an item is selected in the Pages list.

Add Click Add to display the Add Page dialog box, where you can create new pages on the Component palette. Once
you have created a new Component palette page, you can move components from other pages onto it or add
new components onto it using Component|Install

Delete To remove the selected page from the palette, click Delete. Before you can delete a page, it must be empty of
components. If you accidentally delete a component, select [All] in the Pages list and press Default Pages, or
use Component|Install to add it

Rename Click Rename to display the Rename Page dialog box, where you can rename the selected page

Default
Pages

This button is available when [All] is selected on the Pages list. Click Default Pages to restore pages to their
default order and replace all components on their default pages

Move
Up /
Move
Down

To change the position of the selected page, click Move Up or Move Down. You can also drag pages to a new
position

Use the following buttons when an item is selected in the Components list.

Hide /
Show

To prevent an installed component from appearing on the Component palette, click Hide. To redisplay a
hidden component, select [All] on the Pages list, select the hidden component on the Components list, then
click Show

Delete This button is available only when a component template is selected. To delete a component template, click
Delete

Move Up /
Move
Down

To change the position of a component on a page, click Move Up or Move Down. You can also drag
components to a new position

1.31 edcToolList Namespace

1.31 edcToolList Namespace EControl Form Designer Pro Classes

469

1

1.31.1 Classes

The following table lists classes in this documentation.

Classes

Class Description

TPaletteToolList (see page 470) Represents component palette in BDS style.

1.31.1.1 TPaletteToolList Class
Represents component palette in BDS style.

Class Hierarchy

TPaletteToolList = class (TCustomToolList , IClassSelector);

File

edcToolList

Description

Tool list contains components from component palette. Component page is represented by the tool list category. Items (
see page 482) may be easily adjusted by user using drag&drop operations.

Members

TCustomToolList Methods

TCustomToolList Methods Description

 CollapseAll (see page 118) Collapses all categories.

 Create (see page 119) Creates and initializes a TCustomToolList instance.

 Destroy (see page 119) Destroys an instance of TCustomToolList.

 DrawItemImage (see page 119) Draws item image.

 ExpandAll (see page 119) Expands all categories.

 GetCategoryItem (see page 119) Returns index of category item at the given position or above.

 ItemAtPos (see page 119) Returns items at the given position. If there are no item at the specified
position function returns -1.

 ItemIndexChanged (see page 119) Called when selected item was changed.

 ItemRect (see page 119) Returns rectangle occupied by the item.

 ItemsArranged (see page 120) Called after items were rearranged by the drag&drop operations.

 ItemsChanged (see page 120) Called when items were changed (any changes).

 ItemsHeight (see page 120) Calculates total height of items.

 MakeTopItem (see page 120) Scrolls list to make specified item topmost item.

 MakeVisible (see page 120) Scrolls list to make specified item visible.

 PaintItem (see page 120) Calls TToolListItem.Paint and allows to customize item rendering in derived
classes.

 SelectFirstVisible (see page 120) Selects first visible, i.e. not hidden, item.

IClassSelector Interface

IClassSelector Interface Description

 ClsChanged (see page 511) Called when selected in component palette component class was changed.

 ClsPalChanged (see page 512) Called when component palette was changed.

TPaletteToolList Class

TPaletteToolList Class Description

 ClsChanged (see page 476) Called when selected in component palette component class was changed.

1.31 edcToolList Namespace EControl Form Designer Pro Classes

470

1

 ClsPalChanged (see page 476) Called when component palette was changed.

 ComponentAt (see page 476) Returns associated component class info for toll item at Index position.

 Create (see page 476) Creates and initializes a TPaletteToolList instance.

 Destroy (see page 477) Destroys an instance of TPaletteToolList.

 DrawItemImage (see page 477) Draws item image.

 ItemIndexChanged (see page 477) Called when selected item was changed.

 ItemsArranged (see page 477) Called after items were rearranged by the drag&drop operations.

 ShowCategory (see page 477) Scrolls tool list to make category visible.

TCustomToolList Properties

TCustomToolList Properties Description

 AllowArrange (see page 120) Specifies whether items can be arranged by the drag&drop operations.

 AutoCollapse (see page 120) Specifies whether all categories should be collapsed when one category is
expanded or collapsed.

 CategoryHeight (see page 120) Specifies height of category item.

 Filtered (see page 120) Specifies whether items are filtered.

 FilterString (see page 121) Specifies filter string which is used to test item Caption.

 FoldingIcon (see page 121) Holds folding icon images.

 HintProps (see page 121) Provide properties to adjust hints processing.

 Images (see page 121) Determines which image list is associated with the tool list.

 InsertAtItem (see page 121) Specifies item index at which dragged object can be dropped.

 ItemHeight (see page 121) Specifies height of the normal item.

 ItemIndex (see page 121) Indicates which item is selected. If no item is selected ItemIndex is equal to -1.

 Items (see page 121) Provides access to items displayed in tool list.

 MouseOverItem (see page 122) Indicates item over which mouse cursor is located.

 RightClickSelect (see page 122) Specifies whether item can be selected by mouse right click.

 RowSpace (see page 122) Specifies space between two sequential items.

 Selected (see page 122) Currently selected item in tool list.

 StyleCategory (see page 122) Specifies style of category items.

 StyleCategoryMouseOver (see page 122) Specifies style of category item when mouse is over it.

 StyleCategorySelected (see page 122) Specifies style of selected category item.

 StyleItem (see page 122) Specifies style of tool items.

 StyleItemMouseOver (see page 122) Specifies style of tool item when mouse is over it.

 StyleItemSelected (see page 122) Specifies style of selected tool item.

 VerticalGroups (see page 122) Specifies whether category item should be displayed vertically along owned
items.

 ViewOrigin (see page 123) Specifies scrolling position of the tool list control.

TPaletteToolList Class

TPaletteToolList Class Description

 Align (see page 477) Determines how the control aligns within its container (parent control).

 AllowArrange (see page 478) Specifies whether items can be arranged by the drag&drop operations.

 Anchors (see page 478) Specifies how the control is anchored to its parent.

 AutoCollapse (see page 478) Specifies whether all categories should be collapsed when one category is
expanded or collapsed.

 BevelEdges (see page 478) Specifies which edges of the control are beveled.

 BevelInner (see page 478) Specifies the cut of the inner bevel.

 BevelKind (see page 479) Specifies the control’s bevel style.

 BevelOuter (see page 479) Specifies the cut of the outer bevel.

 BiDiMode (see page 479) Specifies the bi-directional mode for the control.

 CategoryHeight (see page 479) Specifies height of category item.

 Color (see page 479) Specifies the background color of the control.

 Constraints (see page 480) Specifies the size constraints for the control.

 Ctl3D (see page 480) Determines whether a control has a three-dimensional (3-D) or
two-dimensional look.

1.31 edcToolList Namespace EControl Form Designer Pro Classes

471

1

 CustomItems (see page 480) Allows managing of items in component toll list.
Item in list means:

1. Specification component item
ComponentClassName

2. Specification new category
+CategoryName

3. Specification existed category (components page) with adding all
components which belong to this page.
++CategoryName

4. Rename existed category (components page) with adding all components
which belong to this page.
++CategoryName=Display_name_of_category

5. Adding all components which belong to the page without adding category.
++CategoryName=

 DragCursor (see page 481) Indicates the image used to represent the mouse pointer when the control is
being dragged.

 DragImageType (see page 481) Specifies drag image when dragging component on form.

 DragKind (see page 481) Specifies whether the control is being dragged normally or for docking.

 DragMode (see page 481) Determines how the control initiates drag-and-drop or drag-and-dock
operations.

 Enabled (see page 481) Controls whether the control responds to mouse, keyboard, and timer events.

 Filtered (see page 481) Specifies whether items are filtered.

 FilterString (see page 482) Specifies filter string which is used to test item Caption.

 FoldingIcon (see page 482) Holds folding icon images.

 Font (see page 482) Controls the attributes of text written on or in the control.

 HintProps (see page 482) Provide properties to adjust hints processing.

 ItemHeight (see page 482) Specifies height of the normal item.

 Items (see page 482) Provides access to items displayed in tool list.

 OnCanResize (see page 482) Occurs when an attempt is made to resize the control.

 OnClick (see page 483) Occurs when the user clicks the control.

 OnConstrainedResize (see page 483) Adjust resize constraints.

 OnContextPopup (see page 483) Occurs when the user right-clicks the control or otherwise invokes the popup
menu (such as using the keyboard).

 OnDblClick (see page 484) Occurs when the user double-clicks the left mouse button when the mouse
pointer is over the control.

 OnDragDrop (see page 484) Occurs when the user drops an object being dragged.

 OnDragOver (see page 484) Occurs when the user drags an object over a control.

 OnEndDrag (see page 484) Occurs when the dragging of an object ends, either by dropping the object or
by canceling the dragging.

 OnEnter (see page 484) Occurs when a control receives the input focus.

 OnExit (see page 485) Occurs when the input focus shifts away from one control to another.

 OnKeyDown (see page 485) Occurs when a user presses any key while the control has focus.

 OnKeyPress (see page 485) Occurs when key pressed.

 OnKeyUp (see page 485) Occurs when the user releases a key that has been pressed.

 OnMouseDown (see page 486) Occurs when the user presses a mouse button with the mouse pointer over a
control.

 OnMouseMove (see page 486) Occurs when the user moves the mouse pointer while the mouse pointer is
over a control.

 OnMouseUp (see page 486) Occurs when the user releases a mouse button that was pressed with the
mouse pointer over a component.

 OnResize (see page 486) Occurs immediately after the control is resized.

 OnStartDrag (see page 487) Occurs when the user begins to drag the control or an object it contains by
left-clicking on the control and holding the mouse button down.

 ParentBiDiMode (see page 487) Specifies whether the control uses its parent’s BiDiMode.

 ParentColor (see page 487) Determines where a control looks for its color information.

 ParentCtl3D (see page 487) Determines where a component looks to determine if it should appear three
dimensional.

 ParentFont (see page 487) Determines where a control looks for its font information.

 ParentShowHint (see page 488) Determines where a control looks to find out if its Help Hint should be shown.

 PopupMenu (see page 488) Identifies the pop-up menu associated with the control.

1.31 edcToolList Namespace EControl Form Designer Pro Classes

472

1

 RowSpace (see page 488) Specifies space between two sequential items.

 ShowCaptions (see page 488) Specifies whether button captions displayed in tool list.

 ShowHint (see page 488) Determines whether the control displays a Help Hint when the mouse pointer
rests momentarily on the control.

 StyleCategory (see page 488) Specifies style of category items.

 StyleCategoryMouseOver (see page 488) Specifies style of category item when mouse is over it.

 StyleCategorySelected (see page 488) Specifies style of selected category item.

 StyleItem (see page 488) Specifies style of tool items.

 StyleItemMouseOver (see page 488) Specifies style of tool item when mouse is over it.

 StyleItemSelected (see page 488) Specifies style of selected tool item.

 TabOrder (see page 489) Indicates the position of the control in its parent's tab order.

 TabStop (see page 489) Determines if the user can tab to a control.

 TransparentImages (see page 489) Specifies whether bottom-left pixel is transparent color. If TransparentImages
is False, images are drawn without transparency.

 VerticalGroups (see page 489) Specifies whether category item should be displayed vertically along owned
items.

 Visible (see page 489) Determines whether the component appears on screen.

TCustomToolList Events

TCustomToolList Events Description

 OnItemArranged (see page 123) Occurs when items order was changed.

 OnItemChanged (see page 123) Occurs when selected item is changes.

TPaletteToolList Class

TPaletteToolList Class Description

 OnPalChange (see page 489) Occurs when component palette was changed.

Legend

Method

virtual

protected

private

Property

read only

Event

TCustomToolList Events

TCustomToolList Events Description

 OnItemArranged (see page 123) Occurs when items order was changed.

 OnItemChanged (see page 123) Occurs when selected item is changes.

TPaletteToolList Class

TPaletteToolList Class Description

 OnPalChange (see page 489) Occurs when component palette was changed.

TCustomToolList Methods

TCustomToolList Methods Description

 CollapseAll (see page 118) Collapses all categories.

 Create (see page 119) Creates and initializes a TCustomToolList instance.

 Destroy (see page 119) Destroys an instance of TCustomToolList.

 DrawItemImage (see page 119) Draws item image.

 ExpandAll (see page 119) Expands all categories.

 GetCategoryItem (see page 119) Returns index of category item at the given position or above.

 ItemAtPos (see page 119) Returns items at the given position. If there are no item at the specified
position function returns -1.

 ItemIndexChanged (see page 119) Called when selected item was changed.

 ItemRect (see page 119) Returns rectangle occupied by the item.

 ItemsArranged (see page 120) Called after items were rearranged by the drag&drop operations.

 ItemsChanged (see page 120) Called when items were changed (any changes).

 ItemsHeight (see page 120) Calculates total height of items.

1.31 edcToolList Namespace EControl Form Designer Pro Classes

473

1

 MakeTopItem (see page 120) Scrolls list to make specified item topmost item.

 MakeVisible (see page 120) Scrolls list to make specified item visible.

 PaintItem (see page 120) Calls TToolListItem.Paint and allows to customize item rendering in derived
classes.

 SelectFirstVisible (see page 120) Selects first visible, i.e. not hidden, item.

IClassSelector Interface

IClassSelector Interface Description

 ClsChanged (see page 511) Called when selected in component palette component class was changed.

 ClsPalChanged (see page 512) Called when component palette was changed.

TPaletteToolList Class

TPaletteToolList Class Description

 ClsChanged (see page 476) Called when selected in component palette component class was changed.

 ClsPalChanged (see page 476) Called when component palette was changed.

 ComponentAt (see page 476) Returns associated component class info for toll item at Index position.

 Create (see page 476) Creates and initializes a TPaletteToolList instance.

 Destroy (see page 477) Destroys an instance of TPaletteToolList.

 DrawItemImage (see page 477) Draws item image.

 ItemIndexChanged (see page 477) Called when selected item was changed.

 ItemsArranged (see page 477) Called after items were rearranged by the drag&drop operations.

 ShowCategory (see page 477) Scrolls tool list to make category visible.

TCustomToolList Properties

TCustomToolList Properties Description

 AllowArrange (see page 120) Specifies whether items can be arranged by the drag&drop operations.

 AutoCollapse (see page 120) Specifies whether all categories should be collapsed when one category is
expanded or collapsed.

 CategoryHeight (see page 120) Specifies height of category item.

 Filtered (see page 120) Specifies whether items are filtered.

 FilterString (see page 121) Specifies filter string which is used to test item Caption.

 FoldingIcon (see page 121) Holds folding icon images.

 HintProps (see page 121) Provide properties to adjust hints processing.

 Images (see page 121) Determines which image list is associated with the tool list.

 InsertAtItem (see page 121) Specifies item index at which dragged object can be dropped.

 ItemHeight (see page 121) Specifies height of the normal item.

 ItemIndex (see page 121) Indicates which item is selected. If no item is selected ItemIndex is equal to -1.

 Items (see page 121) Provides access to items displayed in tool list.

 MouseOverItem (see page 122) Indicates item over which mouse cursor is located.

 RightClickSelect (see page 122) Specifies whether item can be selected by mouse right click.

 RowSpace (see page 122) Specifies space between two sequential items.

 Selected (see page 122) Currently selected item in tool list.

 StyleCategory (see page 122) Specifies style of category items.

 StyleCategoryMouseOver (see page 122) Specifies style of category item when mouse is over it.

 StyleCategorySelected (see page 122) Specifies style of selected category item.

 StyleItem (see page 122) Specifies style of tool items.

 StyleItemMouseOver (see page 122) Specifies style of tool item when mouse is over it.

 StyleItemSelected (see page 122) Specifies style of selected tool item.

 VerticalGroups (see page 122) Specifies whether category item should be displayed vertically along owned
items.

 ViewOrigin (see page 123) Specifies scrolling position of the tool list control.

TPaletteToolList Class

TPaletteToolList Class Description

 Align (see page 477) Determines how the control aligns within its container (parent control).

 AllowArrange (see page 478) Specifies whether items can be arranged by the drag&drop operations.

 Anchors (see page 478) Specifies how the control is anchored to its parent.

 AutoCollapse (see page 478) Specifies whether all categories should be collapsed when one category is
expanded or collapsed.

 BevelEdges (see page 478) Specifies which edges of the control are beveled.

1.31 edcToolList Namespace EControl Form Designer Pro Classes

474

1

 BevelInner (see page 478) Specifies the cut of the inner bevel.

 BevelKind (see page 479) Specifies the control’s bevel style.

 BevelOuter (see page 479) Specifies the cut of the outer bevel.

 BiDiMode (see page 479) Specifies the bi-directional mode for the control.

 CategoryHeight (see page 479) Specifies height of category item.

 Color (see page 479) Specifies the background color of the control.

 Constraints (see page 480) Specifies the size constraints for the control.

 Ctl3D (see page 480) Determines whether a control has a three-dimensional (3-D) or
two-dimensional look.

 CustomItems (see page 480) Allows managing of items in component toll list.
Item in list means:

1. Specification component item
ComponentClassName

2. Specification new category
+CategoryName

3. Specification existed category (components page) with adding all
components which belong to this page.
++CategoryName

4. Rename existed category (components page) with adding all components
which belong to this page.
++CategoryName=Display_name_of_category

5. Adding all components which belong to the page without adding category.
++CategoryName=

 DragCursor (see page 481) Indicates the image used to represent the mouse pointer when the control is
being dragged.

 DragImageType (see page 481) Specifies drag image when dragging component on form.

 DragKind (see page 481) Specifies whether the control is being dragged normally or for docking.

 DragMode (see page 481) Determines how the control initiates drag-and-drop or drag-and-dock
operations.

 Enabled (see page 481) Controls whether the control responds to mouse, keyboard, and timer events.

 Filtered (see page 481) Specifies whether items are filtered.

 FilterString (see page 482) Specifies filter string which is used to test item Caption.

 FoldingIcon (see page 482) Holds folding icon images.

 Font (see page 482) Controls the attributes of text written on or in the control.

 HintProps (see page 482) Provide properties to adjust hints processing.

 ItemHeight (see page 482) Specifies height of the normal item.

 Items (see page 482) Provides access to items displayed in tool list.

 OnCanResize (see page 482) Occurs when an attempt is made to resize the control.

 OnClick (see page 483) Occurs when the user clicks the control.

 OnConstrainedResize (see page 483) Adjust resize constraints.

 OnContextPopup (see page 483) Occurs when the user right-clicks the control or otherwise invokes the popup
menu (such as using the keyboard).

 OnDblClick (see page 484) Occurs when the user double-clicks the left mouse button when the mouse
pointer is over the control.

 OnDragDrop (see page 484) Occurs when the user drops an object being dragged.

 OnDragOver (see page 484) Occurs when the user drags an object over a control.

 OnEndDrag (see page 484) Occurs when the dragging of an object ends, either by dropping the object or
by canceling the dragging.

 OnEnter (see page 484) Occurs when a control receives the input focus.

 OnExit (see page 485) Occurs when the input focus shifts away from one control to another.

 OnKeyDown (see page 485) Occurs when a user presses any key while the control has focus.

 OnKeyPress (see page 485) Occurs when key pressed.

 OnKeyUp (see page 485) Occurs when the user releases a key that has been pressed.

 OnMouseDown (see page 486) Occurs when the user presses a mouse button with the mouse pointer over a
control.

 OnMouseMove (see page 486) Occurs when the user moves the mouse pointer while the mouse pointer is
over a control.

 OnMouseUp (see page 486) Occurs when the user releases a mouse button that was pressed with the
mouse pointer over a component.

1.31 edcToolList Namespace EControl Form Designer Pro Classes

475

1

 OnResize (see page 486) Occurs immediately after the control is resized.

 OnStartDrag (see page 487) Occurs when the user begins to drag the control or an object it contains by
left-clicking on the control and holding the mouse button down.

 ParentBiDiMode (see page 487) Specifies whether the control uses its parent’s BiDiMode.

 ParentColor (see page 487) Determines where a control looks for its color information.

 ParentCtl3D (see page 487) Determines where a component looks to determine if it should appear three
dimensional.

 ParentFont (see page 487) Determines where a control looks for its font information.

 ParentShowHint (see page 488) Determines where a control looks to find out if its Help Hint should be shown.

 PopupMenu (see page 488) Identifies the pop-up menu associated with the control.

 RowSpace (see page 488) Specifies space between two sequential items.

 ShowCaptions (see page 488) Specifies whether button captions displayed in tool list.

 ShowHint (see page 488) Determines whether the control displays a Help Hint when the mouse pointer
rests momentarily on the control.

 StyleCategory (see page 488) Specifies style of category items.

 StyleCategoryMouseOver (see page 488) Specifies style of category item when mouse is over it.

 StyleCategorySelected (see page 488) Specifies style of selected category item.

 StyleItem (see page 488) Specifies style of tool items.

 StyleItemMouseOver (see page 488) Specifies style of tool item when mouse is over it.

 StyleItemSelected (see page 488) Specifies style of selected tool item.

 TabOrder (see page 489) Indicates the position of the control in its parent's tab order.

 TabStop (see page 489) Determines if the user can tab to a control.

 TransparentImages (see page 489) Specifies whether bottom-left pixel is transparent color. If TransparentImages
is False, images are drawn without transparency.

 VerticalGroups (see page 489) Specifies whether category item should be displayed vertically along owned
items.

 Visible (see page 489) Determines whether the component appears on screen.

1.31.1.1.1 TPaletteToolList Methods

1.31.1.1.1.1 TPaletteToolList.ClsChanged Method

Called when selected in component palette component class was changed.

procedure ClsChanged;

1.31.1.1.1.2 TPaletteToolList.ClsPalChanged Method

Called when component palette was changed.

procedure ClsPalChanged;

1.31.1.1.1.3 TPaletteToolList.ComponentAt Method

Returns associated component class info for toll item at Index position.

function ComponentAt(Index : integer): TComponentClassInfo ;

1.31.1.1.1.4 TPaletteToolList.Create Constructor

Creates and initializes a TPaletteToolList instance.

constructor Create(AOwner: TComponent); override ;

Description

Use Create to programmatically instantiate a TPaletteToolList component. Components added in the form designer are
created automatically.

AOwner is the component that is responsible for freeing the component instance. It becomes the value of the Owner
property.

1.31 edcToolList Namespace EControl Form Designer Pro Classes

476

1

1.31.1.1.1.5 TPaletteToolList.Destroy Destructor

Destroys an instance of TPaletteToolList.

destructor Destroy; override ;

Description

Do not call Destroy directly. Call Free instead. Free verifies that the object reference is not nil before calling Destroy.

1.31.1.1.1.6 TPaletteToolList.DrawItemImage Method

Draws item image.

procedure DrawItemImage(Item: TToolListItem ; Canvas: TCanvas; var R: TRect; State:
TToolItemState); override ;

Description

By default, it draws image from image list of the tool list, but in derived classes it maybe redefined to get images from
another source.

1.31.1.1.1.7 TPaletteToolList.ItemIndexChanged Method

Called when selected item was changed.

procedure ItemIndexChanged; override ;

1.31.1.1.1.8 TPaletteToolList.ItemsArranged Method

Called after items were rearranged by the drag&drop operations.

procedure ItemsArranged; override ;

1.31.1.1.1.9 TPaletteToolList.ShowCategory Method

Scrolls tool list to make category visible.

function ShowCategory(const CategoryName: WideString): Boolean;

1.31.1.1.2 TPaletteToolList Properties

1.31.1.1.2.1 TPaletteToolList.Align Property

Determines how the control aligns within its container (parent control).

property Align;

Description

Use Align to align a control to the top, bottom, left, or right of a form or panel and have it remain there even if the size of the
form, panel, or component that contains the control changes. When the parent is resized, an aligned control also resizes so
that it continues to span the top, bottom, left, or right edge of the parent.

For example, to use a panel component with various controls on it as a tool palette, change the panel’s Align value to alLeft.
The value of alLeft for the Align property of the panel guarantees that the tool palette remains on the left side of the form and
always equals the client height of the form.

The default value of Align is alNone, which means a control remains where it is positioned on a form or panel.

Tip: If Align is set to alClient, the control fills the entire client area so that it is impossible to select the parent form by clicking
on it. In this case, select the parent by selecting the control on the form and pressing Esc, or by using the Object Inspector.

1.31 edcToolList Namespace EControl Form Designer Pro Classes

477

1

Any number of child components within a single parent can have the same Align value, in which case they stack up along
the edge of the parent. The child controls stack up in z-order. To adjust the order in which the controls stack up, drag the
controls into their desired positions.

Note: To cause a control to maintain a specified relationship with an edge of its parent, but not necessarily lie along one
edge of the parent, use the Anchors property instead.

1.31.1.1.2.2 TPaletteToolList.AllowArrange Property

Specifies whether items can be arranged by the drag&drop operations.

property AllowArrange: Boolean;

1.31.1.1.2.3 TPaletteToolList.Anchors Property

Specifies how the control is anchored to its parent.

property Anchors;

Description

Use Anchors to ensure that a control maintains its current position relative to an edge of its parent, even if the parent is
resized. When its parent is resized, the control holds its position relative to the edges to which it is anchored.

If a control is anchored to opposite edges of its parent, the control stretches when its parent is resized. For example, if a
control has its Anchors property set to [akLeft, akRight], the control stretches when the width of its parent changes.

Anchors is enforced only when the parent is resized. Thus, for example, if a control is anchored to opposite edges of a form
at design time and the form is created in a maximized state, the control is not stretched because the form is not resized after
the control is created.

Note: If a control should maintain contact with three edges of its parent (hugging one side of the parent and stretching the
length of that side), use the Align property instead. Unlike Anchors, Align allows controls to adjust to changes in the size of
other aligned sibling controls as well as changes to the parent’s size.

1.31.1.1.2.4 TPaletteToolList.AutoCollapse Property

Specifies whether all categories should be collapsed when one category is expanded or collapsed.

property AutoCollapse: Boolean;

1.31.1.1.2.5 TPaletteToolList.BevelEdges Property

Specifies which edges of the control are beveled.

property BevelEdges;

Description

Use BevelEdges to get or set which edges of the control are beveled. The BevelInner, BevelOuter, and BevelKind properties
determine the appearance of the specified edges.

1.31.1.1.2.6 TPaletteToolList.BevelInner Property

Specifies the cut of the inner bevel.

property BevelInner;

1.31 edcToolList Namespace EControl Form Designer Pro Classes

478

1

Description

Use BevelInner to specify whether the inner bevel has a raised, lowered, or flat look.

The inner bevel appears immediately inside the outer bevel. If there is no outer bevel (BevelOuter is bvNone), the inner
bevel appears immediately inside the border.

1.31.1.1.2.7 TPaletteToolList.BevelKind Property

Specifies the control’s bevel style.

property BevelKind;

Description

Use BevelKind to modify the appearance of a bevel. BevelKind influences how sharply the bevel stands out.

BevelKind, in combination with BevelWidth and the cut of the bevel specified by BevelInner or BevelOuter, can create a
variety of effects. Experiment with various combinations to get the look you want.

1.31.1.1.2.8 TPaletteToolList.BevelOuter Property

Specifies the cut of the outer bevel.

property BevelOuter;

Description

Use BevelInner to specify whether the outer bevel has a raised, lowered, or flat look.

The outer bevel appears immediately inside the border and outside the inner bevel.

1.31.1.1.2.9 TPaletteToolList.BiDiMode Property

Specifies the bi-directional mode for the control.

property BiDiMode;

Description

Use BiDiMode to enable the control to adjust its appearance and behavior automatically when the application runs in a
locale that reads from right to left instead of left to right. The bi-directional mode controls the reading order for the text, the
placement of the vertical scroll bar, and whether the alignment is changed.

Alignment does not change for controls that are known to contain number, date, time, or currency values. For example, with
data aware controls, the alignment does not change for the following field types: ftSmallint, ftInteger, ftWord, ftFloat,
ftCurrency, ftBCD, ftDate, ftTime, ftDateTime, ftAutoInc.

1.31.1.1.2.10 TPaletteToolList.CategoryHeight Property

Specifies height of category item.

property CategoryHeight: integer;

1.31.1.1.2.11 TPaletteToolList.Color Property

Specifies the background color of the control.

property Color;

Description

Use Color to read or change the background color of the control.

1.31 edcToolList Namespace EControl Form Designer Pro Classes

479

1

If a control's ParentColor property is true, then changing the Color property of the control's parent automatically changes the
Color property of the control. When the value of the Color property is changed, the control's ParentColor property is
automatically set to false.

1.31.1.1.2.12 TPaletteToolList.Constraints Property

Specifies the size constraints for the control.

property Constraints;

Description

Use Constraints to specify the minimum and maximum width and height of the control. When Constraints contains maximum
or minimum values, the control cannot be resized to violate those constraints.

Warning: Do not set up constraints that conflict with the value of the Align or Anchors property. When these properties
conflict, the response of the control to resize attempts is not well-defined.

1.31.1.1.2.13 TPaletteToolList.Ctl3D Property

Determines whether a control has a three-dimensional (3-D) or two-dimensional look.

property Ctl3D;

Description

Ctl3D is provided for backward compatibility. It is not used by 32-bit versions of Windows or NT4.0 and later.

On earlier platforms, Ctl3D controlled whether the control had a flat or beveled appearance.

1.31.1.1.2.14 TPaletteToolList.CustomItems Property

Allows managing of items in component toll list.

Item in list means:

1. Specification component item

ComponentClassName

2. Specification new category

+CategoryName

3. Specification existed category (components page) with adding all components which belong to this page.

++CategoryName

4. Rename existed category (components page) with adding all components which belong to this page.

++CategoryName=Display_name_of_category

5. Adding all components which belong to the page without adding category.

++CategoryName=

property CustomItems: TStrings;

1.31 edcToolList Namespace EControl Form Designer Pro Classes

480

1

1.31.1.1.2.15 TPaletteToolList.DragCursor Property

Indicates the image used to represent the mouse pointer when the control is being dragged.

property DragCursor;

Description

Use the DragCursor property to change the cursor image presented when the control is being dragged.

Note: To make a custom cursor available for the DragCursor property, see the Cursor property.

1.31.1.1.2.16 TPaletteToolList.DragImageType Property

Specifies drag image when dragging component on form.

property DragImageType: TComponentClassDragImage ;

Remarks

In Delphi 5,6,7 you will need to add csDisplayDragImage to designed form's ControlStyle.

In Delphi 2005,2006,2007,2009 - DragObject.AlwaysShowDragImages := True, so dragged image is shown over any control.

1.31.1.1.2.17 TPaletteToolList.DragKind Property

Specifies whether the control is being dragged normally or for docking.

property DragKind;

Description

Use DragKind to get or set whether the control participates in drag-and-drop operations, or drag-and-dock operations.

1.31.1.1.2.18 TPaletteToolList.DragMode Property

Determines how the control initiates drag-and-drop or drag-and-dock operations.

property DragMode;

Description

Use DragMode to control when the user can drag the control. Disable the drag-and-drop or drag-and-dock capability at
runtime by setting the DragMode property value to dmManual. Enable automatic dragging by setting DragMode to
dmAutomatic.

1.31.1.1.2.19 TPaletteToolList.Enabled Property

Controls whether the control responds to mouse, keyboard, and timer events.

property Enabled;

Description

Use Enabled to change the availability of the control to the user. To disable a control, set Enabled to false. Disabled controls
appear dimmed. If Enabled is false, the control ignores mouse, keyboard, and timer events.

To re-enable a control, set Enabled to true. The control is no longer dimmed, and the user can use the control.

1.31.1.1.2.20 TPaletteToolList.Filtered Property

Specifies whether items are filtered.

property Filtered: Boolean;

Description

Use Filtered property to toggle items filtration. Items are filtered using FilterString property.

1.31 edcToolList Namespace EControl Form Designer Pro Classes

481

1

1.31.1.1.2.21 TPaletteToolList.FilterString Property

Specifies filter string which is used to test item Caption.

property FilterString: string ;

1.31.1.1.2.22 TPaletteToolList.FoldingIcon Property

Holds folding icon images.

property FoldingIcon: TBitmap;

Description

FoldingIcon should contain two images in a row, first - collapse icon (-), second - expand icon (+).

Color of bottom-left pixel is used as mask color.

Folding icon is initialized from resource when control is created at design time.

1.31.1.1.2.23 TPaletteToolList.Font Property

Controls the attributes of text written on or in the control.

property Font;

Description

To change to a new font, specify a new TFont object. To modify a font, change the value of the Charset, Color, Height,
Name, Pitch, Size, or Style of the TFont object.

1.31.1.1.2.24 TPaletteToolList.HintProps Property

Provide properties to adjust hints processing.

property HintProps: TecHintHelper;

1.31.1.1.2.25 TPaletteToolList.ItemHeight Property

Specifies height of the normal item.

property ItemHeight: integer;

1.31.1.1.2.26 TPaletteToolList.Items Property

Provides access to items displayed in tool list.

property Items: TToolListItems ;

Description

Read Items to access the list of items that appears in the tool list. Use the methods of Items to add, insert, delete and move
items.

1.31.1.1.2.27 TPaletteToolList.OnCanResize Property

Occurs when an attempt is made to resize the control.

property OnCanResize;

Description

Use OnCanResize to adjust the way a control is resized. If necessary, change the new width and height of the control in the
OnCanResize event handler. The OnCanResize event handler also allows applications to indicate that the entire resize
should be aborted.

If there is no OnCanResize event handler, or if the OnCanResize event handler indicates that the resize attempt can

1.31 edcToolList Namespace EControl Form Designer Pro Classes

482

1

proceed, the OnCanResize event is followed immediately by an OnConstrainedResize event.

1.31.1.1.2.28 TPaletteToolList.OnClick Property

Occurs when the user clicks the control.

property OnClick;

1.31.1.1.2.29 TPaletteToolList.OnConstrainedResize Property

Adjust resize constraints.

property OnConstrainedResize;

Description

Use OnConstrainedResize to adjust a control’s constraints when an attempt is made to resize it. Upon entry to the
OnConstrainedResize event handler, the parameters of the event handler are set to the corresponding properties of the
control’s Constraints object. The event handler can adjust those values before they are applied to the new height and width
that is being applied to the control. (The CanAutoSize method or an OnCanResize event handler may already have adjusted
this new height and width).

On exit from the OnConstrainedResize event handler, the constraints are applied to the attempted new height and width.
Once the constraints are applied, the control’s height and width are changed. After the control’s height and width change, an
OnResize event occurs to allow any final adjustments or responses.

Notes

The OnConstrainedResize handler is called immediately after the OnCanResize handler.

1.31.1.1.2.30 TPaletteToolList.OnContextPopup Property

Occurs when the user right-clicks the control or otherwise invokes the popup menu (such as using the keyboard).

property OnContextPopup;

Description

The OnContextPopup handler is called when the user uses the mouse or keyboard to request a popup menu. The
OnContextPopup event is generated by a WM_CONTEXTMENU message, which is itself generated by the user clicking the
right mouse button or by pressing SHIFT+F10 or the Applications key.

This event is especially useful when the control does not have an associated popup menu (the PopupMenu property is not
set) or if the AutoPopup property of the control’s associated popup menu is false. However, the OnContextPopup can also
be used to override the automatic context menu that appears when the control has an associated popup menu with an
AutoPopup property of true. In this last case, if the event handler displays its own menu, it should set the Handled parameter
to true to suppress the default context menu.

The handler’s MousePos parameter indicates the position of the mouse, in client coordinates.. If the event was not
generated by a mouse click, MousePos is (-1,-1).

Note: Parent controls receive an OnContextPopup event before their child controls. In addition, for many child controls, the
default window procedure causes the parent control to receive an OnContextPopup event after the child control. As a result,
when parent controls do not set Handled to true in an OnContextPopup event handler, the event handler may be called
multiple times for each context menu invocation.

1.31 edcToolList Namespace EControl Form Designer Pro Classes

483

1

1.31.1.1.2.31 TPaletteToolList.OnDblClick Property

Occurs when the user double-clicks the left mouse button when the mouse pointer is over the control.

property OnDblClick;

Description

Use the OnDblClick event to respond to mouse double-clicks.

1.31.1.1.2.32 TPaletteToolList.OnDragDrop Property

Occurs when the user drops an object being dragged.

property OnDragDrop;

Description

Use the OnDragDrop event handler to specify what happens when the user drops an object. The Source parameter of the
OnDragDrop event is the object being dropped, and the Sender is the control the object is being dropped on. The X and Y
parameters are the coordinates of the mouse positioned over the control.

1.31.1.1.2.33 TPaletteToolList.OnDragOver Property

Occurs when the user drags an object over a control.

property OnDragOver;

Description

Use an OnDragOver event to signal that the control can accept a dragged object so the user can drop or dock it.

Within the OnDragOver event handler, change the Accept parameter to false to reject the dragged object. Leave Accept as
true to allow the user to drop or dock the dragged object on the control.

To change the shape of the cursor, indicating that the control can accept the dragged object, change the value of the
DragCursor property for the control before the OnDragOver event occurs.

The Source is the object being dragged, the Sender is the potential drop or dock site, and X and Y are screen coordinates in
pixels. The State parameter specifies how the dragged object is moving over the control.

Note: Within the OnDragOver event handler, the Accept parameter defaults to true. However, if an OnDragOver event
handler is not supplied, the control rejects the dragged object, as if the Accept parameter were changed to false.

1.31.1.1.2.34 TPaletteToolList.OnEndDrag Property

Occurs when the dragging of an object ends, either by dropping the object or by canceling the dragging.

property OnEndDrag;

Description

Use the OnEndDrag event handler to specify any special processing that occurs when dragging stops.

1.31.1.1.2.35 TPaletteToolList.OnEnter Property

Occurs when a control receives the input focus.

property OnEnter;

1.31 edcToolList Namespace EControl Form Designer Pro Classes

484

1

Description

Use the OnEnter event handler to cause any special processing to occur when a control becomes active.

The OnEnter event does not occur when switching between forms or between another application and the application that
includes the control.

1.31.1.1.2.36 TPaletteToolList.OnExit Property

Occurs when the input focus shifts away from one control to another.

property OnExit;

Description

Use the OnExit event handler to provide special processing when the control ceases to be active.

The OnExit event does not occur when switching between forms or between another application and your application.

1.31.1.1.2.37 TPaletteToolList.OnKeyDown Property

Occurs when a user presses any key while the control has focus.

property OnKeyDown;

Description

Use the OnKeyDown event handler to specify special processing to occur when a key is pressed. The OnKeyDown handler
can respond to all keyboard keys, including function keys and keys combined with the Shift, Alt, and Ctrl keys, and pressed
mouse buttons.

The TKeyEvent type points to a method that handles keyboard events.

The Key parameter is the key on the keyboard. For non-alphanumeric keys, use virtual key codes to determine the key
pressed. For more information, see Virtual Key codes.

The Shift parameter indicates whether the Shift, Alt, or Ctrl keys are combined with the keystroke.

1.31.1.1.2.38 TPaletteToolList.OnKeyPress Property

Occurs when key pressed.

property OnKeyPress;

Description

Use the OnKeyPress event handler to make something happen as a result of a single character key press.

The Key parameter in the OnKeyPress event handler is of type Char; therefore, the OnKeyPress event registers the ASCII
character of the key pressed. Keys that don't correspond to an ASCII Char value (Shift or F1, for example) don't generate an
OnKeyPress event. Key combinations (such as Shift+A), generate only one OnKeyPress event (for this example, Shift+A
results in a Key value of “A” if Caps Lock is off). To respond to non-ASCII keys or key combinations, use the OnKeyDown or
OnKeyUp event handlers.

1.31.1.1.2.39 TPaletteToolList.OnKeyUp Property

Occurs when the user releases a key that has been pressed.

property OnKeyUp;

1.31 edcToolList Namespace EControl Form Designer Pro Classes

485

1

Description

Use the OnKeyUp event handler to provide special processing that occurs when a key is released. The OnKeyUp handler
can respond to all keyboard keys, including function keys and keys combined with the Shift, Alt, and Ctrl keys.

The TKeyEvent type points to a method that handles keyboard events. The Key parameter is the key on the keyboard. For
non-alphanumeric keys, you must use virtual key codes to determine the key pressed. For more information, see Virtual Key
codes.

The Shift parameter indicates whether the Shift, Alt, or Ctrl keys are combined with the keystroke.

1.31.1.1.2.40 TPaletteToolList.OnMouseDown Property

Occurs when the user presses a mouse button with the mouse pointer over a control.

property OnMouseDown;

Description

Use the OnMouseDown event handler to implement any special processing that should occur as a result of pressing a
mouse button.

The OnMouseDown event handler can respond to left, right, or center mouse button presses and shift key plus
mouse-button combinations. Shift keys are the Shift, Ctrl, and Alt keys. X and Y are the pixel coordinates of the mouse
pointer in the client area of the Sender.

1.31.1.1.2.41 TPaletteToolList.OnMouseMove Property

Occurs when the user moves the mouse pointer while the mouse pointer is over a control.

property OnMouseMove;

Description

Use the OnMouseMove event handler to respond when the mouse pointer moves after the control has captured the mouse.

Use the Shift parameter of the OnMouseDown event handler, to determine to the state of the shift keys and mouse buttons.
Shift keys are the Shift, Ctrl, and Alt keys or shift key-mouse button combinations. X and Y are pixel coordinates of the new
location of the mouse pointer in the client area of the Sender.

1.31.1.1.2.42 TPaletteToolList.OnMouseUp Property

Occurs when the user releases a mouse button that was pressed with the mouse pointer over a component.

property OnMouseUp;

Description

Use an OnMouseUp event handler to implement special processing when the user releases a mouse button.

The OnMouseUp event handler can respond to left, right, or center mouse button presses and shift key plus mouse-button
combinations. Shift keys are the Shift, Ctrl, and Alt keys. X and Y are the pixel coordinates of the mouse pointer in the client
area of the Sender.

1.31.1.1.2.43 TPaletteToolList.OnResize Property

Occurs immediately after the control is resized.

property OnResize;

1.31 edcToolList Namespace EControl Form Designer Pro Classes

486

1

Description

Use OnResize to make any final adjustments after a control is resized.

To modify the way a control responds when an attempt is made to resize it, use OnCanResize or OnConstrainedResize.

1.31.1.1.2.44 TPaletteToolList.OnStartDrag Property

Occurs when the user begins to drag the control or an object it contains by left-clicking on the control and holding the mouse
button down.

property OnStartDrag;

Description

Use the OnStartDrag event handler to implement special processing when the user starts to drag the control or an object it
contains. OnStartDrag only occurs if DragKind is dkDrag.

Sender is the control that is about to be dragged, or that contains the object about to be dragged.

The OnStartDrag event handler can create a TDragControlObjectEx instance for the DragObject parameter to specify the
drag cursor, or, optionally, a drag image list. If you create a TDragControlObjectEx instance, there is no need to call the Free
method for the DragObject when dragging is over. If you create, instead, a TDragControlObject instance, your application is
responsible for freeing the drag object instance.

If the OnStartDrag event handler sets the DragObject parameter to nil (Delphi) or NULL (C++), a TDragControlObject object
is automatically created and dragging begins on the control itse

1.31.1.1.2.45 TPaletteToolList.ParentBiDiMode Property

Specifies whether the control uses its parent’s BiDiMode.

property ParentBiDiMode;

1.31.1.1.2.46 TPaletteToolList.ParentColor Property

Determines where a control looks for its color information.

property ParentColor;

1.31.1.1.2.47 TPaletteToolList.ParentCtl3D Property

Determines where a component looks to determine if it should appear three dimensional.

property ParentCtl3D;

Description

ParentCtl3D is provided for backwards compatibility. It has no effect on 32-bit versions of Windows or NT 4.0 and later.

ParentCtl3D determines whether the control uses its parent’s Ctl3D property.

1.31.1.1.2.48 TPaletteToolList.ParentFont Property

Determines where a control looks for its font information.

property ParentFont;

1.31 edcToolList Namespace EControl Form Designer Pro Classes

487

1

1.31.1.1.2.49 TPaletteToolList.ParentShowHint Property

Determines where a control looks to find out if its Help Hint should be shown.

property ParentShowHint;

1.31.1.1.2.50 TPaletteToolList.PopupMenu Property

Identifies the pop-up menu associated with the control.

property PopupMenu;

Description

Assign a value to PopupMenu to make a pop-up menu appear when the user selects the control and clicks the right mouse
button. If the TPopupMenu’s AutoPopup property is true, the pop-up menu appears automatically. If the menu’s AutoPopup
property is false, display the menu with a call to its Popup method from the control’s OnContextPopup event handler.

1.31.1.1.2.51 TPaletteToolList.RowSpace Property

Specifies space between two sequential items.

property RowSpace: integer;

1.31.1.1.2.52 TPaletteToolList.ShowCaptions Property

Specifies whether button captions displayed in tool list.

property ShowCaptions: Boolean;

1.31.1.1.2.53 TPaletteToolList.ShowHint Property

Determines whether the control displays a Help Hint when the mouse pointer rests momentarily on the control.

property ShowHint;

1.31.1.1.2.54 TPaletteToolList.StyleCategory Property

Specifies style of category items.

property StyleCategory: TToolItemStyle ;

1.31.1.1.2.55 TPaletteToolList.StyleCategoryMouseOver Property

Specifies style of category item when mouse is over it.

property StyleCategoryMouseOver: TToolItemStyle ;

1.31.1.1.2.56 TPaletteToolList.StyleCategorySelected Property

Specifies style of selected category item.

property StyleCategorySelected: TToolItemStyle ;

1.31.1.1.2.57 TPaletteToolList.StyleItem Property

Specifies style of tool items.

property StyleItem: TToolItemStyle ;

1.31.1.1.2.58 TPaletteToolList.StyleItemMouseOver Property

Specifies style of tool item when mouse is over it.

property StyleItemMouseOver: TToolItemStyle ;

1.31.1.1.2.59 TPaletteToolList.StyleItemSelected Property

Specifies style of selected tool item.

1.31 edcToolList Namespace EControl Form Designer Pro Classes

488

1

property StyleItemSelected: TToolItemStyle ;

1.31.1.1.2.60 TPaletteToolList.TabOrder Property

Indicates the position of the control in its parent's tab order.

property TabOrder;

1.31.1.1.2.61 TPaletteToolList.TabStop Property

Determines if the user can tab to a control.

property TabStop;

Description

Use the TabStop to allow or disallow access to the control using the Tab key.

If TabStop is true, the control is in the tab order. If TabStop is false, the control is not in the tab order and the user can't
press the Tab key to move to the control.

1.31.1.1.2.62 TPaletteToolList.TransparentImages Property

Specifies whether bottom-left pixel is transparent color. If TransparentImages is False, images are drawn without
transparency.

property TransparentImages: Boolean;

1.31.1.1.2.63 TPaletteToolList.VerticalGroups Property

Specifies whether category item should be displayed vertically along owned items.

property VerticalGroups: Boolean;

1.31.1.1.2.64 TPaletteToolList.Visible Property

Determines whether the component appears on screen.

property Visible;

Description

Use the Visible property to control the visibility of the control at runtime. If Visible is true, the control appears. If Visible is
false, the control is not visible.

Calling the Show method sets the control's Visible property to true. Calling the Hide method sets it to false.

1.31.1.1.3 TPaletteToolList Events

1.31.1.1.3.1 TPaletteToolList.OnPalChange Event

Occurs when component palette was changed.

property OnPalChange: TNotifyEvent;

1.32 eddDsnOpt Namespace

1.32 eddDsnOpt Namespace EControl Form Designer Pro Classes

489

1

1.32.1 Classes

The following table lists classes in this documentation.

Classes

Class Description

TDsnOptionsDlg (see page 490) Designer (see page 491) Options dialog box.

1.32.1.1 TDsnOptionsDlg Class
Designer (see page 491) Options dialog box.

Class Hierarchy

TDsnOptionsDlg = class (TForm);

File

eddDsnOpt

Description

Use the Designer (see page 491) Options dialog box to specify preferences on the Form Designer (see page 491).

Display grid Displays dots on the form to make the grid visible

Snap to grid Automatically aligns components on the form with the nearest gridline. You cannot place a
component "in between" gridlines

Grid size X Sets grid spacing in pixels along the x-axis. Specify a higher number (between 2 and 128) to
increase grid spacing

Grid size Y Sets grid spacing in pixels along the y-axis. Specify a higher number (between 2 and 128) to
increase grid spacing

Multiple selection Allows to select more than one component at a time

Show component
captions

Displays captions for nonvisual components you drop on a form or data module

Flat component icons Flattens icons for nonvisual components

Show invisible
components

Display nonvisual components

Caption font Specifies attributes for component caption font

Grab color Specifies color for the grab markers

Grab size Specifies size of the grab markers

Show designer hints Displays a class name in a Help tooltip for a nonvisual component you drop on form or data
module, origin and size. Note that this option only affects tooltips that appear when you pause
the mouse over a component. Help tooltips are always enabled in the Component palette

Members

TDsnOptionsDlg Properties

TDsnOptionsDlg Properties Description

 Designer (see page 491) Specifies designer which properties are edited.

1.32 eddDsnOpt Namespace EControl Form Designer Pro Classes

490

1

Legend

Property

TDsnOptionsDlg Properties

TDsnOptionsDlg Properties Description

 Designer (see page 491) Specifies designer which properties are edited.

1.32.1.1.1 TDsnOptionsDlg Properties

1.32.1.1.1.1 TDsnOptionsDlg.Designer Property

Specifies designer which properties are edited.

property Designer: TzFormDesigner ;

1.33 eddObjInspProp Namespace

1.33.1 Classes

The following table lists classes in this documentation.

Classes

Class Description

TObjInspPropDlg (see page 491) This dialog box displays properties for Object Inspector

1.33.1.1 TObjInspPropDlg Class
This dialog box displays properties for Object Inspector

Class Hierarchy

TObjInspPropDlg = class (TForm);

File

eddObjInspProp

Description

Use this page to specify options for the Object Inspector, which you can also access by right-clicking the Object Inspector
and choosing Properties.

SpeedSettings

Click the drop-down list box to import, choose, and customize settings from the following color schemes: Custom, Default,
Delphi 5, and Visual Studio.

1.33 eddObjInspProp Namespace EControl Form Designer Pro Classes

491

1

Colors

To customize one of the imported color schemes, select it from the SpeedSettings list. Then select an option and select a
different color from the drop-down list below. For example, to change the color of Value, the text color for properties’ values,
select Value and click clYellow from the Options list. You save your new settings once you click OK. This automatically
saves the changes to the Custom colors and settings scheme, not the original imported one.

To return to your default settings, click Default colors and settings or one of the others.

Options

Sets preferences for displaying several options on the Object Inspector.

Check box When checked

Show instance
class

Displays the drop-down list box of components and their class names (called the instance list) at the
top of the Object Inspector. The list is useful when you have many components on your form or data
module and can’t find the one you want right away. Click the drop-down arrow and select the
component you want to focus on. To hide the list, uncheck this check box.

Show
classname in
instance list

Displays the component’s class name for every component in the instance list, not just the first one

Show status bar Displays the status bar at the bottom of the Object Inspector. The status bar states how many
properties or events are not shown as a result of using the View command. If all properties or events
are visible in the Object Inspector, it says “All shown.”

Render
background grid

Adds horizontal background lines to designate columns and rows on the Properties and Events pages.

Integral height
(when not
docked)

As you vertically resize the Object Inspector with your cursor, this option adjusts the Object Inspector
between a full row instead of a partial row.

Show read only
properties

Displays the properties for components (usually third-party) even if the properties are read only. By
default, they are grayed out.

References

Component references are properties that are also components. Once you add the referenced component to your form and
refer the first component to it, you can view and edit the referenced component’s properties without selecting it on the form.
For example, if you add an ActionList and ImageList component to your form and set the ActionList’s Images property to
ImageList1, the Object Inspector displays the ImageList’s properties.

Check box When checked

Expand inline Displays the properties of the referenced component. To view these properties, click the plus (+) sign
next to the referenced component. By default, referenced components are red and their properties green.

Show on
events page

Displays the events of the referenced component. By default, referenced properties are red and their
events green.

1.33 eddObjInspProp Namespace EControl Form Designer Pro Classes

492

1

Members

TObjInspPropDlg Properties

TObjInspPropDlg Properties Description

 ObjectInspector (see page 493) This is ObjectInspector, a member of class TObjInspPropDlg.

Legend

Property

TObjInspPropDlg Properties

TObjInspPropDlg Properties Description

 ObjectInspector (see page 493) This is ObjectInspector, a member of class TObjInspPropDlg.

1.33.1.1.1 TObjInspPropDlg Properties

1.33.1.1.1.1 TObjInspPropDlg.ObjectInspector Property
property ObjectInspector: TObjectInspectorFrame ;

Description

This is ObjectInspector, a member of class TObjInspPropDlg.

1.34 eddPackageCtrl Namespace

1.34.1 Classes

The following table lists classes in this documentation.

Classes

Class Description

TPackageCtrlDlg (see page 493) Use this dialog box to specify the design-time packages installed in the
design-mode and the runtime packages required by them.

1.34.1.1 TPackageCtrlDlg Class
Use this dialog box to specify the design-time packages installed in the design-mode and the runtime packages required by
them.

Class Hierarchy

TPackageCtrlDlg = class (TForm);

File

eddPackageCtrl

Description

This dialog box is absolutely similar to standard Borland' Packages page.

1.34 eddPackageCtrl Namespace EControl Form Designer Pro Classes

493

1

See it for details

1.35 eddPageName Namespace

1.35.1 Classes

The following table lists classes in this documentation.

Classes

Class Description

TPageNameDlg (see page 494) Use this dialog box to specify a new name for a page on the Component
palette.

1.35.1.1 TPageNameDlg Class
Use this dialog box to specify a new name for a page on the Component palette.

Class Hierarchy

TPageNameDlg = class (TForm);

File

eddPageName

Description

This dialog box is absolutely similar to standard Borland' Page Name dialog.

See it for details

1.36 eddObjInspFrm Namespace

1.36.1 Classes

The following table lists classes in this documentation.

Classes

Class Description

TObjectInspectorFrame (see page 495) The Object Inspector is the connection between your application's visual
appearance and the code that makes your application run.

1.36 eddObjInspFrm Namespace EControl Form Designer Pro Classes

494

1

1.36.1.1 TObjectInspectorFrame Class
The Object Inspector is the connection between your application's visual appearance and the code that makes your
application run.

Class Hierarchy

TObjectInspectorFrame = class (TFrame);

File

eddObjInspFrm

Description

The Object Inspector enables you to:

• Set design-time properties for components you have placed on a form (or for the form itself).

• Filter visible properties and events.

The object selector, or instance list, at the top of the Object Inspector is a drop-down list containing all the components on
the active form and it also displays the object type, or class, of the selected component. This lets you quickly display
properties and events for the different components on the current form.

You can resize the columns of the Object Inspector by dragging the separator line to a new position.

The Object Inspector has two pages:

• Properties page

• Events page

Object Inspector tabs provide a means to switch between the Property page and the Events page of the Object Inspector. To
change pages, click the Properties or Events tab.

You can display and filter properties and events by category. By filtering the properties, you can reduce the number of
properties visible in the Object Inspector and focus on those which are primarily of interest at the time. You can also more
easily locate related properties by viewing them by category. For example, when localizing your application for other
countries, you can display only properties that need to be localized by unchecking all categories except Localizable. See
Property and event categories in the Object Inspector.

Members

TObjectInspectorFrame Methods

TObjectInspectorFrame Methods Description

 Create (see page 496) Creates and initializes a TObjectInspectorFrame instance.

 Customize (see page 497) Displays "Object Inspector Properties" dialog to change object inspector
appearance.

TObjectInspectorFrame Properties

TObjectInspectorFrame Properties Description

 ComponnentCombo (see page 497) References nested component combo-box.

 EventsList (see page 497) References nested inspector list with events.

 IntegralHeight (see page 497) Specifies whether height of object inspector frame should be adjusted to
inspector lists show full row instead of a partial row.

1.36 eddObjInspFrm Namespace EControl Form Designer Pro Classes

495

1

 PageControl (see page 497) References nested page control.

 Pages (see page 497) Specifies visible tab sheets in object inspector. "Properties" tab contains
inspector list with properties; "Events" tab contains inspector list with
procedural properties, i.e. with events.

 PropertyList (see page 497) References nested inspector list with properties.

 ReadOnly (see page 497) Specifies whether inspector lists are in read-only state.

 ShowInstanceList (see page 497) Specifies whether component combo-box of object inspector is visible.

 ShowStatusBar (see page 497) Specifies whether status bar of object inspector is visible.

TObjectInspectorFrame Events

TObjectInspectorFrame Events Description

 OnHideClick (see page 498) Occurs when user clicks "Hide" in popup menu.

 OnStayOnTopClick (see page 498) Occurs when user click "Stay on top" in popup menu.

Legend

Constructor

virtual

Property

read only

Event

TObjectInspectorFrame Events

TObjectInspectorFrame Events Description

 OnHideClick (see page 498) Occurs when user clicks "Hide" in popup menu.

 OnStayOnTopClick (see page 498) Occurs when user click "Stay on top" in popup menu.

TObjectInspectorFrame Methods

TObjectInspectorFrame Methods Description

 Create (see page 496) Creates and initializes a TObjectInspectorFrame instance.

 Customize (see page 497) Displays "Object Inspector Properties" dialog to change object inspector
appearance.

TObjectInspectorFrame Properties

TObjectInspectorFrame Properties Description

 ComponnentCombo (see page 497) References nested component combo-box.

 EventsList (see page 497) References nested inspector list with events.

 IntegralHeight (see page 497) Specifies whether height of object inspector frame should be adjusted to
inspector lists show full row instead of a partial row.

 PageControl (see page 497) References nested page control.

 Pages (see page 497) Specifies visible tab sheets in object inspector. "Properties" tab contains
inspector list with properties; "Events" tab contains inspector list with
procedural properties, i.e. with events.

 PropertyList (see page 497) References nested inspector list with properties.

 ReadOnly (see page 497) Specifies whether inspector lists are in read-only state.

 ShowInstanceList (see page 497) Specifies whether component combo-box of object inspector is visible.

 ShowStatusBar (see page 497) Specifies whether status bar of object inspector is visible.

1.36.1.1.1 TObjectInspectorFrame Methods

1.36.1.1.1.1 TObjectInspectorFrame.Create Constructor

Creates and initializes a TObjectInspectorFrame instance.

constructor Create(AOwner: TComponent); override ;

Description

Use Create to programmatically instantiate a TObjectInspectorFrame component. Components added in the form designer
are created automatically.

AOwner is the component that is responsible for freeing the component instance. It becomes the value of the Owner
property.

1.36 eddObjInspFrm Namespace EControl Form Designer Pro Classes

496

1

1.36.1.1.1.2 TObjectInspectorFrame.Customize Method

Displays "Object Inspector Properties" dialog to change object inspector appearance.

function Customize: Boolean;

1.36.1.1.2 TObjectInspectorFrame Properties

1.36.1.1.2.1 TObjectInspectorFrame.ComponnentCombo Property

References nested component combo-box.

property ComponnentCombo: TComponentCombo;

1.36.1.1.2.2 TObjectInspectorFrame.EventsList Property

References nested inspector list with events.

property EventsList: TInspectorList ;

1.36.1.1.2.3 TObjectInspectorFrame.IntegralHeight Property

Specifies whether height of object inspector frame should be adjusted to inspector lists show full row instead of a partial row.

property IntegralHeight: Boolean;

1.36.1.1.2.4 TObjectInspectorFrame.PageControl Property

References nested page control.

property PageControl: TPageControl;

1.36.1.1.2.5 TObjectInspectorFrame.Pages Property

Specifies visible tab sheets in object inspector. "Properties" tab contains inspector list with properties; "Events" tab contains
inspector list with procedural properties, i.e. with events.

property Pages: TObjInspTabs ;

1.36.1.1.2.6 TObjectInspectorFrame.PropertyList Property

References nested inspector list with properties.

property PropertyList: TInspectorList ;

1.36.1.1.2.7 TObjectInspectorFrame.ReadOnly Property

Specifies whether inspector lists are in read-only state.

property ReadOnly : Boolean;

1.36.1.1.2.8 TObjectInspectorFrame.ShowInstanceList Property

Specifies whether component combo-box of object inspector is visible.

property ShowInstanceList: Boolean;

1.36.1.1.2.9 TObjectInspectorFrame.ShowStatusBar Property

Specifies whether status bar of object inspector is visible.

property ShowStatusBar: Boolean;

1.36.1.1.3 TObjectInspectorFrame Events

1.36 eddObjInspFrm Namespace EControl Form Designer Pro Classes

497

1

1.36.1.1.3.1 TObjectInspectorFrame.OnHideClick Event

Occurs when user clicks "Hide" in popup menu.

property OnHideClick: TNotifyEvent;

1.36.1.1.3.2 TObjectInspectorFrame.OnStayOnTopClick Event

Occurs when user click "Stay on top" in popup menu.

property OnStayOnTopClick: TNotifyEvent;

1.36.2 Types

The following table lists types in this documentation.

Types

Type Description

TObjInspTabs (see page 498) Specifies visible tab sheets in object inspector. "Properties" tab contains
inspector list with properties; "Events" tab contains inspector list with
procedural properties, i.e. with events.

1.36.2.1 eddObjInspFrm.TObjInspTabs Type
Specifies visible tab sheets in object inspector. "Properties" tab contains inspector list with properties; "Events" tab contains
inspector list with procedural properties, i.e. with events.

TObjInspTabs = set of (oi_Properties, oi_Events);

File

eddObjInspFrm

1.37 eddScaleDl Namespace

1.37.1 Classes

The following table lists classes in this documentation.

Classes

Class Description

TScaleDlg (see page 498) Scale dialog box

1.37.1.1 TScaleDlg Class
Scale dialog box

Class Hierarchy

TScaleDlg = class (TForm);

1.37 eddScaleDl Namespace EControl Form Designer Pro Classes

498

1

File

eddScaleDl

Description

Use this dialog box to proportionally resize the form and all of its components.

Scaling Factor, In Percent

Enter a percentage to which you want to resize the form. The scaling factor must be between 25 and 400.

Percentages over 100 grow the form.

Percentages under 100 shrink the form.

1.38 eddSelFrame Namespace

1.38.1 Classes

The following table lists classes in this documentation.

Classes

Class Description

TSelFrameDlg (see page 499) The Select Frame dialog lists all the frames included in the current project.
Choose the frame you want to embed in the form or frame you just clicked on,
then press OK.

1.38.1.1 TSelFrameDlg Class
The Select Frame dialog lists all the frames included in the current project. Choose the frame you want to embed in the form
or frame you just clicked on, then press OK.

Class Hierarchy

TSelFrameDlg = class (TForm);

File

eddSelFrame

1.39 eddObjTreeFrame Namespace

1.39 eddObjTreeFrame Namespace EControl Form Designer Pro Classes

499

1

1.39.1 Classes

The following table lists classes in this documentation.

Classes

Class Description

TObjectTreeFrame (see page 500) Represents object tree view with integrated tool bar and standard object tree
actions.

1.39.1.1 TObjectTreeFrame Class
Represents object tree view with integrated tool bar and standard object tree actions.

Class Hierarchy

TObjectTreeFrame = class (TFrame);

File

eddObjTreeFrame

Members

TObjectTreeFrame Methods

TObjectTreeFrame Methods Description

 Create (see page 500) Creates and initializes a TObjectTreeFrame instance.

TObjectTreeFrame Properties

TObjectTreeFrame Properties Description

 ObjectTree (see page 501) Provides access to object tree control.

Legend

Constructor

virtual

Property

read only

TObjectTreeFrame Methods

TObjectTreeFrame Methods Description

 Create (see page 500) Creates and initializes a TObjectTreeFrame instance.

TObjectTreeFrame Properties

TObjectTreeFrame Properties Description

 ObjectTree (see page 501) Provides access to object tree control.

1.39.1.1.1 TObjectTreeFrame Methods

1.39.1.1.1.1 TObjectTreeFrame.Create Constructor

Creates and initializes a TObjectTreeFrame instance.

constructor Create(AOwner: TComponent); override ;

Description

Use Create to programmatically instantiate a TObjectTreeFrame component. Components added in the form designer are
created automatically.

1.39 eddObjTreeFrame Namespace EControl Form Designer Pro Classes

500

1

AOwner is the component that is responsible for freeing the component instance. It becomes the value of the Owner
property.

1.39.1.1.2 TObjectTreeFrame Properties

1.39.1.1.2.1 TObjectTreeFrame.ObjectTree Property

Provides access to object tree control.

property ObjectTree: TDesignerObjTree ;

1.40 eddSizeDlg Namespace

1.40.1 Classes

The following table lists classes in this documentation.

Classes

Class Description

TSizeAdjDlg (see page 501) Size dialog box.

1.40.1.1 TSizeAdjDlg Class
Size dialog box.

Class Hierarchy

TSizeAdjDlg = class (TForm);

File

eddSizeDlg

Description

Use this dialog box to resize multiple components to be exactly the same height or width.

• The Width options change the horizontal size of the selected components.

• The Height options align the vertical size of the selected components.

The options for horizontal or vertical sizing are:

Option Description

No change Does not change the size of the components.

Shrink to smallest Resizes the group of components to the height or width of the smallest selected component.

Grow to largest Resizes the group of components to the height or width of the largest selected component.

Width Sets a custom width for the selected components.

Height Sets a custom height for the selected component

1.41 eddTabOrdDl Namespace EControl Form Designer Pro

501

1

1.41 eddTabOrdDl Namespace

1.41.1 Classes

The following table lists classes in this documentation.

Classes

Class Description

TTabOrderDlg (see page 502) Edit Tab Order dialog box

1.41.1.1 TTabOrderDlg Class
Edit Tab Order dialog box

Class Hierarchy

TTabOrderDlg = class (TForm);

File

eddTabOrdDl

Description

Use this dialog box to modify the tab order of the components on the form or within the selected component if that
component contains other components.

Controls Lists the components on the active form in their current tab order. The first component listed is the first
component in the tab order. The default tab order is determined by the order in which you placed the
components on the form

To change the tabs order of a component:

1. Select the component name.

2. Click the up button to move the component up in the tab order, or click the down arrow to move it down in the tab order.

You can also drag the selected component to its new position in the tab order.

3. To save your changes, click OK.

1.42 edIOUtils Namespace

1.42 edIOUtils Namespace EControl Form Designer Pro Functions

502

1

1.42.1 Functions

The following table lists functions in this documentation.

Functions

Function Description

 zCopyCmpResource (see page 504) Copies properties of Source component to Dest component via memory
stream.

 zReadCmpFromFile (see page 504) Reads component's resource from the file (forms, data modules, ...). As
against of ReadComponentResFile, it performs:

1. Automatic detection file format (text / binary).

2. Existing element is not deleted, it is only updated from
the resource.

3. Not existing components are created and loaded from
resource.

4. If loaded component is a registered frame, it is initialized
during creation.

5. Allows ignoring and processing errors using OnError
procedure.

6. Allows controlling component creation using
OnCreateCmp procedure.

Events - list of event associations, where names are event path, values - script
procedures. If Events is nil no event associations are read from form.

 zReadCmpFromStream (see page 504) Reads component's resource from the stream (forms, data modules, ...). As
against of ReadComponentResFile, it performs:

1. Automatic detection file format (text / binary).

2. Existing element is not deleted, it is only updated from
the resource.

3. Not existing components are created and loaded from
resource.

4. If loaded component is a registered frame, it is initialized
during creation.

5. Allows ignoring and processing errors using OnError
procedure.

6. Allows controlling component creation using
OnCreateCmp procedure.

Events - list of event associations, where names are event path, values - script
procedures. If Events is nil no event associations are read from form.

 zWriteCmpToFile (see page 505) Write Root component resource to file FileName. Set AsText to True to write in
text resource format, otherwise component will be written in binary format.
Events - list of event associations, where names are event path, values - script
procedures. If events is nil no event associations is saved to form.

 zWriteCmpToStream (see page 505) Saves component's resource (forms, data modules, ...) to stream. If AsText is
True, saves resource in text format, otherwise saves in binary.
Events - list of event associations, where names are event path, values - script
procedures. If events is nil no event associations is saved to form.

Legend

Method

1.42 edIOUtils Namespace EControl Form Designer Pro Functions

503

1

1.42.1.1 edIOUtils.zCopyCmpResource Function
Copies properties of Source component to Dest component via memory stream.

procedure zCopyCmpResource(Dest: TComponent; Source: TComponent);

File

edIOUtils

1.42.1.2 edIOUtils.zReadCmpFromFile Function
Reads component's resource from the file (forms, data modules, ...). As against of ReadComponentResFile, it performs:

1. Automatic detection file format (text / binary).

2. Existing element is not deleted, it is only updated from the resource.

3. Not existing components are created and loaded from resource.

4. If loaded component is a registered frame, it is initialized during creation.

5. Allows ignoring and processing errors using OnError procedure.

6. Allows controlling component creation using OnCreateCmp procedure.

Events - list of event associations, where names are event path, values - script procedures. If Events is nil no event
associations are read from form.

procedure zReadCmpFromFile(const FileName: string ; Root: TComponent; OnError: TReaderError
= nil ; OnCreateCmp: TCreateComponentEvent = nil ; Events: TStrings = nil);

File

edIOUtils

1.42.1.3 edIOUtils.zReadCmpFromStream Function
Reads component's resource from the stream (forms, data modules, ...). As against of ReadComponentResFile, it performs:

1. Automatic detection file format (text / binary).

2. Existing element is not deleted, it is only updated from the resource.

3. Not existing components are created and loaded from resource.

4. If loaded component is a registered frame, it is initialized during creation.

5. Allows ignoring and processing errors using OnError procedure.

6. Allows controlling component creation using OnCreateCmp procedure.

Events - list of event associations, where names are event path, values - script procedures. If Events is nil no event
associations are read from form.

procedure zReadCmpFromStream(Stream: TStream; Root: TComponent; OnError: TReaderError =
nil ; OnCreateCmp: TCreateComponentEvent = nil ; Events: TStrings = nil);

File

edIOUtils

1.42 edIOUtils Namespace EControl Form Designer Pro Functions

504

1

1.42.1.4 edIOUtils.zWriteCmpToFile Function
Write Root component resource to file FileName. Set AsText to True to write in text resource format, otherwise component
will be written in binary format.

Events - list of event associations, where names are event path, values - script procedures. If events is nil no event
associations is saved to form.

procedure zWriteCmpToFile(const FileName: string ; Root: TComponent; AsText: Boolean = True;
Events: TStrings = nil);

File

edIOUtils

1.42.1.5 edIOUtils.zWriteCmpToStream Function
Saves component's resource (forms, data modules, ...) to stream. If AsText is True, saves resource in text format, otherwise
saves in binary.

Events - list of event associations, where names are event path, values - script procedures. If events is nil no event
associations is saved to form.

procedure zWriteCmpToStream(Stream: TStream; Root: TComponent; AsText: Boolean = True;
Events: TStrings = nil);

File

edIOUtils

1.43 edManager Namespace

1.43.1 Classes

The following table lists classes in this documentation.

Classes

Class Description

TDesignerManager (see page 505) TDesignerManager is a dispatcher of the design environment events.

1.43.1.1 TDesignerManager Class
TDesignerManager is a dispatcher of the design environment events.

Class Hierarchy

TDesignerManager = class ;

File

edManager

1.43 edManager Namespace EControl Form Designer Pro Classes

505

1

Description

To receive events clients should implement following interfaces: IClassSelector (see page 511), IDesignIDEEvents (see
page 512), IDesignNotificatio, and add itself to client list using AddClient (see page 507) method.

Design manager is been created when application starts and stored in global variable DsnManager (see page 514).

Use DsnManager (see page 514) to access to.

Do not create (see page 507) other objects of this class.

Do not destroy (see page 508) it manually.

Members

TDesignerManager Methods

TDesignerManager Methods Description

 AddClient (see page 507) AddClient adds client to handle TDesignerManager events.

 BeforeRegisterComponent (see page 507) Called before registering component class.

 Create (see page 507) Creates and initializes instance of the TDesignerManager class

 CreateCurrent (see page 507) Creates instance in active designer of currently selected component class and
places this component at the center of form.

 DesignerClosed (see page 507) Called when designer ADesigner has been deactivated.

 DesignerOpened (see page 508) Called when designer ADesigner has been activated.

 Destroy (see page 508) Destroys DsnManager (see page 514) object and frees memory.

 GetGlobalComponents (see page 508) Called to request global components.

 GetWorkspaceOrigin (see page 508) Called to request workspace origin.

 ItemDeleted (see page 508) Called after object has been deleted in the active designer.

 ItemInserted (see page 508) Called after object has been inserted in the active designer.

 ItemsModified (see page 509) Called after selected objects have been modified in the active designer

 KeyDown (see page 509) Called when KeyDown event occurs in active designer.

 KeyPress (see page 509) Called when KeyPress event occurs in active designer.

 PaletteChanged (see page 509) Called when contents of th component palette is changed.

 RemoveClient (see page 509) Removes specified client from the list

 ResetCmpClass (see page 509) Called after inserting component in the form. If MultiCreate (see page 511)
= False, ComponentClass (see page 510) will be reset to nil.

 SelectionChanged (see page 509) Called after selection have been changed in the active designer.

 SetActiveDesigner (see page 510) Sets active designer.

TDesignerManager Properties

TDesignerManager Properties Description

 ActiveDesigner (see page 510) Current active designer.

 ComponentClass (see page 510) Current component class selected in the component palette.

 MultiCreate (see page 511) Specifies whether ComponentClass (see page 510) must be reset to nil
after component has been added to the form in the designer.

Legend

Method

virtual

protected

Property

TDesignerManager Methods

TDesignerManager Methods Description

 AddClient (see page 507) AddClient adds client to handle TDesignerManager events.

 BeforeRegisterComponent (see page 507) Called before registering component class.

 Create (see page 507) Creates and initializes instance of the TDesignerManager class

 CreateCurrent (see page 507) Creates instance in active designer of currently selected component class and
places this component at the center of form.

 DesignerClosed (see page 507) Called when designer ADesigner has been deactivated.

 DesignerOpened (see page 508) Called when designer ADesigner has been activated.

1.43 edManager Namespace EControl Form Designer Pro Classes

506

1

 Destroy (see page 508) Destroys DsnManager (see page 514) object and frees memory.

 GetGlobalComponents (see page 508) Called to request global components.

 GetWorkspaceOrigin (see page 508) Called to request workspace origin.

 ItemDeleted (see page 508) Called after object has been deleted in the active designer.

 ItemInserted (see page 508) Called after object has been inserted in the active designer.

 ItemsModified (see page 509) Called after selected objects have been modified in the active designer

 KeyDown (see page 509) Called when KeyDown event occurs in active designer.

 KeyPress (see page 509) Called when KeyPress event occurs in active designer.

 PaletteChanged (see page 509) Called when contents of th component palette is changed.

 RemoveClient (see page 509) Removes specified client from the list

 ResetCmpClass (see page 509) Called after inserting component in the form. If MultiCreate (see page 511)
= False, ComponentClass (see page 510) will be reset to nil.

 SelectionChanged (see page 509) Called after selection have been changed in the active designer.

 SetActiveDesigner (see page 510) Sets active designer.

TDesignerManager Properties

TDesignerManager Properties Description

 ActiveDesigner (see page 510) Current active designer.

 ComponentClass (see page 510) Current component class selected in the component palette.

 MultiCreate (see page 511) Specifies whether ComponentClass (see page 510) must be reset to nil
after component has been added to the form in the designer.

1.43.1.1.1 TDesignerManager Methods

1.43.1.1.1.1 TDesignerManager.AddClient Method

AddClient adds client to handle TDesignerManager (see page 505) events.

procedure AddClient(const Client: IUnknown);

Description

Client may implement any designer's environment interfaces (IClassSelector (see page 511), IDesignIDEEvents (see
page 512), IDesignNotification), through which client will receive designer's events.

1.43.1.1.1.2 TDesignerManager.BeforeRegisterComponent Method

Called before registering component class.

procedure BeforeRegisterComponent(CompClass: TComponentClass; var Page: string ; var Accept:
Boolean);

1.43.1.1.1.3 TDesignerManager.Create Constructor

Creates and initializes instance of the TDesignerManager (see page 505) class

constructor Create;

Description

Do not create objects of this class directly.

Use global variable DsnManager (see page 514) instead.

1.43.1.1.1.4 TDesignerManager.CreateCurrent Method

Creates instance in active designer of currently selected component class and places this component at the center of form.

procedure CreateCurrent;

1.43.1.1.1.5 TDesignerManager.DesignerClosed Method

Called when designer ADesigner has been deactivated.

1.43 edManager Namespace EControl Form Designer Pro Classes

507

1

procedure DesignerClosed(const ADesigner: IDesigner; AGoingDormant: Boolean);

Description

Client must implement IDesignNotification interface to catch this event.

1.43.1.1.1.6 TDesignerManager.DesignerOpened Method

Called when designer ADesigner has been activated.

procedure DesignerOpened(const ADesigner: IDesigner; AResurrecting: Boolean);

Description

Client must implement IDesignNotification interface to catch this event.

1.43.1.1.1.7 TDesignerManager.Destroy Destructor

Destroys DsnManager (see page 514) object and frees memory.

destructor Destroy; override ;

Description

Do not destroy it directly.

DsnManager (see page 514) destroys automatically when application finishes.

1.43.1.1.1.8 TDesignerManager.GetGlobalComponents Method

Called to request global components.

procedure GetGlobalComponents(Root: TComponent; List: TList);

Description

Client must implement IDesignIDEEvents (see page 512) interface to catch this event.

1.43.1.1.1.9 TDesignerManager.GetWorkspaceOrigin Method

Called to request workspace origin.

function GetWorkspaceOrigin: TPoint;

Description

Client must implement IDesignIDEEvents (see page 512) interface to catch this event.

1.43.1.1.1.10 TDesignerManager.ItemDeleted Method

Called after object has been deleted in the active designer.

procedure ItemDeleted(const ADesigner: IDesigner; AItem: TPersistent);

Description

Client must implement IDesignNotification interface to catch this event

1.43.1.1.1.11 TDesignerManager.ItemInserted Method

Called after object has been inserted in the active designer.

procedure ItemInserted(const ADesigner: IDesigner; AItem: TPersistent);

Description

Client must implement IDesignNotification interface to catch this event

1.43 edManager Namespace EControl Form Designer Pro Classes

508

1

1.43.1.1.1.12 TDesignerManager.ItemsModified Method

Called after selected objects have been modified in the active designer

procedure ItemsModified(const ADesigner: IDesigner);

Description

Client must implement IDesignNotification interface to catch this event

1.43.1.1.1.13 TDesignerManager.KeyDown Method

Called when KeyDown event occurs in active designer.

procedure KeyDown(Sender: IDesigner; var Key: Word; Shift: TShiftState);

Description

Client must implement IDesignIDEEvents (see page 512) interface to catch this event

1.43.1.1.1.14 TDesignerManager.KeyPress Method

Called when KeyPress event occurs in active designer.

procedure KeyPress(Sender: IDesigner; var Key: Char);

Description

Client must implement IDesignIDEEvents (see page 512) interface to catch this event

1.43.1.1.1.15 TDesignerManager.PaletteChanged Method

Called when contents of th component palette is changed.

procedure PaletteChanged;

Description

Client must implement IClassSelector (see page 511) interface to catch this event

1.43.1.1.1.16 TDesignerManager.RemoveClient Method

Removes specified client from the list

procedure RemoveClient(const Client: IUnknown);

Description

1.43.1.1.1.17 TDesignerManager.ResetCmpClass Method

Called after inserting component in the form. If MultiCreate (see page 511) = False, ComponentClass (see page 510)
will be reset to nil.

procedure ResetCmpClass;

Description

1.43.1.1.1.18 TDesignerManager.SelectionChanged Method

Called after selection have been changed in the active designer.

procedure SelectionChanged(const ADesigner: IDesigner; const ASelection:
IDesignerSelections);

1.43 edManager Namespace EControl Form Designer Pro Classes

509

1

Description

Client must implement IDesignNotification interface to catch this event

1.43.1.1.1.19 TDesignerManager.SetActiveDesigner Method

Sets active designer.

procedure SetActiveDesigner(const Value: IDesigner); virtual ;

Description

Override this method when you need to switch managers.

Application:

There are several groups of designers (edited objects) with own component palette state and design objects.

Usage:

For each group there should be created own instance of TDesignManager (derived class).

Derive new class from TDesignManager and override SetActiveDesigner.

In SetActiveDesigner you should detect in which group this active designer is included and change DsnManager (see
page 514) global variable.

procedure TMyDesignManager.SetActiveDesigner(const Value: IDesigner);
var Mng: TMyDesignManager;
begin
 // GetManagerForDesigner - your function which detects particular group
 Mng := GetManagerForDesigner(Value);
 if Mng <> Self then
 begin
 DsnManager := Mng;
 Mng.SetActiveDesigner(Value);
 end else
 inherited ;
end ;

1.43.1.1.2 TDesignerManager Properties

1.43.1.1.2.1 TDesignerManager.ActiveDesigner Property

Current active designer.

property ActiveDesigner: IDesigner;

Description

Read this property to get reference to the currently active designer.

Set this property to change it.

1.43.1.1.2.2 TDesignerManager.ComponentClass Property

Current component class selected in the component palette.

property ComponentClass: TComponentClass;

Description

Use this property to get what type of class is being selected in the component palette.

Set this property to change this TComponentClass.

This TComponentClass type is used when creating new components on the designed form.

1.43 edManager Namespace EControl Form Designer Pro Classes

510

1

1.43.1.1.2.3 TDesignerManager.MultiCreate Property

Specifies whether ComponentClass (see page 510) must be reset to nil after component has been added to the form in
the designer.

property MultiCreate: Boolean;

Description

If MultiCreate = True, user may create (see page 507) several instances of selected class without selection in the palette.
This mode is activated when user selects component on the palette with pressed Shift.

1.43.2 Interfaces

The following table lists interfaces in this documentation.

Interfaces

Interface Description

 IClassSelector (see page 511) Interface to accept component palette events.

 IDesignIDEEvents (see page 512) Interface to accept designer events.

Legend

Interface

1.43.2.1 IClassSelector Interface
Interface to accept component palette events.

Class Hierarchy

IClassSelector = interface ;

File

edManager

Members

IClassSelector Methods

IClassSelector Methods Description

 ClsChanged (see page 511) Called when selected in component palette component class was changed.

 ClsPalChanged (see page 512) Called when component palette was changed.

Legend

Method

IClassSelector Methods

IClassSelector Methods Description

 ClsChanged (see page 511) Called when selected in component palette component class was changed.

 ClsPalChanged (see page 512) Called when component palette was changed.

1.43.2.1.1 IClassSelector Methods

1.43.2.1.1.1 IClassSelector.ClsChanged Method

Called when selected in component palette component class was changed.

1.43 edManager Namespace EControl Form Designer Pro Interfaces

511

1

procedure ClsChanged;

1.43.2.1.1.2 IClassSelector.ClsPalChanged Method

Called when component palette was changed.

procedure ClsPalChanged;

1.43.2.2 IDesignIDEEvents Interface
Interface to accept designer events.

Class Hierarchy

IDesignIDEEvents = interface ;

File

edManager

Members

IDesignIDEEvents Methods

IDesignIDEEvents Methods Description

 ActiveDsnChanged (see page 512) Called when active designer was changed.

 BeforeRegisterComponent (see page 512) Called before registering component class.

 GetGlobalComponents (see page 512) Called to get global components.

 GetWorkspaceOrigin (see page 513) Called to get workspace origin.

 KeyDown (see page 513) Called on key down in active designer.

 KeyPress (see page 513) Called on key press in active designer.

Legend

Method

IDesignIDEEvents Methods

IDesignIDEEvents Methods Description

 ActiveDsnChanged (see page 512) Called when active designer was changed.

 BeforeRegisterComponent (see page 512) Called before registering component class.

 GetGlobalComponents (see page 512) Called to get global components.

 GetWorkspaceOrigin (see page 513) Called to get workspace origin.

 KeyDown (see page 513) Called on key down in active designer.

 KeyPress (see page 513) Called on key press in active designer.

1.43.2.2.1 IDesignIDEEvents Methods

1.43.2.2.1.1 IDesignIDEEvents.ActiveDsnChanged Method

Called when active designer was changed.

procedure ActiveDsnChanged;

1.43.2.2.1.2 IDesignIDEEvents.BeforeRegisterComponent Method

Called before registering component class.

procedure BeforeRegisterComponent(ComponentClass: TComponentClass; var Page: string ; var
Accept: Boolean);

1.43.2.2.1.3 IDesignIDEEvents.GetGlobalComponents Method

Called to get global components.

1.43 edManager Namespace EControl Form Designer Pro Interfaces

512

1

function GetGlobalComponents(Root: TComponent; List: TList): Boolean;

1.43.2.2.1.4 IDesignIDEEvents.GetWorkspaceOrigin Method

Called to get workspace origin.

function GetWorkspaceOrigin(var Org: TPoint): Boolean;

1.43.2.2.1.5 IDesignIDEEvents.KeyDown Method

Called on key down in active designer.

procedure KeyDown(Sender: IDesigner; var Key: Word; Shift: TShiftState);

1.43.2.2.1.6 IDesignIDEEvents.KeyPress Method

Called on key press in active designer.

procedure KeyPress(Sender: IDesigner; var Key: Char);

1.43.3 Functions

The following table lists functions in this documentation.

Functions

Function Description

 GetClassDragImage (see page 513) Returns image list with icon and optionally caption of selected component
class.

Legend

Method

1.43.3.1 edManager.GetClassDragImage Function
Returns image list with icon and optionally caption of selected component class.

function GetClassDragImage(WithCaption: Boolean): TImageList;

File

edManager

1.43.4 Structs, Records, Enums

The following table lists structs, records, enums in this documentation.

Enumerations

Enumeration Description

 TComponentClassDragImage (see page 513) Kind of drag image for component palette.

Legend

Enumeration

1.43.4.1 edManager.TComponentClassDragImage Enumeration
Kind of drag image for component palette.

1.43 edManager Namespace EControl Form Designer Pro Structs, Records, Enums

513

1

TComponentClassDragImage = (
 cdiNone,
 cdiIcon,
 cdiIconAndCaption
);

File

edManager

Members

Members Description

cdiNone No drag image.

cdiIcon Displays only icon of component class.

cdiIconAndCaption Displays icon and display name of component class.

1.43.5 Variables

The following table lists variables in this documentation.

Variables

Variable Description

DsnManager (see page 514) Global designer event manager.

1.43.5.1 edManager.DsnManager Variable
Global designer event manager.

DsnManager: TDesignerManager ;

File

edManager

1.44 edsMenuDsn Namespace

1.44.1 Classes

The following table lists classes in this documentation.

Classes

Class Description

TMenuDsnWnd (see page 514) Use this dialog box to adjust menu items for TMainMenu and TPopupMenu
components.

TzMenuEditor (see page 515) TzMenuEditor is a component editor for editing TMainMenu and TPopupMenu
components.

TzMenuItemsPropertyEditor (see page 515) TzMenuItemsPropertyEditor is a string property editor especially designed to
edit strings associated with menu item

1.44.1.1 TMenuDsnWnd Class
Use this dialog box to adjust menu items for TMainMenu and TPopupMenu components.

1.44 edsMenuDsn Namespace EControl Form Designer Pro Classes

514

1

Class Hierarchy

TMenuDsnWnd = class (TDesignWindow);

File

edsMenuDsn

1.44.1.2 TzMenuEditor Class
TzMenuEditor is a component editor for editing TMainMenu and TPopupMenu components.

Class Hierarchy

TzMenuEditor = class (TDefaultEditor);

File

edsMenuDsn

Description

Add a description here...

1.44.1.3 TzMenuItemsPropertyEditor Class
TzMenuItemsPropertyEditor is a string property editor especially designed to edit strings associated with menu item

Class Hierarchy

TzMenuItemsPropertyEditor = class (TStringProperty);

File

edsMenuDsn

Description

1.45 eduDMContainer Namespace

1.45.1 Classes

The following table lists classes in this documentation.

Classes

Class Description

TDsnDM (see page 516) TDsnDM is a form, designed to use as a DataModule container

1.45 eduDMContainer Namespace EControl Form Designer Pro Classes

515

1

1.45.1.1 TDsnDM Class
TDsnDM is a form, designed to use as a DataModule container

Class Hierarchy

TDsnDM = class (TForm, IDesignNotification);

File

eduDMContainer

Description

1.46 eduServObj Namespace

1.46.1 Classes

The following table lists classes in this documentation.

Classes

Class Description

TAlignRuler (see page 516) Popup window of 1 pixel width/height which is used as align ruler in the
designer.

TComponentCaption (see page 517) TComponentCaption is used as icon's Caption for nonvisual components

TComponentIcon (see page 517) TComponentIcon is a class-wrapper to paint icons for non visual components.

TDraggedControl (see page 517) Service window used during dragging controls (BDS Style).

TSmallRect (see page 517) Implements single marker window.

TTabOrderIcons (see page 518) Manages tab order icons.

TzBoundCtrl (see page 520) Markers manager class.

1.46.1.1 TAlignRuler Class
Popup window of 1 pixel width/height which is used as align ruler in the designer.

Class Hierarchy

TAlignRuler = class (TCustomControl);

File

eduServObj

Description

1.46 eduServObj Namespace EControl Form Designer Pro Classes

516

1

1.46.1.2 TComponentCaption Class
TComponentCaption is used as icon's Caption for nonvisual components

Class Hierarchy

TComponentCaption = class (TCustomControl);

File

eduServObj

Description

1.46.1.3 TComponentIcon Class
TComponentIcon is a class-wrapper to paint icons for non visual components.

Class Hierarchy

TComponentIcon = class (TCustomControl);

File

eduServObj

1.46.1.4 TDraggedControl Class
Service window used during dragging controls (BDS Style).

Class Hierarchy

TDraggedControl = class (TCustomControl);

File

eduServObj

Description

1.46.1.5 TSmallRect Class
Implements single marker window.

Class Hierarchy

TSmallRect = class (TCustomControl);

File

eduServObj

1.46 eduServObj Namespace EControl Form Designer Pro Classes

517

1

Description

1.46.1.6 TTabOrderIcons Class
Manages tab order icons.

Class Hierarchy

TTabOrderIcons = class (TPersistent);

File

eduServObj

Description

"Show (see page 519) Tab Order" design mode allows easy changing of tab order of controls. This mode may be
activated for any window control which has children controls.

In this mode over each child control with TabStop property equal to True icon is displayed with tab order index. Click on the
control sequentially changes tab order index.

To exit "Show (see page 519) Tab Order" design mode click on any non-child control or press Escape key.

Members

TTabOrderIcons Methods

TTabOrderIcons Methods Description

 Hide (see page 519) Exits "Show (see page 519) Tab Order" design mode.

 SetTabOrder (see page 519) Changes tab order of the specified child control.

 Show (see page 519) Activates "Show Tab Order" design mode for the specified parent control.

TTabOrderIcons Properties

TTabOrderIcons Properties Description

 Color (see page 519) Specifies the color of tab order icon.

 Font (see page 519) Specifies font of the tab order icon.

 Height (see page 519) Specifies height of tab order icon. If it is equal to 0 - height is selected
automatically to fit.

 HorzAlign (see page 519) Specifies horizontal position of tab order icon relative to associated control.

 VertAlign (see page 519) Specifies vertical position of tab order icon relative to associated control.

 Visible (see page 519) Returns True when "Show (see page 519) Tab Order" design mode is
active.

 Width (see page 520) Specifies width of tab order icon. If it is equal to 0 - width is selected
automatically to fit.

Legend

Method

Property

read only

TTabOrderIcons Methods

TTabOrderIcons Methods Description

 Hide (see page 519) Exits "Show (see page 519) Tab Order" design mode.

 SetTabOrder (see page 519) Changes tab order of the specified child control.

 Show (see page 519) Activates "Show Tab Order" design mode for the specified parent control.

TTabOrderIcons Properties

TTabOrderIcons Properties Description

 Color (see page 519) Specifies the color of tab order icon.

1.46 eduServObj Namespace EControl Form Designer Pro Classes

518

1

 Font (see page 519) Specifies font of the tab order icon.

 Height (see page 519) Specifies height of tab order icon. If it is equal to 0 - height is selected
automatically to fit.

 HorzAlign (see page 519) Specifies horizontal position of tab order icon relative to associated control.

 VertAlign (see page 519) Specifies vertical position of tab order icon relative to associated control.

 Visible (see page 519) Returns True when "Show (see page 519) Tab Order" design mode is
active.

 Width (see page 520) Specifies width of tab order icon. If it is equal to 0 - width is selected
automatically to fit.

1.46.1.6.1 TTabOrderIcons Methods

1.46.1.6.1.1 TTabOrderIcons.Hide Method

Exits "Show (see page 519) Tab Order" design mode.

procedure Hide;

1.46.1.6.1.2 TTabOrderIcons.SetTabOrder Method

Changes tab order of the specified child control.

function SetTabOrder(Ctl: TControl): Boolean;

1.46.1.6.1.3 TTabOrderIcons.Show Method

Activates "Show Tab Order" design mode for the specified parent control.

function Show(Prn: TWinControl): Boolean;

1.46.1.6.2 TTabOrderIcons Properties

1.46.1.6.2.1 TTabOrderIcons.Color Property

Specifies the color of tab order icon.

property Color: TColor;

1.46.1.6.2.2 TTabOrderIcons.Font Property

Specifies font of the tab order icon.

property Font: TFont;

1.46.1.6.2.3 TTabOrderIcons.Height Property

Specifies height of tab order icon. If it is equal to 0 - height is selected automatically to fit.

property Height: integer;

1.46.1.6.2.4 TTabOrderIcons.HorzAlign Property

Specifies horizontal position of tab order icon relative to associated control.

property HorzAlign: TAlignment;

1.46.1.6.2.5 TTabOrderIcons.VertAlign Property

Specifies vertical position of tab order icon relative to associated control.

property VertAlign: TVerticalAlignment ;

1.46.1.6.2.6 TTabOrderIcons.Visible Property

Returns True when "Show (see page 519) Tab Order" design mode is active.

1.46 eduServObj Namespace EControl Form Designer Pro Classes

519

1

property Visible: boolean;

1.46.1.6.2.7 TTabOrderIcons.Width Property

Specifies width of tab order icon. If it is equal to 0 - width is selected automatically to fit.

property Width: integer;

1.46.1.7 TzBoundCtrl Class
Markers manager class.

Class Hierarchy

TzBoundCtrl = class (TPersistent);

File

eduServObj

Description

Manages markers (up to 8) around selected in designer control.

Members

TzBoundCtrl Methods

TzBoundCtrl Methods Description

 GrabAtPos (see page 521) Returns marker at specified position.

 Hide (see page 521) Hides markers.

 Invalidate (see page 521) Invalidates all markers.

 Recreate (see page 521) Recreates markers.

 Update (see page 521) Shows and moves markers to new control position.

TzBoundCtrl Properties

TzBoundCtrl Properties Description

 Bitmap (see page 522) Specifies bitmap of marker.

 Color (see page 522) Indicates the color of the selections markers.

 Control (see page 522) Specifies selected control.

 DrawMultSel (see page 522) Specifies whether markers for multiple selection should be drawn.

 GrabSize (see page 522) Indicates the size of the selections markers.

 Local (see page 522) Specifies whether markers are visible only in the parent window of selected
control. Otherwise markers are visible wherever in the form.

 Locked (see page 522) Specifies locked state of markers.

 MarkerShape (see page 522) Specifies shape of markers window.

 Visible (see page 523) Specifies whether markers are visible.

Legend

Method

protected

Property

TzBoundCtrl Methods

TzBoundCtrl Methods Description

 GrabAtPos (see page 521) Returns marker at specified position.

 Hide (see page 521) Hides markers.

 Invalidate (see page 521) Invalidates all markers.

 Recreate (see page 521) Recreates markers.

 Update (see page 521) Shows and moves markers to new control position.

1.46 eduServObj Namespace EControl Form Designer Pro Classes

520

1

TzBoundCtrl Properties

TzBoundCtrl Properties Description

 Bitmap (see page 522) Specifies bitmap of marker.

 Color (see page 522) Indicates the color of the selections markers.

 Control (see page 522) Specifies selected control.

 DrawMultSel (see page 522) Specifies whether markers for multiple selection should be drawn.

 GrabSize (see page 522) Indicates the size of the selections markers.

 Local (see page 522) Specifies whether markers are visible only in the parent window of selected
control. Otherwise markers are visible wherever in the form.

 Locked (see page 522) Specifies locked state of markers.

 MarkerShape (see page 522) Specifies shape of markers window.

 Visible (see page 523) Specifies whether markers are visible.

1.46.1.7.1 TzBoundCtrl Methods

1.46.1.7.1.1 TzBoundCtrl.GrabAtPos Method

Returns marker at specified position.

function GrabAtPos(p: TPoint): TSmallRect ;

Description

1.46.1.7.1.2 TzBoundCtrl.Hide Method

Hides markers.

procedure Hide;

Description

1.46.1.7.1.3 TzBoundCtrl.Invalidate Method

Invalidates all markers.

procedure Invalidate;

Description

1.46.1.7.1.4 TzBoundCtrl.Recreate Method

Recreates markers.

procedure Recreate;

1.46.1.7.1.5 TzBoundCtrl.Update Method

Shows and moves markers to new control position.

procedure Update;

Description

1.46.1.7.2 TzBoundCtrl Properties

1.46 eduServObj Namespace EControl Form Designer Pro Classes

521

1

1.46.1.7.2.1 TzBoundCtrl.Bitmap Property

Specifies bitmap of marker.

property Bitmap: TBitmap;

Description

This bitmap should consist of two images in row: first for active state and second for locked state.

1.46.1.7.2.2 TzBoundCtrl.Color Property

Indicates the color of the selections markers.

property Color: TColor;

Description

Set this property to change color of the markers around selected components.

1.46.1.7.2.3 TzBoundCtrl.Control Property

Specifies selected control.

property Control: TControl;

Description

Markers are shown around selected control of the designer, when only one control is selected.

1.46.1.7.2.4 TzBoundCtrl.DrawMultSel Property

Specifies whether markers for multiple selection should be drawn.

property DrawMultSel: Boolean;

1.46.1.7.2.5 TzBoundCtrl.GrabSize Property

Indicates the size of the selections markers.

property GrabSize: integer;

Description

Set this property to change size of the markers around selected components.

1.46.1.7.2.6 TzBoundCtrl.Local Property

Specifies whether markers are visible only in the parent window of selected control. Otherwise markers are visible wherever
in the form.

property Local: Boolean;

1.46.1.7.2.7 TzBoundCtrl.Locked Property

Specifies locked state of markers.

property Locked: Boolean;

Description

Markers are grayed in locked state (for example, when object can not be moved).

1.46.1.7.2.8 TzBoundCtrl.MarkerShape Property

Specifies shape of markers window.

property MarkerShape: TMarkerShape ;

1.46 eduServObj Namespace EControl Form Designer Pro Classes

522

1

Description

1.46.1.7.2.9 TzBoundCtrl.Visible Property

Specifies whether markers are visible.

property Visible: Boolean;

1.46.2 Functions

The following table lists functions in this documentation.

Functions

Function Description

 DrawPatternRect (see page 523) Draws pattern frame. Used by design surface to draw frame around designed
form.

 IsServiceControl (see page 523) Returns true if Control is temporary service control managed by the designer.

Legend

Method

1.46.2.1 eduServObj.DrawPatternRect Function
procedure DrawPatternRect(Canvas: TCanvas; R: TRect; Size: integer);

File

eduServObj

Description

Draws pattern frame. Used by design surface to draw frame around designed form.

1.46.2.2 eduServObj.IsServiceControl Function
function IsServiceControl(AControl: TControl): Boolean;

File

eduServObj

Description

Returns true if Control is temporary service control managed by the designer.

1.46.3 Structs, Records, Enums

The following table lists structs, records, enums in this documentation.

Enumerations

Enumeration Description

 TMarkerShape (see page 524) Marker window shape

 TVerticalAlignment (see page 524) This is record eduServObj.TVerticalAlignment.

1.46 eduServObj Namespace EControl Form Designer Pro Structs, Records, Enums

523

1

Legend

Enumeration

1.46.3.1 eduServObj.TMarkerShape Enumeration
TMarkerShape = (
 msReactangle,
 msCircle,
 msRoundRect
);

File

eduServObj

Members

Members Description

msReactangle Rectangle shape

msCircle Circle shape

msRoundRect Rounded rectangle shape

Description

Marker window shape

1.46.3.2 eduServObj.TVerticalAlignment Enumeration
TVerticalAlignment = (
 taAlignTop,
 taAlignBottom,
 taVerticalCenter
);

File

eduServObj

Description

This is record eduServObj.TVerticalAlignment.

1.47 edUtils Namespace

1.47.1 Functions

The following table lists functions in this documentation.

Functions

Function Description

 DsnAlignSelected (see page 525) Aligns selected objects in active designer.

 DsnLoadPackage (see page 525) Loads package and registers design objects from it in the design environment.

 DsnReadCmpFromStream (see page 525) Reads root component of Designer from Stream. Pass OnError and
OnCreateCmp procedures to control loading process.

 DsnReadFromFile (see page 525) Reads object (edited by Designer) resource from the file FileName. OnError
allows handling of resource reading errors.

1.47 edUtils Namespace EControl Form Designer Pro Functions

524

1

 DsnWriteCmpToStream (see page 526) Write root component of Designer to stream. AsText parameter specifies
stream format: text or binary.

 DsnWriteToFile (see page 526) Writes edited by Designer object to the file FileName. AsText specifies format
of written file.

 GetDesigner (see page 526) Gets pointer to TzCustomFormDesigner (see page 161) from Designer
reference or from ActiveDesigner property in DsnManager if Designer = nil.

 InvalidateControl (see page 526) Calls Invalidate for the specified control and all it's children

 IsControlParent (see page 526) Validates whether AParent is a Parent of the AControl.

 NormalizeRect (see page 527) Makes Left <= Right and Top <= Bottom

 PerformDsnAction (see page 527) Performs designer action. If Designer = nil, active designer will be used.

 ShowDesignerOptionsDlg (see page 527) Displays "Designer options" dialog. If Designer = nil, active designer will be
used.

 ShowDsnAbout (see page 527) Displays about dialog

Legend

Method

1.47.1.1 edUtils.DsnAlignSelected Function
procedure DsnAlignSelected(Horz: TCompAlign ; Vert: TCompAlign);

File

edUtils

Description

Aligns selected objects in active designer.

1.47.1.2 edUtils.DsnLoadPackage Function
procedure DsnLoadPackage(const FileName: string);

File

edUtils

Description

Loads package and registers design objects from it in the design environment.

1.47.1.3 edUtils.DsnReadCmpFromStream Function
Reads root component of Designer from Stream. Pass OnError and OnCreateCmp procedures to control loading process.

procedure DsnReadCmpFromStream(Stream: TStream; const Designer: IDesigner; OnError:
TReaderError = nil);

File

edUtils

1.47.1.4 edUtils.DsnReadFromFile Function
procedure DsnReadFromFile(const FileName: string ; const Designer: IDesigner; OnError:
TReaderError = nil);

File

edUtils

1.47 edUtils Namespace EControl Form Designer Pro Functions

525

1

Description

Reads object (edited by Designer) resource from the file FileName. OnError allows handling of resource reading errors.

1.47.1.5 edUtils.DsnWriteCmpToStream Function
Write root component of Designer to stream. AsText parameter specifies stream format: text or binary.

procedure DsnWriteCmpToStream(Stream: TStream; const Designer: IDesigner; AsText: Boolean);

File

edUtils

1.47.1.6 edUtils.DsnWriteToFile Function
procedure DsnWriteToFile(const FileName: string ; const Designer: IDesigner; AsText:
Boolean);

File

edUtils

Description

Writes edited by Designer object to the file FileName. AsText specifies format of written file.

1.47.1.7 edUtils.GetDesigner Function
Gets pointer to TzCustomFormDesigner (see page 161) from Designer reference or from ActiveDesigner property in
DsnManager if Designer = nil.

function GetDesigner(const Designer: IDesigner = nil): TzFormDesigner ;

File

edUtils

Description

1.47.1.8 edUtils.InvalidateControl Function
procedure InvalidateControl(AControl: TControl);

File

edUtils

Description

Calls Invalidate for the specified control and all it's children

1.47.1.9 edUtils.IsControlParent Function
function IsControlParent(AControl: TControl; AParent: TWinControl): Boolean;

File

edUtils

1.47 edUtils Namespace EControl Form Designer Pro Functions

526

1

Description

Validates whether AParent is a Parent of the AControl.

1.47.1.10 edUtils.NormalizeRect Function
procedure NormalizeRect(var Rect: TRect);

File

edUtils

Description

Makes Left <= Right and Top <= Bottom

1.47.1.11 edUtils.PerformDsnAction Function
function PerformDsnAction(act: TDesignerAction ; const Designer: IDesigner = nil): Boolean;

File

edUtils

Description

Performs designer action. If Designer = nil, active designer will be used.

1.47.1.12 edUtils.ShowDesignerOptionsDlg Function
function ShowDesignerOptionsDlg(const Designer: IDesigner): Boolean;

File

edUtils

Description

Displays "Designer options" dialog. If Designer = nil, active designer will be used.

1.47.1.13 edUtils.ShowDsnAbout Function
procedure ShowDsnAbout;

File

edUtils

Description

Displays about dialog

1.47.2 Structs, Records, Enums

The following table lists structs, records, enums in this documentation.

Enumerations

Enumeration Description

 TDesignerAction (see page 528) Designer specific actions.

1.47 edUtils Namespace EControl Form Designer Pro Structs, Records, Enums

527

1

Legend

Enumeration

1.47.2.1 edUtils.TDesignerAction Enumeration
Designer specific actions.

TDesignerAction = (
 daAlignToGrid,
 daBringToFront,
 daSendToBack,
 daAlignmentDlg,
 daSizeDlg,
 daScale,
 daTabOrderDlg,
 daCreationOrderDlg,
 daFlipChildrenAll,
 daFlipChildren
);

File

edUtils

Members

Members Description

daAlignToGrid Aligns selected controls to grid.

daBringToFront Moves selected controls to front.

daSendToBack Sends selected controls to back.

daAlignmentDlg Displays "Alignment" dialog to align selected controls.

daSizeDlg Displays "Size" dialog to change size of selected controls.

daScale Display "Scale" dialog to resize controls.

daTabOrderDlg Displays "Tab Order dialog".

daCreationOrderDlg Displays "Creation Order" dialog to change creation order of non-visible
components.

daFlipChildrenAll Flips all controls from left to right and vise versa.

daFlipChildren Flips selected controls and their children.

1.47 edUtils Namespace EControl Form Designer Pro Structs, Records, Enums

528

1

Index

B
ButtonClick Example 10

E
ecBtnPanel namespace

Classes 18

Structs, Records, Enums 44

Types 45

ecBtnPanel.TBtnMargins 18

ecBtnPanel.TBtnMargins.Bottom 19

ecBtnPanel.TBtnMargins.BtnHorz 19

ecBtnPanel.TBtnMargins.BtnVert 19

ecBtnPanel.TBtnMargins.Left 19

ecBtnPanel.TBtnMargins.Right 20

ecBtnPanel.TBtnMargins.Top 20

ecBtnPanel.TBtnPanel 28

ecBtnPanel.TBtnPanel.Align 32

ecBtnPanel.TBtnPanel.Anchors 33

ecBtnPanel.TBtnPanel.AutoSize 33

ecBtnPanel.TBtnPanel.BevelInner 33

ecBtnPanel.TBtnPanel.BevelOuter 33

ecBtnPanel.TBtnPanel.BevelWidth 34

ecBtnPanel.TBtnPanel.BiDiMode 34

ecBtnPanel.TBtnPanel.BorderStyle 34

ecBtnPanel.TBtnPanel.BorderWidth 34

ecBtnPanel.TBtnPanel.ButtonCount 35

ecBtnPanel.TBtnPanel.ButtonHeight 35

ecBtnPanel.TBtnPanel.ButtonWidth 35

ecBtnPanel.TBtnPanel.Color 35

ecBtnPanel.TBtnPanel.Constraints 36

ecBtnPanel.TBtnPanel.Ctl3D 36

ecBtnPanel.TBtnPanel.DownButton 36

ecBtnPanel.TBtnPanel.DragCursor 36

ecBtnPanel.TBtnPanel.DragKind 36

ecBtnPanel.TBtnPanel.DragMode 37

ecBtnPanel.TBtnPanel.Enabled 37

ecBtnPanel.TBtnPanel.Flat 37

ecBtnPanel.TBtnPanel.Font 37

ecBtnPanel.TBtnPanel.HintProps 37

ecBtnPanel.TBtnPanel.Margins 37

ecBtnPanel.TBtnPanel.OnButtonClick 38

ecBtnPanel.TBtnPanel.OnCanResize 38

ecBtnPanel.TBtnPanel.OnClick 38

ecBtnPanel.TBtnPanel.OnConstrainedResize 38

ecBtnPanel.TBtnPanel.OnContextPopup 39

ecBtnPanel.TBtnPanel.OnDblClick 39

ecBtnPanel.TBtnPanel.OnDragDrop 39

ecBtnPanel.TBtnPanel.OnDragOver 39

ecBtnPanel.TBtnPanel.OnDrawButton 40

ecBtnPanel.TBtnPanel.OnEndDrag 40

ecBtnPanel.TBtnPanel.OnEnter 40

ecBtnPanel.TBtnPanel.OnExit 40

ecBtnPanel.TBtnPanel.OnGetButtonHint 41

ecBtnPanel.TBtnPanel.OnMouseDown 41

ecBtnPanel.TBtnPanel.OnMouseMove 41

ecBtnPanel.TBtnPanel.OnMouseUp 41

ecBtnPanel.TBtnPanel.OnResize 42

ecBtnPanel.TBtnPanel.OnStartDrag 42

ecBtnPanel.TBtnPanel.Orientation 42

ecBtnPanel.TBtnPanel.ParentBiDiMode 42

ecBtnPanel.TBtnPanel.ParentColor 42

ecBtnPanel.TBtnPanel.ParentCtl3D 43

ecBtnPanel.TBtnPanel.ParentFont 43

ecBtnPanel.TBtnPanel.ParentShowHint 43

ecBtnPanel.TBtnPanel.PopupMenu 43

ecBtnPanel.TBtnPanel.RowCount 43

ecBtnPanel.TBtnPanel.ShowHint 43

ecBtnPanel.TBtnPanel.TabOrder 43

ecBtnPanel.TBtnPanel.TabStop 43

ecBtnPanel.TBtnPanel.Transparent 44

ecBtnPanel.TBtnPanel.Visible 44

ecBtnPanel.TButtonClickEvent 45

ecBtnPanel.TButtonClickEvent type 45

ecBtnPanel.TCustomBtnPanel 20

ecBtnPanel.TCustomBtnPanel.AutoSize 25

ecBtnPanel.TCustomBtnPanel.ButtonAtPos 22

ecBtnPanel.TCustomBtnPanel.ButtonClick 22

ecBtnPanel.TCustomBtnPanel.ButtonCount 25

ecBtnPanel.TCustomBtnPanel.ButtonHeight 25

ecBtnPanel.TCustomBtnPanel.ButtonRect 22

ecBtnPanel.TCustomBtnPanel.ButtonWidth 25

2 EControl Form Designer Pro

a

ecBtnPanel.TCustomBtnPanel.CanAutoSize 23

ecBtnPanel.TCustomBtnPanel.Caption 25

ecBtnPanel.TCustomBtnPanel.Create 23

ecBtnPanel.TCustomBtnPanel.Destroy 23

ecBtnPanel.TCustomBtnPanel.DownButton 26

ecBtnPanel.TCustomBtnPanel.DrawButton 23

ecBtnPanel.TCustomBtnPanel.Flat 26

ecBtnPanel.TCustomBtnPanel.GetButtonHint 24

ecBtnPanel.TCustomBtnPanel.HintProps 26

ecBtnPanel.TCustomBtnPanel.InvalidateButtons 24

ecBtnPanel.TCustomBtnPanel.Loaded 24

ecBtnPanel.TCustomBtnPanel.Margins 26

ecBtnPanel.TCustomBtnPanel.MouseDown 24

ecBtnPanel.TCustomBtnPanel.OnButtonClick 27

ecBtnPanel.TCustomBtnPanel.OnDrawButton 27

ecBtnPanel.TCustomBtnPanel.OnGetButtonHint 28

ecBtnPanel.TCustomBtnPanel.Orientation 26

ecBtnPanel.TCustomBtnPanel.Paint 24

ecBtnPanel.TCustomBtnPanel.RowCount 27

ecBtnPanel.TCustomBtnPanel.Transparent 27

ecBtnPanel.TDrawButtonEvent 45

ecBtnPanel.TDrawButtonEvent type 45

ecBtnPanel.TGetButtonHintEvent 45

ecBtnPanel.TGetButtonHintEvent type 45

ecBtnPanel.TRowOrientation 44

ecBtnPanel.TRowOrientation enumeration 44

ecDlList namespace

Classes 46

Structs, Records, Enums 69

Types 69

ecDlList.TCellType 69

ecDlList.TCellType enumeration 69

ecDlList.TCustomPropDrawEvent 70

ecDlList.TCustomPropDrawEvent type 70

ecDlList.TCustomPropList 46

ecDlList.TCustomPropList.cGutter 50

ecDlList.TCustomPropList.cGutterBnd 51

ecDlList.TCustomPropList.cHighlight 51

ecDlList.TCustomPropList.cHighlightText 51

ecDlList.TCustomPropList.Create 49

ecDlList.TCustomPropList.CreateItems 49

ecDlList.TCustomPropList.Current 49

ecDlList.TCustomPropList.Destroy 49

ecDlList.TCustomPropList.DoPrepareCanvas 50

ecDlList.TCustomPropList.DrawCell 50

ecDlList.TCustomPropList.DrawPropCell 50

ecDlList.TCustomPropList.FoldingIcon 51

ecDlList.TCustomPropList.GutterWidth 50

ecDlList.TCustomPropList.IsHeaderItem 50

ecDlList.TCustomPropList.Items 51

ecDlList.TCustomPropList.LeftMargin 51

ecDlList.TCustomPropList.LevelWidth 51

ecDlList.TCustomPropList.MouseDown 50

ecDlList.TCustomPropList.OnDrawPropCell 51

ecDlList.TCustomPropList.OnGetCellParams 52

ecDlList.TCustomPropList.ShowGutter 51

ecDlList.TDualList 52

ecDlList.TDualList.BorderStyle 58

ecDlList.TDualList.Canvas 58

ecDlList.TDualList.Create 54

ecDlList.TDualList.CreateEditor 54

ecDlList.TDualList.CreateHandle 54

ecDlList.TDualList.Destroy 54

ecDlList.TDualList.DoMouseWheel 54

ecDlList.TDualList.DrawCell 55

ecDlList.TDualList.DrawStr 55

ecDlList.TDualList.DrawStrW 55

ecDlList.TDualList.Editor 59

ecDlList.TDualList.EditorVisible 59

ecDlList.TDualList.ExecuteAction 55

ecDlList.TDualList.FocusEditor 56

ecDlList.TDualList.IsHeaderItem 56

ecDlList.TDualList.ItemCount 59

ecDlList.TDualList.ItemHeight 59

ecDlList.TDualList.ItemIndex 59

ecDlList.TDualList.ItemRect 56

ecDlList.TDualList.KeyDown 56

ecDlList.TDualList.MouseDown 56

ecDlList.TDualList.MouseMove 56

ecDlList.TDualList.MouseToItem 57

ecDlList.TDualList.MouseUp 57

ecDlList.TDualList.OnClick 60

ecDlList.TDualList.Paint 57

ecDlList.TDualList.SetItemIndex 57

2 EControl Form Designer Pro

b

ecDlList.TDualList.ShowGrid 60

ecDlList.TDualList.ShowSelFrame 60

ecDlList.TDualList.SplitPos 60

ecDlList.TDualList.TabOrder 60

ecDlList.TDualList.TabStop 60

ecDlList.TDualList.TopItem 60

ecDlList.TDualList.UpdateAction 57

ecDlList.TDualList.UpdateEditor 58

ecDlList.TGetCellParamsEvent 70

ecDlList.TGetCellParamsEvent type 70

ecDlList.TPropertyItem 61

ecDlList.TPropertyItem.Add 62

ecDlList.TPropertyItem.Changed 62

ecDlList.TPropertyItem.Clear 62

ecDlList.TPropertyItem.Count 64

ecDlList.TPropertyItem.Create 62

ecDlList.TPropertyItem.Delete 63

ecDlList.TPropertyItem.Destroy 63

ecDlList.TPropertyItem.DisplayName 64

ecDlList.TPropertyItem.Expandable 63

ecDlList.TPropertyItem.Expanded 64

ecDlList.TPropertyItem.GetName 63

ecDlList.TPropertyItem.HasValue 63

ecDlList.TPropertyItem.IndexOf 63

ecDlList.TPropertyItem.Insert 63

ecDlList.TPropertyItem.IsEqual 63

ecDlList.TPropertyItem.IsRoot 63

ecDlList.TPropertyItem.Items 64

ecDlList.TPropertyItem.Level 64

ecDlList.TPropertyItem.Move 63

ecDlList.TPropertyItem.Name 64

ecDlList.TPropertyItem.Parent 65

ecDlList.TPropertyItem.PathName 65

ecDlList.TPropertyItem.Root 64

ecDlList.TPropertyItem.Visible 65

ecDlList.TPropListRoot 65

ecDlList.TPropListRoot.BeginUpdate 67

ecDlList.TPropListRoot.Changed 67

ecDlList.TPropListRoot.Create 67

ecDlList.TPropListRoot.Destroy 68

ecDlList.TPropListRoot.EndUpdate 68

ecDlList.TPropListRoot.ExpandItem 68

ecDlList.TPropListRoot.ExpCount 68

ecDlList.TPropListRoot.ExpIndexOf 68

ecDlList.TPropListRoot.ExpItems 68

ecDlList.TPropListRoot.Owner 69

ecDlList.TPropListRoot.RestoreState 68

ecDlList.TPropListRoot.SaveState 68

ecDlList.TPropListRoot.UpdateList 68

ecExtEdit namespace

Classes 70

Structs, Records, Enums 109

Types 110

ecExtEdit.TBtnEdit 70

ecExtEdit.TBtnEdit.AdjustClientRect 73

ecExtEdit.TBtnEdit.Alignment 76

ecExtEdit.TBtnEdit.ButtonClick 73

ecExtEdit.TBtnEdit.ButtonVisible 76

ecExtEdit.TBtnEdit.ButtonWidth 77

ecExtEdit.TBtnEdit.Canvas 77

ecExtEdit.TBtnEdit.Create 73

ecExtEdit.TBtnEdit.CreateParams 73

ecExtEdit.TBtnEdit.CreateWnd 73

ecExtEdit.TBtnEdit.Destroy 74

ecExtEdit.TBtnEdit.EndTracking 74

ecExtEdit.TBtnEdit.KeyDown 74

ecExtEdit.TBtnEdit.KeyPress 74

ecExtEdit.TBtnEdit.MouseMove 74

ecExtEdit.TBtnEdit.MouseUp 75

ecExtEdit.TBtnEdit.MultiLine 77

ecExtEdit.TBtnEdit.OnButtonClick 78

ecExtEdit.TBtnEdit.Paint 75

ecExtEdit.TBtnEdit.PaintBtnGlyph 75

ecExtEdit.TBtnEdit.PaintStatus 75

ecExtEdit.TBtnEdit.PaintWindow 75

ecExtEdit.TBtnEdit.PtInButton 75

ecExtEdit.TBtnEdit.StartTracking 76

ecExtEdit.TBtnEdit.StatusWidth 77

ecExtEdit.TBtnEdit.StopTracking 76

ecExtEdit.TBtnEdit.TrackButton 76

ecExtEdit.TBtnEdit.WantReturns 77

ecExtEdit.TBtnEdit.WantTabs 78

ecExtEdit.TBtnEdit.WordWrap 78

ecExtEdit.TCloseUpEvent 110

2 EControl Form Designer Pro

c

ecExtEdit.TCloseUpEvent type 110

ecExtEdit.TCustomEditEx 78

ecExtEdit.TCustomEditEx.AcceptListValue 82

ecExtEdit.TCustomEditEx.ActiveList 84

ecExtEdit.TCustomEditEx.ButtonClick 82

ecExtEdit.TCustomEditEx.CloseUp 82

ecExtEdit.TCustomEditEx.Create 82

ecExtEdit.TCustomEditEx.Destroy 82

ecExtEdit.TCustomEditEx.DoDropDownKeys 83

ecExtEdit.TCustomEditEx.DropDown 83

ecExtEdit.TCustomEditEx.EditStyle 84

ecExtEdit.TCustomEditEx.EndTracking 83

ecExtEdit.TCustomEditEx.KeyPress 83

ecExtEdit.TCustomEditEx.ListAlign 84

ecExtEdit.TCustomEditEx.MouseDown 83

ecExtEdit.TCustomEditEx.MouseMove 83

ecExtEdit.TCustomEditEx.OnAcceptListValue 85

ecExtEdit.TCustomEditEx.OnCloseUp 85

ecExtEdit.TCustomEditEx.OnDropDown 85

ecExtEdit.TCustomEditEx.OnMeasureWidth 85

ecExtEdit.TCustomEditEx.PaintBtnGlyph 84

ecExtEdit.TCustomEditEx.PickList 84

ecExtEdit.TCustomEditEx.StartTracking 84

ecExtEdit.TEditEx 85

ecExtEdit.TEditEx.Alignment 92

ecExtEdit.TEditEx.Anchors 92

ecExtEdit.TEditEx.AutoSelect 92

ecExtEdit.TEditEx.AutoSize 92

ecExtEdit.TEditEx.BevelEdges 93

ecExtEdit.TEditEx.BevelInner 93

ecExtEdit.TEditEx.BevelKind 93

ecExtEdit.TEditEx.BevelOuter 93

ecExtEdit.TEditEx.BevelWidth 93

ecExtEdit.TEditEx.BiDiMode 94

ecExtEdit.TEditEx.BorderStyle 94

ecExtEdit.TEditEx.ButtonWidth 94

ecExtEdit.TEditEx.CharCase 94

ecExtEdit.TEditEx.Color 95

ecExtEdit.TEditEx.Constraints 95

ecExtEdit.TEditEx.Ctl3D 95

ecExtEdit.TEditEx.DragCursor 95

ecExtEdit.TEditEx.DragKind 95

ecExtEdit.TEditEx.DragMode 95

ecExtEdit.TEditEx.EditMask 96

ecExtEdit.TEditEx.EditStyle 96

ecExtEdit.TEditEx.Enabled 96

ecExtEdit.TEditEx.Font 96

ecExtEdit.TEditEx.ImeMode 96

ecExtEdit.TEditEx.ImeName 97

ecExtEdit.TEditEx.IsUnicode 97

ecExtEdit.TEditEx.ListAlign 97

ecExtEdit.TEditEx.MaxLength 97

ecExtEdit.TEditEx.OnAcceptListValue 98

ecExtEdit.TEditEx.OnButtonClick 98

ecExtEdit.TEditEx.OnChange 98

ecExtEdit.TEditEx.OnClick 98

ecExtEdit.TEditEx.OnCloseUp 98

ecExtEdit.TEditEx.OnDblClick 98

ecExtEdit.TEditEx.OnDragDrop 98

ecExtEdit.TEditEx.OnDragOver 99

ecExtEdit.TEditEx.OnDropDown 99

ecExtEdit.TEditEx.OnEndDrag 99

ecExtEdit.TEditEx.OnEnter 99

ecExtEdit.TEditEx.OnExit 100

ecExtEdit.TEditEx.OnKeyDown 100

ecExtEdit.TEditEx.OnKeyPress 100

ecExtEdit.TEditEx.OnKeyUp 100

ecExtEdit.TEditEx.OnMeasureWidth 101

ecExtEdit.TEditEx.OnMouseDown 101

ecExtEdit.TEditEx.OnMouseMove 101

ecExtEdit.TEditEx.OnMouseUp 101

ecExtEdit.TEditEx.OnStartDrag 102

ecExtEdit.TEditEx.ParentBiDiMode 102

ecExtEdit.TEditEx.ParentColor 102

ecExtEdit.TEditEx.ParentCtl3D 102

ecExtEdit.TEditEx.ParentFont 102

ecExtEdit.TEditEx.ParentShowHint 102

ecExtEdit.TEditEx.PasswordChar 103

ecExtEdit.TEditEx.PickList 103

ecExtEdit.TEditEx.PopupMenu 103

ecExtEdit.TEditEx.ReadOnly 103

ecExtEdit.TEditEx.SelTextW 103

ecExtEdit.TEditEx.ShowHint 104

ecExtEdit.TEditEx.StatusWidth 104

2 EControl Form Designer Pro

d

ecExtEdit.TEditEx.TabOrder 104

ecExtEdit.TEditEx.TabStop 104

ecExtEdit.TEditEx.Text 104

ecExtEdit.TEditEx.TextW 104

ecExtEdit.TEditEx.Visible 104

ecExtEdit.TInplaceEditStyle 110

ecExtEdit.TInplaceEditStyle enumeration 110

ecExtEdit.TMeasureWidthEvent 110

ecExtEdit.TMeasureWidthEvent type 110

ecExtEdit.TOnAcceptListValueEvent 111

ecExtEdit.TOnAcceptListValueEvent type 111

ecExtEdit.TPopupListbox 105

ecExtEdit.TPopupListbox.CreateParams 106

ecExtEdit.TPopupListbox.CreateWnd 106

ecExtEdit.TPopupListbox.ItemHeight 106

ecExtEdit.TPopupListbox.KeyPress 106

ecExtEdit.TPopupListbox.OnDrawItem 106

ecExtEdit.TPopupListbox.OnMeasureItem 107

ecExtEdit.TPopupListbox.Sorted 107

ecExtEdit.TPopupListbox.Style 107

ecExtEdit.TUnicodeEdit 107

ecExtEdit.TUnicodeEdit.Create 108

ecExtEdit.TUnicodeEdit.Destroy 108

ecExtEdit.TUnicodeEdit.IsUnicode 108

ecExtEdit.TUnicodeEdit.SelTextW 109

ecExtEdit.TUnicodeEdit.Text 109

ecExtEdit.TUnicodeEdit.TextW 109

ecHintHelper namespace

Classes 111

Constants 115

Structs, Records, Enums 114

Types 115

ecHintHelper.CM_GETHINTDATA 116

ecHintHelper.CM_GETHINTDATA constant 116

ecHintHelper.PecHintData 115

ecHintHelper.PecHintData type 115

ecHintHelper.TCMGetHintData 114

ecHintHelper.TCMGetHintData record 114

ecHintHelper.TecHintData 115

ecHintHelper.TecHintData record 115

ecHintHelper.TecHintHelper 111

ecHintHelper.TecHintHelper.CancelHint 112

ecHintHelper.TecHintHelper.CanMoveLeft 113

ecHintHelper.TecHintHelper.Color 113

ecHintHelper.TecHintHelper.ControlWndProc 112

ecHintHelper.TecHintHelper.Create 112

ecHintHelper.TecHintHelper.Destroy 113

ecHintHelper.TecHintHelper.Enabled 113

ecHintHelper.TecHintHelper.Font 113

ecHintHelper.TecHintHelper.HidePause 114

ecHintHelper.TecHintHelper.Pause 114

ecHintHelper.TecHintHelper.ResetHint 113

ecHintHelper.TecHintHelper.ShortPause 114

ecHintHelper.TecHintHelper.ShowHint 113

ecToolList namespace

Classes 116

Structs, Records, Enums 143

Types 144

ecToolList.TCustomToolList 116

ecToolList.TCustomToolList.AllowArrange 120

ecToolList.TCustomToolList.AutoCollapse 120

ecToolList.TCustomToolList.CategoryHeight 120

ecToolList.TCustomToolList.CollapseAll 118

ecToolList.TCustomToolList.Create 119

ecToolList.TCustomToolList.Destroy 119

ecToolList.TCustomToolList.DrawItemImage 119

ecToolList.TCustomToolList.ExpandAll 119

ecToolList.TCustomToolList.Filtered 120

ecToolList.TCustomToolList.FilterString 121

ecToolList.TCustomToolList.FoldingIcon 121

ecToolList.TCustomToolList.GetCategoryItem 119

ecToolList.TCustomToolList.HintProps 121

ecToolList.TCustomToolList.Images 121

ecToolList.TCustomToolList.InsertAtItem 121

ecToolList.TCustomToolList.ItemAtPos 119

ecToolList.TCustomToolList.ItemHeight 121

ecToolList.TCustomToolList.ItemIndex 121

ecToolList.TCustomToolList.ItemIndexChanged 119

ecToolList.TCustomToolList.ItemRect 119

ecToolList.TCustomToolList.Items 121

ecToolList.TCustomToolList.ItemsArranged 120

ecToolList.TCustomToolList.ItemsChanged 120

ecToolList.TCustomToolList.ItemsHeight 120

ecToolList.TCustomToolList.MakeTopItem 120

2 EControl Form Designer Pro

e

ecToolList.TCustomToolList.MakeVisible 120

ecToolList.TCustomToolList.MouseOverItem 122

ecToolList.TCustomToolList.OnItemArranged 123

ecToolList.TCustomToolList.OnItemChanged 123

ecToolList.TCustomToolList.PaintItem 120

ecToolList.TCustomToolList.RightClickSelect 122

ecToolList.TCustomToolList.RowSpace 122

ecToolList.TCustomToolList.Selected 122

ecToolList.TCustomToolList.SelectFirstVisible 120

ecToolList.TCustomToolList.StyleCategory 122

ecToolList.TCustomToolList.StyleCategoryMouseOver 122

ecToolList.TCustomToolList.StyleCategorySelected 122

ecToolList.TCustomToolList.StyleItem 122

ecToolList.TCustomToolList.StyleItemMouseOver 122

ecToolList.TCustomToolList.StyleItemSelected 122

ecToolList.TCustomToolList.VerticalGroups 122

ecToolList.TCustomToolList.ViewOrigin 123

ecToolList.TItemShape 144

ecToolList.TItemShape enumeration 144

ecToolList.TToolItemState 144

ecToolList.TToolItemState type 144

ecToolList.TToolItemStyle 123

ecToolList.TToolItemStyle.Alignment 124

ecToolList.TToolItemStyle.BoundPen 125

ecToolList.TToolItemStyle.Brush 125

ecToolList.TToolItemStyle.Create 124

ecToolList.TToolItemStyle.Destroy 124

ecToolList.TToolItemStyle.DrawItemRect 124

ecToolList.TToolItemStyle.Font 125

ecToolList.TToolItemStyle.OnChange 125

ecToolList.TToolItemStyle.Shape 125

ecToolList.TToolList 125

ecToolList.TToolList.Align 130

ecToolList.TToolList.AllowArrange 131

ecToolList.TToolList.Anchors 131

ecToolList.TToolList.AutoCollapse 131

ecToolList.TToolList.BevelEdges 131

ecToolList.TToolList.BevelInner 131

ecToolList.TToolList.BevelKind 132

ecToolList.TToolList.BevelOuter 132

ecToolList.TToolList.BiDiMode 132

ecToolList.TToolList.CategoryHeight 132

ecToolList.TToolList.Color 132

ecToolList.TToolList.Constraints 133

ecToolList.TToolList.Ctl3D 133

ecToolList.TToolList.DragCursor 133

ecToolList.TToolList.DragKind 133

ecToolList.TToolList.DragMode 133

ecToolList.TToolList.Enabled 133

ecToolList.TToolList.Filtered 134

ecToolList.TToolList.FilterString 134

ecToolList.TToolList.FoldingIcon 134

ecToolList.TToolList.Font 134

ecToolList.TToolList.HintProps 134

ecToolList.TToolList.Images 134

ecToolList.TToolList.ItemHeight 134

ecToolList.TToolList.ItemIndex 135

ecToolList.TToolList.Items 135

ecToolList.TToolList.OnCanResize 135

ecToolList.TToolList.OnClick 135

ecToolList.TToolList.OnConstrainedResize 135

ecToolList.TToolList.OnContextPopup 136

ecToolList.TToolList.OnDblClick 136

ecToolList.TToolList.OnDragDrop 136

ecToolList.TToolList.OnDragOver 136

ecToolList.TToolList.OnEndDrag 137

ecToolList.TToolList.OnEnter 137

ecToolList.TToolList.OnExit 137

ecToolList.TToolList.OnItemArranged 137

ecToolList.TToolList.OnItemChanged 137

ecToolList.TToolList.OnMouseDown 137

ecToolList.TToolList.OnMouseMove 138

ecToolList.TToolList.OnMouseUp 138

ecToolList.TToolList.OnResize 138

ecToolList.TToolList.OnStartDrag 138

ecToolList.TToolList.ParentBiDiMode 139

ecToolList.TToolList.ParentColor 139

ecToolList.TToolList.ParentCtl3D 139

ecToolList.TToolList.ParentFont 139

ecToolList.TToolList.ParentShowHint 139

ecToolList.TToolList.PopupMenu 139

ecToolList.TToolList.RightClickSelect 139

ecToolList.TToolList.RowSpace 140

ecToolList.TToolList.Selected 140

2 EControl Form Designer Pro

f

ecToolList.TToolList.ShowHint 140

ecToolList.TToolList.StyleCategory 140

ecToolList.TToolList.StyleCategoryMouseOver 140

ecToolList.TToolList.StyleCategorySelected 140

ecToolList.TToolList.StyleItem 140

ecToolList.TToolList.StyleItemMouseOver 140

ecToolList.TToolList.StyleItemSelected 140

ecToolList.TToolList.TabOrder 140

ecToolList.TToolList.TabStop 140

ecToolList.TToolList.VerticalGroups 141

ecToolList.TToolList.Visible 141

ecToolList.TToolListItem 141

ecToolList.TToolListItem.Caption 142

ecToolList.TToolListItem.Expanded 142

ecToolList.TToolListItem.Hint 142

ecToolList.TToolListItem.ImageIndex 142

ecToolList.TToolListItem.IsCategory 142

ecToolList.TToolListItem.Tag 142

ecToolList.TToolListItem.ToolList 143

ecToolList.TToolListItem.Visible 143

ecToolList.TToolListItems 143

ecToolList.TToolListItems.Items 143

ed_Designer namespace

Classes 156

Constants 236

Structs, Records, Enums 229

Types 231

ed_Designer.DM_POSCHANGED 236

ed_Designer.DM_POSCHANGED constant 236

ed_Designer.sLineBreak 236

ed_Designer.sLineBreak constant 236

ed_Designer.TBufferizedType 229

ed_Designer.TBufferizedType enumeration 229

ed_Designer.TCompAlign 229

ed_Designer.TCompAlign enumeration 229

ed_Designer.TComponentEvent 232

ed_Designer.TComponentEvent type 232

ed_Designer.TCompSize 230

ed_Designer.TCompSize enumeration 230

ed_Designer.TControlGroups 156

ed_Designer.TControlGroups.Clear 158

ed_Designer.TControlGroups.Count 158

ed_Designer.TControlGroups.Create 158

ed_Designer.TControlGroups.Destroy 158

ed_Designer.TControlGroups.GroupControls 158

ed_Designer.TControlGroups.GroupForControl 158

ed_Designer.TControlGroups.Groups 158

ed_Designer.TControlGroups.GroupSelected 158

ed_Designer.TControlGroups.UnGroup 158

ed_Designer.TControlGroups.UnGroupSelected 158

ed_Designer.TCreateComponentEvent 232

ed_Designer.TCreateComponentEvent type 232

ed_Designer.TCreateFrameEvent 232

ed_Designer.TCreateFrameEvent type 232

ed_Designer.TCreateIconEvent 232

ed_Designer.TCreateIconEvent type 232

ed_Designer.TCreateMethodEvent 233

ed_Designer.TCreateMethodEvent type 233

ed_Designer.TDrawControlEvent 233

ed_Designer.TDrawControlEvent type 233

ed_Designer.TGetComponentHintEvent 233

ed_Designer.TGetComponentHintEvent type 233

ed_Designer.TGetMethodNamesEvent 233

ed_Designer.TGetMethodNamesEvent type 233

ed_Designer.TGetObjNameEvent 233

ed_Designer.TGetObjNameEvent type 233

ed_Designer.TGetScriptProcEvent 234

ed_Designer.TGetScriptProcEvent type 234

ed_Designer.TGuidelinesStyle 230

ed_Designer.TGuidelinesStyle enumeration 230

ed_Designer.TGuidelinesStyles 234

ed_Designer.TGuidelinesStyles type 234

ed_Designer.THandleActionEvent 234

ed_Designer.THandleActionEvent type 234

ed_Designer.TLocalMenuFilter 231

ed_Designer.TLocalMenuFilter enumeration 231

ed_Designer.TLocalMenuFilters 234

ed_Designer.TLocalMenuFilters type 234

ed_Designer.TNotificationEvent 234

ed_Designer.TNotificationEvent type 234

ed_Designer.TPasteInfo 159

ed_Designer.TPasteInfo.Create 159

ed_Designer.TPasteInfo.CurrOffset 160

ed_Designer.TPasteInfo.Destroy 160

2 EControl Form Designer Pro

g

ed_Designer.TPasteInfo.IncForParent 160

ed_Designer.TPasteInfo.Init 160

ed_Designer.TRenameEvent 235

ed_Designer.TRenameEvent type 235

ed_Designer.TRenameMethodEvent 235

ed_Designer.TRenameMethodEvent type 235

ed_Designer.TSetNameEvent 235

ed_Designer.TSetNameEvent type 235

ed_Designer.TSetScriptProcEvent 235

ed_Designer.TSetScriptProcEvent type 235

ed_Designer.TShowMethodEvent 235

ed_Designer.TShowMethodEvent type 235

ed_Designer.TUndoRecEvent 236

ed_Designer.TUndoRecEvent type 236

ed_Designer.TValidateMethodEvent 236

ed_Designer.TValidateMethodEvent type 236

ed_Designer.TzCustomFormDesigner 161

ed_Designer.TzCustomFormDesigner.AddCompEditorMenu
170

ed_Designer.TzCustomFormDesigner.AlignSelected 172

ed_Designer.TzCustomFormDesigner.AlignToGrid 172

ed_Designer.TzCustomFormDesigner.AllowComponents 187

ed_Designer.TzCustomFormDesigner.AutoAlign 187

ed_Designer.TzCustomFormDesigner.BDSStyle 188

ed_Designer.TzCustomFormDesigner.BringToFront 172

ed_Designer.TzCustomFormDesigner.BuildLocalMenu 172

ed_Designer.TzCustomFormDesigner.CancelDrag 173

ed_Designer.TzCustomFormDesigner.CanDelete 173

ed_Designer.TzCustomFormDesigner.CanInsert 173

ed_Designer.TzCustomFormDesigner.CanMove 173

ed_Designer.TzCustomFormDesigner.CanPaste 173

ed_Designer.TzCustomFormDesigner.CanRedo 170

ed_Designer.TzCustomFormDesigner.CanRename 173

ed_Designer.TzCustomFormDesigner.CanResize 174

ed_Designer.TzCustomFormDesigner.CanSelect 174

ed_Designer.TzCustomFormDesigner.CanUndo 171

ed_Designer.TzCustomFormDesigner.CaptionFont 188

ed_Designer.TzCustomFormDesigner.CheckAction 171

ed_Designer.TzCustomFormDesigner.ClearCompEditorMenu
171

ed_Designer.TzCustomFormDesigner.ClearSelection 174

ed_Designer.TzCustomFormDesigner.ClearUndo 171

ed_Designer.TzCustomFormDesigner.CloseDisactive 188

ed_Designer.TzCustomFormDesigner.CloseTextEditor 171

ed_Designer.TzCustomFormDesigner.ContainerWindow 188

ed_Designer.TzCustomFormDesigner.CopySelection 174

ed_Designer.TzCustomFormDesigner.Create 174

ed_Designer.TzCustomFormDesigner.CutSelection 174

ed_Designer.TzCustomFormDesigner.DeleteSelection 175

ed_Designer.TzCustomFormDesigner.DesignSurface 188

ed_Designer.TzCustomFormDesigner.Destroy 175

ed_Designer.TzCustomFormDesigner.DisplayControlGrid 189

ed_Designer.TzCustomFormDesigner.DisplayGrid 189

ed_Designer.TzCustomFormDesigner.DoObjectHint 175

ed_Designer.TzCustomFormDesigner.DragDraw 175

ed_Designer.TzCustomFormDesigner.DragDrop 171

ed_Designer.TzCustomFormDesigner.DragOver 171

ed_Designer.TzCustomFormDesigner.DragParentLimit 189

ed_Designer.TzCustomFormDesigner.Edit 175

ed_Designer.TzCustomFormDesigner.EditAction 172

ed_Designer.TzCustomFormDesigner.EndDrag 176

ed_Designer.TzCustomFormDesigner.Events 189

ed_Designer.TzCustomFormDesigner.ExecuteAction 175

ed_Designer.TzCustomFormDesigner.FlatIcons 189

ed_Designer.TzCustomFormDesigner.FlipChildren 176

ed_Designer.TzCustomFormDesigner.Form 189

ed_Designer.TzCustomFormDesigner.GetCompObj 176

ed_Designer.TzCustomFormDesigner.GetComponent 176

ed_Designer.TzCustomFormDesigner.GetComponentName
176

ed_Designer.TzCustomFormDesigner.GetComponentNames
177

ed_Designer.TzCustomFormDesigner.GetControlAt 177

ed_Designer.TzCustomFormDesigner.GetEditState 173

ed_Designer.TzCustomFormDesigner.GetMethodName 177

ed_Designer.TzCustomFormDesigner.GetNewName 177

ed_Designer.TzCustomFormDesigner.GetObjectName 177

ed_Designer.TzCustomFormDesigner.GetRoot 178

ed_Designer.TzCustomFormDesigner.GetRootClassName
178

ed_Designer.TzCustomFormDesigner.GetScriptEvent 178

ed_Designer.TzCustomFormDesigner.GetScrollRanges 178

ed_Designer.TzCustomFormDesigner.GetSelections 178

ed_Designer.TzCustomFormDesigner.GetShiftState 179

ed_Designer.TzCustomFormDesigner.GridStepX 190

ed_Designer.TzCustomFormDesigner.GridStepY 190

2 EControl Form Designer Pro

h

ed_Designer.TzCustomFormDesigner.Groups 190

ed_Designer.TzCustomFormDesigner.GuidelinesStyle 191

ed_Designer.TzCustomFormDesigner.IgnoreReadErrors 191

ed_Designer.TzCustomFormDesigner.Intf_Notification 179

ed_Designer.TzCustomFormDesigner.IsComponentHidden
179

ed_Designer.TzCustomFormDesigner.IsDesignMsg 180

ed_Designer.TzCustomFormDesigner.IsLocked 179

ed_Designer.TzCustomFormDesigner.IsProtected 180

ed_Designer.TzCustomFormDesigner.IsRootSelected 180

ed_Designer.TzCustomFormDesigner.IsSourceReadOnly 180

ed_Designer.TzCustomFormDesigner.KeyDown 180

ed_Designer.TzCustomFormDesigner.KeyPress 181

ed_Designer.TzCustomFormDesigner.KeyUp 181

ed_Designer.TzCustomFormDesigner.LoadFromFile 177

ed_Designer.TzCustomFormDesigner.LoadFromStream 178

ed_Designer.TzCustomFormDesigner.LockControls 190

ed_Designer.TzCustomFormDesigner.LockPublished 190

ed_Designer.TzCustomFormDesigner.MethodExists 181

ed_Designer.TzCustomFormDesigner.Modified 181

ed_Designer.TzCustomFormDesigner.MouseDown 182

ed_Designer.TzCustomFormDesigner.MouseMove 182

ed_Designer.TzCustomFormDesigner.MouseUp 182

ed_Designer.TzCustomFormDesigner.MultiSelect 190

ed_Designer.TzCustomFormDesigner.Navigate 182

ed_Designer.TzCustomFormDesigner.NoSelection 183

ed_Designer.TzCustomFormDesigner.Notification 183

ed_Designer.TzCustomFormDesigner.NotifySelChanged 183

ed_Designer.TzCustomFormDesigner.OnCanDelete 195

ed_Designer.TzCustomFormDesigner.OnCanEdit 194

ed_Designer.TzCustomFormDesigner.OnCanInsert 195

ed_Designer.TzCustomFormDesigner.OnCanMove 196

ed_Designer.TzCustomFormDesigner.OnCanRename 196

ed_Designer.TzCustomFormDesigner.OnCanResize 196

ed_Designer.TzCustomFormDesigner.OnCanSelect 196

ed_Designer.TzCustomFormDesigner.OnCreateComponent
197

ed_Designer.TzCustomFormDesigner.OnCreateFrame 197

ed_Designer.TzCustomFormDesigner.OnCreateIcon 197

ed_Designer.TzCustomFormDesigner.OnCreateMethod 198

ed_Designer.TzCustomFormDesigner.OnDrawControl 195

ed_Designer.TzCustomFormDesigner.OnExecuteAction 195

ed_Designer.TzCustomFormDesigner.OnFormClosed 198

ed_Designer.TzCustomFormDesigner.OnGetComponentHint
198

ed_Designer.TzCustomFormDesigner.OnGetComponentLock
ed
195

ed_Designer.TzCustomFormDesigner.OnGetMethodNames
198

ed_Designer.TzCustomFormDesigner.OnGetObjectName 195

ed_Designer.TzCustomFormDesigner.OnGetScriptProc 199

ed_Designer.TzCustomFormDesigner.OnNotification 199

ed_Designer.TzCustomFormDesigner.OnPopUndo 196

ed_Designer.TzCustomFormDesigner.OnPushUndo 197

ed_Designer.TzCustomFormDesigner.OnRenameMethod 200

ed_Designer.TzCustomFormDesigner.OnSetNewName 197

ed_Designer.TzCustomFormDesigner.OnSetScriptProc 200

ed_Designer.TzCustomFormDesigner.OnShowMethod 201

ed_Designer.TzCustomFormDesigner.OnUpdateAction 198

ed_Designer.TzCustomFormDesigner.OnValidateMethod 201

ed_Designer.TzCustomFormDesigner.PaintControl 184

ed_Designer.TzCustomFormDesigner.PaintGrid 184

ed_Designer.TzCustomFormDesigner.PasteSelection 184

ed_Designer.TzCustomFormDesigner.PopupMenu 191

ed_Designer.TzCustomFormDesigner.PopupMenuFilter 192

ed_Designer.TzCustomFormDesigner.ReadComp 184

ed_Designer.TzCustomFormDesigner.ReadOnly 191

ed_Designer.TzCustomFormDesigner.Redo 179

ed_Designer.TzCustomFormDesigner.RenameMethod 184

ed_Designer.TzCustomFormDesigner.Root 192

ed_Designer.TzCustomFormDesigner.RootModified 192

ed_Designer.TzCustomFormDesigner.SaveToFile 179

ed_Designer.TzCustomFormDesigner.SaveToStream 180

ed_Designer.TzCustomFormDesigner.Scale 185

ed_Designer.TzCustomFormDesigner.SelCount 193

ed_Designer.TzCustomFormDesigner.SelectAll 185

ed_Designer.TzCustomFormDesigner.SelectComponent 185

ed_Designer.TzCustomFormDesigner.Selected 193

ed_Designer.TzCustomFormDesigner.SelectedComponent
185

ed_Designer.TzCustomFormDesigner.SelectedComponentsC
ount
180

ed_Designer.TzCustomFormDesigner.SelectionChanged 185

ed_Designer.TzCustomFormDesigner.SelectObj 185

ed_Designer.TzCustomFormDesigner.SelectRect 185

ed_Designer.TzCustomFormDesigner.SelMarker 193

2 EControl Form Designer Pro

i

ed_Designer.TzCustomFormDesigner.SendToBack 186

ed_Designer.TzCustomFormDesigner.SetPasteName 186

ed_Designer.TzCustomFormDesigner.SetScriptEvent 186

ed_Designer.TzCustomFormDesigner.SetSelections 186

ed_Designer.TzCustomFormDesigner.ShowCaptions 193

ed_Designer.TzCustomFormDesigner.ShowMethod 186

ed_Designer.TzCustomFormDesigner.ShowPopupMenu 186

ed_Designer.TzCustomFormDesigner.ShowTabOrder 182

ed_Designer.TzCustomFormDesigner.SizeSelected 186

ed_Designer.TzCustomFormDesigner.SnapToGrid 193

ed_Designer.TzCustomFormDesigner.StartDrag 187

ed_Designer.TzCustomFormDesigner.StoreEvents 191

ed_Designer.TzCustomFormDesigner.TabOrderIcons 191

ed_Designer.TzCustomFormDesigner.Target 193

ed_Designer.TzCustomFormDesigner.TextEditMode 191

ed_Designer.TzCustomFormDesigner.Undo 183

ed_Designer.TzCustomFormDesigner.UndoLimit 192

ed_Designer.TzCustomFormDesigner.UndoLoad 192

ed_Designer.TzCustomFormDesigner.UniqueName 187

ed_Designer.TzCustomFormDesigner.UpdateAction 182

ed_Designer.TzCustomFormDesigner.UpdateCompIcons 187

ed_Designer.TzCustomFormDesigner.ValidateMethod 187

ed_Designer.TzFormDesigner 201

ed_Designer.TzFormDesigner.Active 214

ed_Designer.TzFormDesigner.AllowComponents 214

ed_Designer.TzFormDesigner.AutoAlign 214

ed_Designer.TzFormDesigner.BDSStyle 214

ed_Designer.TzFormDesigner.CaptionFont 214

ed_Designer.TzFormDesigner.CloseDisactive 214

ed_Designer.TzFormDesigner.DesignSurface 215

ed_Designer.TzFormDesigner.DisplayControlGrid 215

ed_Designer.TzFormDesigner.DisplayGrid 215

ed_Designer.TzFormDesigner.DragParentLimit 215

ed_Designer.TzFormDesigner.FlatIcons 215

ed_Designer.TzFormDesigner.GridStepX 215

ed_Designer.TzFormDesigner.GridStepY 216

ed_Designer.TzFormDesigner.GuidelinesStyle 216

ed_Designer.TzFormDesigner.IgnoreReadErrors 216

ed_Designer.TzFormDesigner.LockControls 216

ed_Designer.TzFormDesigner.LockPublished 216

ed_Designer.TzFormDesigner.MultiSelect 216

ed_Designer.TzFormDesigner.OnActiveChanged 217

ed_Designer.TzFormDesigner.OnCanDelete 217

ed_Designer.TzFormDesigner.OnCanEdit 217

ed_Designer.TzFormDesigner.OnCanInsert 217

ed_Designer.TzFormDesigner.OnCanMove 217

ed_Designer.TzFormDesigner.OnCanRename 218

ed_Designer.TzFormDesigner.OnCanResize 218

ed_Designer.TzFormDesigner.OnCanSelect 218

ed_Designer.TzFormDesigner.OnCreateComponent 218

ed_Designer.TzFormDesigner.OnCreateFrame 219

ed_Designer.TzFormDesigner.OnCreateIcon 219

ed_Designer.TzFormDesigner.OnCreateMethod 219

ed_Designer.TzFormDesigner.OnDragDrop 219

ed_Designer.TzFormDesigner.OnDragOver 220

ed_Designer.TzFormDesigner.OnDrawControl 220

ed_Designer.TzFormDesigner.OnExecuteAction 220

ed_Designer.TzFormDesigner.OnFormClosed 220

ed_Designer.TzFormDesigner.OnGetComponentHint 220

ed_Designer.TzFormDesigner.OnGetComponentLocked 221

ed_Designer.TzFormDesigner.OnGetMethodNames 221

ed_Designer.TzFormDesigner.OnGetObjectName 221

ed_Designer.TzFormDesigner.OnGetScriptProc 222

ed_Designer.TzFormDesigner.OnHandleControlMessage 222

ed_Designer.TzFormDesigner.OnKeyDown 222

ed_Designer.TzFormDesigner.OnKeyPress 223

ed_Designer.TzFormDesigner.OnKeyUp 223

ed_Designer.TzFormDesigner.OnMouseDown 223

ed_Designer.TzFormDesigner.OnMouseMove 223

ed_Designer.TzFormDesigner.OnMouseUp 224

ed_Designer.TzFormDesigner.OnNotification 224

ed_Designer.TzFormDesigner.OnPopUndo 224

ed_Designer.TzFormDesigner.OnPushUndo 224

ed_Designer.TzFormDesigner.OnRenameMethod 224

ed_Designer.TzFormDesigner.OnSetNewName 225

ed_Designer.TzFormDesigner.OnSetScriptProc 225

ed_Designer.TzFormDesigner.OnShowMethod 225

ed_Designer.TzFormDesigner.OnUpdateAction 225

ed_Designer.TzFormDesigner.OnValidateMethod 225

ed_Designer.TzFormDesigner.PopupMenu 226

ed_Designer.TzFormDesigner.PopupMenuFilter 226

ed_Designer.TzFormDesigner.ReadOnly 226

ed_Designer.TzFormDesigner.SelMarker 226

ed_Designer.TzFormDesigner.ShowCaptions 227

2 EControl Form Designer Pro

j

ed_Designer.TzFormDesigner.ShowHints 227

ed_Designer.TzFormDesigner.SnapToGrid 227

ed_Designer.TzFormDesigner.StoreEvents 227

ed_Designer.TzFormDesigner.TabOrderIcons 227

ed_Designer.TzFormDesigner.Target 227

ed_Designer.TzFormDesigner.TextEditMode 228

ed_Designer.TzFormDesigner.UndoLimit 229

ed_DsnBase namespace

Classes 144

Types 156

ed_DsnBase.TBaseDesigner 144

ed_DsnBase.TBaseDesigner.Active 151

ed_DsnBase.TBaseDesigner.CanProcessNCMessages 146

ed_DsnBase.TBaseDesigner.Client2Screen 147

ed_DsnBase.TBaseDesigner.ClientOrg 147

ed_DsnBase.TBaseDesigner.Create 147

ed_DsnBase.TBaseDesigner.DesignState 147

ed_DsnBase.TBaseDesigner.Destroy 147

ed_DsnBase.TBaseDesigner.DoObjectHint 147

ed_DsnBase.TBaseDesigner.DragDrop 147

ed_DsnBase.TBaseDesigner.DragOver 148

ed_DsnBase.TBaseDesigner.HintObject 152

ed_DsnBase.TBaseDesigner.IsRTL 148

ed_DsnBase.TBaseDesigner.KeyDown 148

ed_DsnBase.TBaseDesigner.KeyPress 149

ed_DsnBase.TBaseDesigner.KeyUp 149

ed_DsnBase.TBaseDesigner.Loaded 149

ed_DsnBase.TBaseDesigner.MouseDown 150

ed_DsnBase.TBaseDesigner.MouseMove 150

ed_DsnBase.TBaseDesigner.MouseUp 150

ed_DsnBase.TBaseDesigner.OnActiveChanged 152

ed_DsnBase.TBaseDesigner.OnDragDrop 152

ed_DsnBase.TBaseDesigner.OnDragOver 152

ed_DsnBase.TBaseDesigner.OnHandleControlMessage 153

ed_DsnBase.TBaseDesigner.OnKeyDown 153

ed_DsnBase.TBaseDesigner.OnKeyPress 153

ed_DsnBase.TBaseDesigner.OnKeyUp 154

ed_DsnBase.TBaseDesigner.OnMouseDown 154

ed_DsnBase.TBaseDesigner.OnMouseMove 154

ed_DsnBase.TBaseDesigner.OnMouseUp 154

ed_DsnBase.TBaseDesigner.ProcessMessage 151

ed_DsnBase.TBaseDesigner.ResetHint 151

ed_DsnBase.TBaseDesigner.Screen2Client 151

ed_DsnBase.TBaseDesigner.SetActive 151

ed_DsnBase.TBaseDesigner.ShowHint 151

ed_DsnBase.TBaseDesigner.ShowHints 152

ed_DsnBase.TDesignOperation 155

ed_DsnBase.TDesignOperation enumeration 155

ed_DsnBase.TDesignOperations 156

ed_DsnBase.TDesignOperations type 156

ed_DsnBase.TDsnDragState 155

ed_DsnBase.TDsnDragState enumeration 155

ed_DsnBase.THandleControlMessage 156

ed_DsnBase.THandleControlMessage type 156

ed_dsncont namespace

Classes 237

Structs, Records, Enums 241

ed_dsncont.TDesignSurface 237

ed_dsncont.TDesignSurface.Activate 238

ed_dsncont.TDesignSurface.AdjustScroll 238

ed_dsncont.TDesignSurface.DoSizing 238

ed_dsncont.TDesignSurface.DsnShowFrame 239

ed_dsncont.TDesignSurface.ExecuteAction 238

ed_dsncont.TDesignSurface.FlatScrollBars 239

ed_dsncont.TDesignSurface.Form 240

ed_dsncont.TDesignSurface.FormOrigin 240

ed_dsncont.TDesignSurface.FrameSize 240

ed_dsncont.TDesignSurface.HideFormBorders 240

ed_dsncont.TDesignSurface.RulerClientArea 240

ed_dsncont.TDesignSurface.ScrollPos 240

ed_dsncont.TDesignSurface.ShowFrame 240

ed_dsncont.TDesignSurface.ShowRuler 241

ed_dsncont.TDesignSurface.UpdateAction 239

ed_dsncont.TDesignSurface.UseUnits 241

ed_dsncont.TRulerUnits 241

ed_dsncont.TRulerUnits enumeration 241

ed_ObjTree namespace

Classes 267

Functions 294

Types 294

ed_ObjTree.CreateGhostedImages 294

ed_ObjTree.CreateGhostedImages function 294

ed_ObjTree.TCreateSprigNodeEvent 295

ed_ObjTree.TCreateSprigNodeEvent type 295

2 EControl Form Designer Pro

k

ed_ObjTree.TCustomDesignerObjTree 267

ed_ObjTree.TCustomDesignerObjTree.AddSprigAddItems
269

ed_ObjTree.TCustomDesignerObjTree.AddType 269

ed_ObjTree.TCustomDesignerObjTree.AddTypeCount 269

ed_ObjTree.TCustomDesignerObjTree.AddTypes 271

ed_ObjTree.TCustomDesignerObjTree.CanDelete 269

ed_ObjTree.TCustomDesignerObjTree.CanMove 269

ed_ObjTree.TCustomDesignerObjTree.Create 269

ed_ObjTree.TCustomDesignerObjTree.DeleteSelected 270

ed_ObjTree.TCustomDesignerObjTree.Designer 271

ed_ObjTree.TCustomDesignerObjTree.Destroy 270

ed_ObjTree.TCustomDesignerObjTree.Loaded 270

ed_ObjTree.TCustomDesignerObjTree.Move 270

ed_ObjTree.TCustomDesignerObjTree.Notification 270

ed_ObjTree.TCustomDesignerObjTree.OnCreateSprigNode
271

ed_ObjTree.TCustomDesignerObjTree.RootSprig 271

ed_ObjTree.TDesignerObjTree 271

ed_ObjTree.TDesignerObjTree.Align 277

ed_ObjTree.TDesignerObjTree.Anchors 277

ed_ObjTree.TDesignerObjTree.AutoExpand 278

ed_ObjTree.TDesignerObjTree.BevelEdges 278

ed_ObjTree.TDesignerObjTree.BevelInner 278

ed_ObjTree.TDesignerObjTree.BevelKind 278

ed_ObjTree.TDesignerObjTree.BevelOuter 279

ed_ObjTree.TDesignerObjTree.BevelWidth 279

ed_ObjTree.TDesignerObjTree.BiDiMode 279

ed_ObjTree.TDesignerObjTree.BorderStyle 279

ed_ObjTree.TDesignerObjTree.BorderWidth 279

ed_ObjTree.TDesignerObjTree.ChangeDelay 280

ed_ObjTree.TDesignerObjTree.Color 280

ed_ObjTree.TDesignerObjTree.Constraints 280

ed_ObjTree.TDesignerObjTree.Create 277

ed_ObjTree.TDesignerObjTree.Ctl3D 280

ed_ObjTree.TDesignerObjTree.DragCursor 280

ed_ObjTree.TDesignerObjTree.DragKind 281

ed_ObjTree.TDesignerObjTree.DragMode 281

ed_ObjTree.TDesignerObjTree.Enabled 281

ed_ObjTree.TDesignerObjTree.Font 281

ed_ObjTree.TDesignerObjTree.HideSelection 281

ed_ObjTree.TDesignerObjTree.HotTrack 281

ed_ObjTree.TDesignerObjTree.Images 282

ed_ObjTree.TDesignerObjTree.Indent 282

ed_ObjTree.TDesignerObjTree.Items 282

ed_ObjTree.TDesignerObjTree.MultiSelect 282

ed_ObjTree.TDesignerObjTree.MultiSelectStyle 282

ed_ObjTree.TDesignerObjTree.OnAddition 283

ed_ObjTree.TDesignerObjTree.OnAdvancedCustomDraw 283

ed_ObjTree.TDesignerObjTree.OnAdvancedCustomDrawItem

283

ed_ObjTree.TDesignerObjTree.OnChange 283

ed_ObjTree.TDesignerObjTree.OnChanging 284

ed_ObjTree.TDesignerObjTree.OnClick 284

ed_ObjTree.TDesignerObjTree.OnCollapsed 284

ed_ObjTree.TDesignerObjTree.OnCollapsing 284

ed_ObjTree.TDesignerObjTree.OnCompare 284

ed_ObjTree.TDesignerObjTree.OnContextPopup 285

ed_ObjTree.TDesignerObjTree.OnCreateNodeClass 285

ed_ObjTree.TDesignerObjTree.OnCreateSprigNode 285

ed_ObjTree.TDesignerObjTree.OnCustomDraw 285

ed_ObjTree.TDesignerObjTree.OnCustomDrawItem 286

ed_ObjTree.TDesignerObjTree.OnDblClick 286

ed_ObjTree.TDesignerObjTree.OnDeletion 286

ed_ObjTree.TDesignerObjTree.OnDragDrop 286

ed_ObjTree.TDesignerObjTree.OnDragOver 286

ed_ObjTree.TDesignerObjTree.OnEdited 287

ed_ObjTree.TDesignerObjTree.OnEditing 287

ed_ObjTree.TDesignerObjTree.OnEndDock 287

ed_ObjTree.TDesignerObjTree.OnEndDrag 287

ed_ObjTree.TDesignerObjTree.OnEnter 288

ed_ObjTree.TDesignerObjTree.OnExit 288

ed_ObjTree.TDesignerObjTree.OnExpanded 288

ed_ObjTree.TDesignerObjTree.OnExpanding 288

ed_ObjTree.TDesignerObjTree.OnGetImageIndex 288

ed_ObjTree.TDesignerObjTree.OnGetSelectedIndex 288

ed_ObjTree.TDesignerObjTree.OnKeyDown 289

ed_ObjTree.TDesignerObjTree.OnKeyPress 289

ed_ObjTree.TDesignerObjTree.OnKeyUp 289

ed_ObjTree.TDesignerObjTree.OnMouseDown 289

ed_ObjTree.TDesignerObjTree.OnMouseMove 290

ed_ObjTree.TDesignerObjTree.OnMouseUp 290

ed_ObjTree.TDesignerObjTree.OnStartDock 290

ed_ObjTree.TDesignerObjTree.OnStartDrag 291

ed_ObjTree.TDesignerObjTree.ParentBiDiMode 291

2 EControl Form Designer Pro

l

ed_ObjTree.TDesignerObjTree.ParentColor 291

ed_ObjTree.TDesignerObjTree.ParentCtl3D 291

ed_ObjTree.TDesignerObjTree.ParentFont 291

ed_ObjTree.TDesignerObjTree.ParentShowHint 291

ed_ObjTree.TDesignerObjTree.PopupMenu 292

ed_ObjTree.TDesignerObjTree.ReadOnly 292

ed_ObjTree.TDesignerObjTree.RightClickSelect 292

ed_ObjTree.TDesignerObjTree.RowSelect 292

ed_ObjTree.TDesignerObjTree.ShowButtons 292

ed_ObjTree.TDesignerObjTree.ShowHint 293

ed_ObjTree.TDesignerObjTree.ShowLines 293

ed_ObjTree.TDesignerObjTree.ShowRoot 293

ed_ObjTree.TDesignerObjTree.SortType 293

ed_ObjTree.TDesignerObjTree.StateImages 293

ed_ObjTree.TDesignerObjTree.TabOrder 293

ed_ObjTree.TDesignerObjTree.TabStop 293

ed_ObjTree.TDesignerObjTree.ToolTips 294

ed_ObjTree.TDesignerObjTree.Visible 294

ed_RegComps namespace

Classes 242

Functions 256

Structs, Records, Enums 257

Types 258

Variables 258

ed_RegComps.DrawBtnIcon 257

ed_RegComps.DrawBtnIcon function 257

ed_RegComps.Frames 242

ed_RegComps.PackageMng 258

ed_RegComps.PackageMng variable 258

ed_RegComps.Runtime 259

ed_RegComps.Runtime variable 259

ed_RegComps.TComponentClassInfo 242

ed_RegComps.TComponentClassInfo.ComponentClass 244

ed_RegComps.TComponentClassInfo.Create 243

ed_RegComps.TComponentClassInfo.Destroy 243

ed_RegComps.TComponentClassInfo.DisplayName 244

ed_RegComps.TComponentClassInfo.Hidden 244

ed_RegComps.TComponentClassInfo.Icon 244

ed_RegComps.TComponentClassInfo.InitPage 244

ed_RegComps.TComponentClassInfo.IsIconValid 244

ed_RegComps.TComponentClassInfo.Module 244

ed_RegComps.TComponentClassInfo.Page 245

ed_RegComps.TComponentRegEvent 258

ed_RegComps.TComponentRegEvent type 258

ed_RegComps.TComponentRegInfoEvent 258

ed_RegComps.TComponentRegInfoEvent type 258

ed_RegComps.TCustomModuleInfo 245

ed_RegComps.TFrameInfo 245

ed_RegComps.TFrameInfo.FrameClass 246

ed_RegComps.TFrameInfo.FrameResource 246

ed_RegComps.TIconBtnStyle 257

ed_RegComps.TIconBtnStyle enumeration 257

ed_RegComps.TPackageInfo 246

ed_RegComps.TPackageInfo.Active 247

ed_RegComps.TPackageInfo.Create 247

ed_RegComps.TPackageInfo.Description 247

ed_RegComps.TPackageInfo.Destroy 247

ed_RegComps.TPackageInfo.FileName 247

ed_RegComps.TPackageInfo.Handle 247

ed_RegComps.TPackageInfo.Requires 247

ed_RegComps.TPackageInfo.Units 248

ed_RegComps.TPackageMng 248

ed_RegComps.TPackageMng.AddComponent 250

ed_RegComps.TPackageMng.AddPackage 250

ed_RegComps.TPackageMng.AutoSave 255

ed_RegComps.TPackageMng.BeginUpdate 250

ed_RegComps.TPackageMng.ComponentCount 255

ed_RegComps.TPackageMng.Components 255

ed_RegComps.TPackageMng.Create 250

ed_RegComps.TPackageMng.CreateFrame 251

ed_RegComps.TPackageMng.CustomizePackages 251

ed_RegComps.TPackageMng.CustomizePalette 251

ed_RegComps.TPackageMng.DeleteComponent 251

ed_RegComps.TPackageMng.Destroy 251

ed_RegComps.TPackageMng.EndUpdate 252

ed_RegComps.TPackageMng.FindClass 252

ed_RegComps.TPackageMng.FindClassName 252

ed_RegComps.TPackageMng.FindClassNameIdx 252

ed_RegComps.TPackageMng.FindPackage 252

ed_RegComps.TPackageMng.FrameInfos 255

ed_RegComps.TPackageMng.GetCustomModule 252

ed_RegComps.TPackageMng.IsNoIcon 253

ed_RegComps.TPackageMng.LoadPaleteFromIni 253

ed_RegComps.TPackageMng.OnRegisterComponent 256

2 EControl Form Designer Pro

m

ed_RegComps.TPackageMng.OnRegisterComponentInfo 256

ed_RegComps.TPackageMng.OnUnRegisterComponentInfo
256

ed_RegComps.TPackageMng.Packages 255

ed_RegComps.TPackageMng.Pages 256

ed_RegComps.TPackageMng.ReadRegInfo 253

ed_RegComps.TPackageMng.RegisterFrame 253

ed_RegComps.TPackageMng.RegSubkey 256

ed_RegComps.TPackageMng.RemoveEmptyPages 253

ed_RegComps.TPackageMng.RemovePackage 254

ed_RegComps.TPackageMng.RenamePage 254

ed_RegComps.TPackageMng.ResetPalette 254

ed_RegComps.TPackageMng.SavePaletteToIni 254

ed_RegComps.TPackageMng.SaveRegInfo 254

ed_RegComps.TPackageMng.SetComponentOrder 255

ed_RegMeth namespace

Classes 259

Structs, Records, Enums 265

Types 266

Variables 266

ed_RegMeth.MethRegister 267

ed_RegMeth.MethRegister variable 267

ed_RegMeth.PMethod 266

ed_RegMeth.PMethod type 266

ed_RegMeth.PMethodInfo 266

ed_RegMeth.PMethodInfo type 266

ed_RegMeth.TDefaultMethodRegister 259

ed_RegMeth.TDefaultMethodRegister.Add 261, 262, 263, 264

ed_RegMeth.TDefaultMethodRegister.AddMethod 264

ed_RegMeth.TDefaultMethodRegister.Count 265

ed_RegMeth.TDefaultMethodRegister.Create 264

ed_RegMeth.TDefaultMethodRegister.Destroy 264

ed_RegMeth.TDefaultMethodRegister.FInfos 261

ed_RegMeth.TDefaultMethodRegister.GetMethodsNames 264

ed_RegMeth.TDefaultMethodRegister.Items 265

ed_RegMeth.TDefaultMethodRegister.RemoveObject 265

ed_RegMeth.TDefaultMethodRegister.ValidateMethod 265

ed_RegMeth.TMethodInfo 265

ed_RegMeth.TMethodInfo record 265

ed_TextEdit namespace

Classes 295

Functions 306

Types 307

ed_TextEdit.CreateImplEditor 306

ed_TextEdit.CreateImplEditor function 306

ed_TextEdit.RegisterInplaceComponentEditor 306

ed_TextEdit.RegisterInplaceComponentEditor function 306

ed_TextEdit.TDsnInplaceEditor 295

ed_TextEdit.TDsnInplaceEditor.Adapter 300

ed_TextEdit.TDsnInplaceEditor.Alignment 300

ed_TextEdit.TDsnInplaceEditor.Close 299

ed_TextEdit.TDsnInplaceEditor.Color 300

ed_TextEdit.TDsnInplaceEditor.Create 299

ed_TextEdit.TDsnInplaceEditor.Destroy 300

ed_TextEdit.TDsnInplaceEditor.IsUnicode 301

ed_TextEdit.TDsnInplaceEditor.LoadText 300

ed_TextEdit.TDsnInplaceEditor.MultiLine 301

ed_TextEdit.TDsnInplaceEditor.OnChange 301

ed_TextEdit.TDsnInplaceEditor.OnExit 301

ed_TextEdit.TDsnInplaceEditor.SaveText 300

ed_TextEdit.TDsnInplaceEditor.TextW 301

ed_TextEdit.TDsnInplaceEditor.WordWrap 302

ed_TextEdit.TInplaceComponentEditor 302

ed_TextEdit.TInplaceComponentEditor.BoundRect 305

ed_TextEdit.TInplaceComponentEditor.Control 305

ed_TextEdit.TInplaceComponentEditor.Create 303

ed_TextEdit.TInplaceComponentEditor.GetBoundRect 303

ed_TextEdit.TInplaceComponentEditor.GetText 304

ed_TextEdit.TInplaceComponentEditor.GetTextW 304

ed_TextEdit.TInplaceComponentEditor.HandlePos 304

ed_TextEdit.TInplaceComponentEditor.IsAutoUpdate 304

ed_TextEdit.TInplaceComponentEditor.IsUnicode 304

ed_TextEdit.TInplaceComponentEditor.SetEditor 304

ed_TextEdit.TInplaceComponentEditor.SetHitPoint 305

ed_TextEdit.TInplaceComponentEditor.SetText 305

ed_TextEdit.TInplaceComponentEditor.SetTextW 305

ed_TextEdit.TInplaceComponentEditor.Text 305

ed_TextEdit.TInplaceComponentEditor.TextW 306

ed_TextEdit.TInplaceComponentEditorClass 307

ed_TextEdit.TInplaceComponentEditorClass type 307

edActns namespace

Classes 307

edActns.TDesignerAction 308

edActns.TDesignerAction.Caption 309

edActns.TDesignerAction.Enabled 309

2 EControl Form Designer Pro

n

edActns.TDesignerAction.HelpContext 309

edActns.TDesignerAction.HelpKeyword 310

edActns.TDesignerAction.HelpType 310

edActns.TDesignerAction.Hint 310

edActns.TDesignerAction.ImageIndex 310

edActns.TDesignerAction.OnExecute 310

edActns.TDesignerAction.OnHint 310

edActns.TDesignerAction.OnUpdate 311

edActns.TDesignerAction.SecondaryShortCuts 311

edActns.TDesignerAction.ShortCut 311

edActns.TDesignerAction.Update 309

edActns.TDesignerAction.Visible 311

edActns.TdsnAlignmentDlg 311

edActns.TdsnAlignmentDlg.Execute 313

edActns.TdsnAlignToGrid 313

edActns.TdsnAlignToGrid.Execute 314

edActns.TdsnBringToFront 315

edActns.TdsnBringToFront.Execute 316

edActns.TdsnCopy 316

edActns.TdsnCreationOrderDlg 317

edActns.TdsnCreationOrderDlg.Execute 318

edActns.TdsnCut 318

edActns.TdsnDelete 318

edActns.TdsnDesignMode 319

edActns.TdsnDesignMode.Execute 320

edActns.TdsnDesignMode.Update 320

edActns.TdsnFlipChildren 320

edActns.TdsnFlipChildren.Execute 322

edActns.TdsnFlipChildrenAll 322

edActns.TdsnFlipChildrenAll.Execute 323

edActns.TdsnGroupControls 323

edActns.TdsnGroupControls.Execute 325

edActns.TdsnGroupControls.Update 325

edActns.TdsnLockControls 325

edActns.TdsnLockControls.Execute 326

edActns.TdsnLockControls.Update 326

edActns.TdsnPaste 327

edActns.TdsnRedo 327

edActns.TdsnScale 327

edActns.TdsnScale.Execute 328

edActns.TDsnSelAction 329

edActns.TDsnSelAction.Update 330

edActns.TdsnSelectAll 330

edActns.TdsnSendToBack 330

edActns.TdsnSendToBack.Execute 332

edActns.TdsnShowTabOrder 332

edActns.TdsnShowTabOrder.Execute 333

edActns.TdsnShowTabOrder.Update 333

edActns.TdsnSizeDlg 334

edActns.TdsnSizeDlg.Execute 335

edActns.TdsnTabOrderDlg 335

edActns.TdsnTabOrderDlg.Execute 336

edActns.TdsnTargetAction 337

edActns.TdsnTextEditMode 337

edActns.TdsnTextEditMode.Execute 338

edActns.TdsnTextEditMode.Update 338

edActns.TdsnUndo 338

edActns.TdsnUngroupControls 339

edActns.TdsnUngroupControls.Execute 340

edcCmbCombo namespace

Classes 340

Types 358

edcCmbCombo.TCanAddObjectEvent 359

edcCmbCombo.TCanAddObjectEvent type 359

edcCmbCombo.TComponentCombo 341

edcCmbCombo.TComponentCombo.Align 346

edcCmbCombo.TComponentCombo.Anchors 346

edcCmbCombo.TComponentCombo.AutoCloseUp 347

edcCmbCombo.TComponentCombo.AutoDropDown 347

edcCmbCombo.TComponentCombo.AutoHint 347

edcCmbCombo.TComponentCombo.BiDiMode 347

edcCmbCombo.TComponentCombo.Change 344

edcCmbCombo.TComponentCombo.ClassNameColor 347

edcCmbCombo.TComponentCombo.ClassNameDelim 348

edcCmbCombo.TComponentCombo.Color 348

edcCmbCombo.TComponentCombo.Constraints 348

edcCmbCombo.TComponentCombo.Create 344

edcCmbCombo.TComponentCombo.Ctl3D 348

edcCmbCombo.TComponentCombo.Designer 348

edcCmbCombo.TComponentCombo.Destroy 345

edcCmbCombo.TComponentCombo.DoAddObject 345

edcCmbCombo.TComponentCombo.DragCursor 348

edcCmbCombo.TComponentCombo.DragKind 349

edcCmbCombo.TComponentCombo.DragMode 349

2 EControl Form Designer Pro

o

edcCmbCombo.TComponentCombo.DropDownCount 349

edcCmbCombo.TComponentCombo.DropDownWidth 349

edcCmbCombo.TComponentCombo.Enabled 349

edcCmbCombo.TComponentCombo.FillObjList 345

edcCmbCombo.TComponentCombo.Font 350

edcCmbCombo.TComponentCombo.ImeMode 350

edcCmbCombo.TComponentCombo.ImeName 350

edcCmbCombo.TComponentCombo.IncludeContainer 350

edcCmbCombo.TComponentCombo.ItemHeight 350

edcCmbCombo.TComponentCombo.MaxLength 351

edcCmbCombo.TComponentCombo.NameColor 351

edcCmbCombo.TComponentCombo.Notification 345

edcCmbCombo.TComponentCombo.OnCanAddObject 358

edcCmbCombo.TComponentCombo.OnClick 351

edcCmbCombo.TComponentCombo.OnCloseUp 351

edcCmbCombo.TComponentCombo.OnContextPopup 351

edcCmbCombo.TComponentCombo.OnDblClick 352

edcCmbCombo.TComponentCombo.OnDragDrop 352

edcCmbCombo.TComponentCombo.OnDragOver 352

edcCmbCombo.TComponentCombo.OnDrawItem 353

edcCmbCombo.TComponentCombo.OnDropDown 353

edcCmbCombo.TComponentCombo.OnEndDock 353

edcCmbCombo.TComponentCombo.OnEndDrag 353

edcCmbCombo.TComponentCombo.OnEnter 353

edcCmbCombo.TComponentCombo.OnExit 354

edcCmbCombo.TComponentCombo.OnGetClassName 358

edcCmbCombo.TComponentCombo.OnGetComponents 358

edcCmbCombo.TComponentCombo.OnKeyDown 354

edcCmbCombo.TComponentCombo.OnKeyPress 354

edcCmbCombo.TComponentCombo.OnKeyUp 354

edcCmbCombo.TComponentCombo.OnMeasureItem 355

edcCmbCombo.TComponentCombo.OnSelChanged 358

edcCmbCombo.TComponentCombo.OnSelect 355

edcCmbCombo.TComponentCombo.OnStartDock 355

edcCmbCombo.TComponentCombo.OnStartDrag 355

edcCmbCombo.TComponentCombo.ParentBiDiMode 356

edcCmbCombo.TComponentCombo.ParentColor 356

edcCmbCombo.TComponentCombo.ParentCtl3D 356

edcCmbCombo.TComponentCombo.ParentFont 356

edcCmbCombo.TComponentCombo.ParentShowHint 356

edcCmbCombo.TComponentCombo.PopupMenu 356

edcCmbCombo.TComponentCombo.SetSelection 345

edcCmbCombo.TComponentCombo.ShowClassName 356

edcCmbCombo.TComponentCombo.ShowComponents 357

edcCmbCombo.TComponentCombo.ShowHint 357

edcCmbCombo.TComponentCombo.Sorted 357

edcCmbCombo.TComponentCombo.TabOrder 357

edcCmbCombo.TComponentCombo.TabStop 357

edcCmbCombo.TComponentCombo.Text 357

edcCmbCombo.TComponentCombo.UpdateObjectList 345

edcCmbCombo.TComponentCombo.Visible 358

edcCmbCombo.TGetClassNameEvent 359

edcCmbCombo.TGetClassNameEvent type 359

edcCmbCombo.TGetComponentsEvent 359

edcCmbCombo.TGetComponentsEvent type 359

edcCmbCombo.TSelChangedEvent 359

edcCmbCombo.TSelChangedEvent type 359

edcCompPal namespace

Classes 360

edcCompPal.TPalettePanel 360

edcCompPal.TPalettePanel.Align 366

edcCompPal.TPalettePanel.Anchors 366

edcCompPal.TPalettePanel.AutoSize 367

edcCompPal.TPalettePanel.BevelInner 367

edcCompPal.TPalettePanel.BevelOuter 367

edcCompPal.TPalettePanel.BevelWidth 367

edcCompPal.TPalettePanel.BiDiMode 368

edcCompPal.TPalettePanel.BorderStyle 368

edcCompPal.TPalettePanel.BorderWidth 368

edcCompPal.TPalettePanel.ButtonClick 364

edcCompPal.TPalettePanel.ButtonHeight 368

edcCompPal.TPalettePanel.ButtonWidth 369

edcCompPal.TPalettePanel.Color 369

edcCompPal.TPalettePanel.Constraints 369

edcCompPal.TPalettePanel.Create 365

edcCompPal.TPalettePanel.Ctl3D 369

edcCompPal.TPalettePanel.Destroy 365

edcCompPal.TPalettePanel.DownButton 370

edcCompPal.TPalettePanel.DragCursor 370

edcCompPal.TPalettePanel.DragImageType 370

edcCompPal.TPalettePanel.DragKind 370

edcCompPal.TPalettePanel.DragMode 370

edcCompPal.TPalettePanel.DrawButton 365

edcCompPal.TPalettePanel.Enabled 370

2 EControl Form Designer Pro

p

edcCompPal.TPalettePanel.Flat 371

edcCompPal.TPalettePanel.Font 371

edcCompPal.TPalettePanel.GetButtonHint 365

edcCompPal.TPalettePanel.HintProps 371

edcCompPal.TPalettePanel.Margins 371

edcCompPal.TPalettePanel.OnButtonClick 371

edcCompPal.TPalettePanel.OnCanResize 372

edcCompPal.TPalettePanel.OnClick 372

edcCompPal.TPalettePanel.OnConstrainedResize 372

edcCompPal.TPalettePanel.OnContextPopup 372

edcCompPal.TPalettePanel.OnDblClick 373

edcCompPal.TPalettePanel.OnDragDrop 373

edcCompPal.TPalettePanel.OnDragOver 373

edcCompPal.TPalettePanel.OnEndDrag 374

edcCompPal.TPalettePanel.OnEnter 374

edcCompPal.TPalettePanel.OnExit 374

edcCompPal.TPalettePanel.OnMouseDown 374

edcCompPal.TPalettePanel.OnMouseMove 374

edcCompPal.TPalettePanel.OnMouseUp 375

edcCompPal.TPalettePanel.OnResize 375

edcCompPal.TPalettePanel.OnStartDrag 375

edcCompPal.TPalettePanel.Orientation 375

edcCompPal.TPalettePanel.Page 376

edcCompPal.TPalettePanel.ParentBiDiMode 376

edcCompPal.TPalettePanel.ParentColor 376

edcCompPal.TPalettePanel.ParentCtl3D 376

edcCompPal.TPalettePanel.ParentFont 376

edcCompPal.TPalettePanel.ParentShowHint 376

edcCompPal.TPalettePanel.PopupMenu 376

edcCompPal.TPalettePanel.RowCount 376

edcCompPal.TPalettePanel.ShowHint 377

edcCompPal.TPalettePanel.TabOrder 377

edcCompPal.TPalettePanel.TabStop 377

edcCompPal.TPalettePanel.Transparent 377

edcCompPal.TPalettePanel.UpdateList 366

edcCompPal.TPalettePanel.Visible 377

edcCompPal.TPaletteTab 377

edcCompPal.TPaletteTab.Align 380

edcCompPal.TPaletteTab.Anchors 380

edcCompPal.TPaletteTab.BiDiMode 381

edcCompPal.TPaletteTab.Constraints 381

edcCompPal.TPaletteTab.DragCursor 381

edcCompPal.TPaletteTab.DragKind 381

edcCompPal.TPaletteTab.DragMode 381

edcCompPal.TPaletteTab.Enabled 381

edcCompPal.TPaletteTab.Flat 382

edcCompPal.TPaletteTab.Font 382

edcCompPal.TPaletteTab.HintProps 382

edcCompPal.TPaletteTab.HotTrack 382

edcCompPal.TPaletteTab.Images 382

edcCompPal.TPaletteTab.MultiLine 382

edcCompPal.TPaletteTab.OnChange 383

edcCompPal.TPaletteTab.OnChanging 383

edcCompPal.TPaletteTab.OnContextPopup 383

edcCompPal.TPaletteTab.OnDragDrop 383

edcCompPal.TPaletteTab.OnDragOver 383

edcCompPal.TPaletteTab.OnDrawTab 383

edcCompPal.TPaletteTab.OnEndDock 384

edcCompPal.TPaletteTab.OnEndDrag 384

edcCompPal.TPaletteTab.OnEnter 384

edcCompPal.TPaletteTab.OnExit 384

edcCompPal.TPaletteTab.OnGetImageIndex 384

edcCompPal.TPaletteTab.OnMouseDown 384

edcCompPal.TPaletteTab.OnMouseMove 385

edcCompPal.TPaletteTab.OnMouseUp 385

edcCompPal.TPaletteTab.OnResize 385

edcCompPal.TPaletteTab.OnStartDrag 385

edcCompPal.TPaletteTab.OwnerDraw 385

edcCompPal.TPaletteTab.PalettePanel 386

edcCompPal.TPaletteTab.ParentBiDiMode 386

edcCompPal.TPaletteTab.ParentFont 386

edcCompPal.TPaletteTab.ParentShowHint 386

edcCompPal.TPaletteTab.PopupMenu 386

edcCompPal.TPaletteTab.RaggedRight 386

edcCompPal.TPaletteTab.ResetOnChange 386

edcCompPal.TPaletteTab.ScrollOpposite 387

edcCompPal.TPaletteTab.ShowHint 387

edcCompPal.TPaletteTab.Style 387

edcCompPal.TPaletteTab.TabHeight 387

edcCompPal.TPaletteTab.TabIndex 387

edcCompPal.TPaletteTab.TabOrder 387

edcCompPal.TPaletteTab.TabPosition 388

edcCompPal.TPaletteTab.Tabs 388

edcCompPal.TPaletteTab.TabStop 388

2 EControl Form Designer Pro

q

edcCompPal.TPaletteTab.TabWidth 388

edcCompPal.TPaletteTab.Visible 388

edcDsnEvents namespace

Classes 389

Types 394

edcDsnEvents.TDesignerEvent 394

edcDsnEvents.TDesignerEvent type 394

edcDsnEvents.TDesignerEvents 389

edcDsnEvents.TDesignerEvents.OnActiveDsnChanged 391

edcDsnEvents.TDesignerEvents.OnClassChanged 391

edcDsnEvents.TDesignerEvents.OnDesignerClosed 391

edcDsnEvents.TDesignerEvents.OnDesignerInitialized 391

edcDsnEvents.TDesignerEvents.OnDsnKeyDown 392

edcDsnEvents.TDesignerEvents.OnGetGlobalComponents
392

edcDsnEvents.TDesignerEvents.OnGetWorkspaceOrigin 392

edcDsnEvents.TDesignerEvents.OnItemDeleted 392

edcDsnEvents.TDesignerEvents.OnItemInserted 393

edcDsnEvents.TDesignerEvents.OnItemsModified 393

edcDsnEvents.TDesignerEvents.OnKeyPress 393

edcDsnEvents.TDesignerEvents.OnPaletteChanged 393

edcDsnEvents.TDesignerEvents.OnRegisterComponent 394

edcDsnEvents.TDesignerEvents.OnSelectionChanged 394

edcDsnEvents.TDsnItemEvent 395

edcDsnEvents.TDsnItemEvent type 395

edcDsnEvents.TDsnKeyDownEvent 395

edcDsnEvents.TDsnKeyDownEvent type 395

edcDsnEvents.TDsnKeyPressEvent 395

edcDsnEvents.TDsnKeyPressEvent type 395

edcDsnEvents.TGetGlobalsEvent 395

edcDsnEvents.TGetGlobalsEvent type 395

edcDsnEvents.TOnGetPoint 395

edcDsnEvents.TOnGetPoint type 395

edcDsnEvents.TRegisterComponentEvent 396

edcDsnEvents.TRegisterComponentEvent type 396

edcPropCtrl namespace

Classes 396

Structs, Records, Enums 445

Types 446

edcPropCtrl.IFormDesigner 446

edcPropCtrl.IFormDesigner type 446

edcPropCtrl.IProperty 446

edcPropCtrl.IProperty type 446

edcPropCtrl.TAcceptCategoryEvent 447

edcPropCtrl.TAcceptCategoryEvent type 447

edcPropCtrl.TAcceptPropertyEvent 447

edcPropCtrl.TAcceptPropertyEvent type 447

edcPropCtrl.TCategoryNode 396

edcPropCtrl.TCategoryNode.Clear 398

edcPropCtrl.TCategoryNode.Create 398

edcPropCtrl.TCategoryNode.Expandable 398

edcPropCtrl.TCategoryNode.GetName 399

edcPropCtrl.TCategoryNode.HasValue 399

edcPropCtrl.TChangeSelectionEvent 447

edcPropCtrl.TChangeSelectionEvent type 447

edcPropCtrl.TCustomInspectorList 399

edcPropCtrl.TCustomInspectorList.AcceptProperty 404

edcPropCtrl.TCustomInspectorList.ByCategories 407

edcPropCtrl.TCustomInspectorList.Categories 408

edcPropCtrl.TCustomInspectorList.cCategories 408

edcPropCtrl.TCustomInspectorList.cDefValues 408

edcPropCtrl.TCustomInspectorList.cEditBackGround 408

edcPropCtrl.TCustomInspectorList.cEditValue 408

edcPropCtrl.TCustomInspectorList.Component 408

edcPropCtrl.TCustomInspectorList.CopyName 404

edcPropCtrl.TCustomInspectorList.CopyValue 405

edcPropCtrl.TCustomInspectorList.cPropName 409

edcPropCtrl.TCustomInspectorList.cPropReadOnly 409

edcPropCtrl.TCustomInspectorList.cPropReference 409

edcPropCtrl.TCustomInspectorList.cPropValue 409

edcPropCtrl.TCustomInspectorList.Create 405

edcPropCtrl.TCustomInspectorList.CreateEditor 405

edcPropCtrl.TCustomInspectorList.CreateItems 405

edcPropCtrl.TCustomInspectorList.cSubProperty 409

edcPropCtrl.TCustomInspectorList.CutValue 405

edcPropCtrl.TCustomInspectorList.DefPropNameDraw 409

edcPropCtrl.TCustomInspectorList.Designer 409

edcPropCtrl.TCustomInspectorList.DoPrepareCanvas 405

edcPropCtrl.TCustomInspectorList.DrawPropCell 406

edcPropCtrl.TCustomInspectorList.EditedObject 410

edcPropCtrl.TCustomInspectorList.ExpandRefs 410

edcPropCtrl.TCustomInspectorList.FocusEditor 406

edcPropCtrl.TCustomInspectorList.GetDesigner 406

edcPropCtrl.TCustomInspectorList.HiddenCount 410

edcPropCtrl.TCustomInspectorList.HintProps 410

2 EControl Form Designer Pro

r

edcPropCtrl.TCustomInspectorList.IncludeRefs 410

edcPropCtrl.TCustomInspectorList.IsPropReadOnly 406

edcPropCtrl.TCustomInspectorList.KeyDown 406

edcPropCtrl.TCustomInspectorList.Loaded 406

edcPropCtrl.TCustomInspectorList.MarkNonDefault 410

edcPropCtrl.TCustomInspectorList.MouseDown 406

edcPropCtrl.TCustomInspectorList.OnAcceptCategory 412

edcPropCtrl.TCustomInspectorList.OnAcceptProperty 412

edcPropCtrl.TCustomInspectorList.OnChangeSelection 412

edcPropCtrl.TCustomInspectorList.OnGetPropReadOnly 413

edcPropCtrl.TCustomInspectorList.OnPropListUpdated 413

edcPropCtrl.TCustomInspectorList.OnPropValueChanged 413

edcPropCtrl.TCustomInspectorList.OnSetPropValueA 413

edcPropCtrl.TCustomInspectorList.OnSetPropValueW 413

edcPropCtrl.TCustomInspectorList.PasteValue 406

edcPropCtrl.TCustomInspectorList.PopupListAlign 411

edcPropCtrl.TCustomInspectorList.PropValueChanged 407

edcPropCtrl.TCustomInspectorList.ReadOnly 411

edcPropCtrl.TCustomInspectorList.SaveValue 407

edcPropCtrl.TCustomInspectorList.SearchPropKey 411

edcPropCtrl.TCustomInspectorList.SearchPropMode 411

edcPropCtrl.TCustomInspectorList.Selected 411

edcPropCtrl.TCustomInspectorList.SelectedCount 411

edcPropCtrl.TCustomInspectorList.SetItemIndex 407

edcPropCtrl.TCustomInspectorList.ShowReadOnly 411

edcPropCtrl.TCustomInspectorList.TypeKinds 411

edcPropCtrl.TCustomInspectorList.TypeSelector 412

edcPropCtrl.TCustomInspectorList.UpdateEditor 407

edcPropCtrl.TCustomInspectorList.UpdateList 407

edcPropCtrl.TGetPropReadonlyEvent 447

edcPropCtrl.TGetPropReadonlyEvent type 447

edcPropCtrl.TInspectorList 413

edcPropCtrl.TInspectorList.Align 422

edcPropCtrl.TInspectorList.Anchors 423

edcPropCtrl.TInspectorList.BevelEdges 423

edcPropCtrl.TInspectorList.BevelInner 423

edcPropCtrl.TInspectorList.BevelKind 424

edcPropCtrl.TInspectorList.BevelOuter 424

edcPropCtrl.TInspectorList.BiDiMode 424

edcPropCtrl.TInspectorList.BorderStyle 424

edcPropCtrl.TInspectorList.ByCategories 425

edcPropCtrl.TInspectorList.cCategories 425

edcPropCtrl.TInspectorList.cDefValues 425

edcPropCtrl.TInspectorList.cEditBackGround 425

edcPropCtrl.TInspectorList.cEditValue 425

edcPropCtrl.TInspectorList.cGutter 425

edcPropCtrl.TInspectorList.cGutterBnd 425

edcPropCtrl.TInspectorList.cHighlight 425

edcPropCtrl.TInspectorList.cHighlightText 426

edcPropCtrl.TInspectorList.Color 426

edcPropCtrl.TInspectorList.Component 426

edcPropCtrl.TInspectorList.Constraints 426

edcPropCtrl.TInspectorList.cPropName 426

edcPropCtrl.TInspectorList.cPropReadOnly 426

edcPropCtrl.TInspectorList.cPropReference 427

edcPropCtrl.TInspectorList.cPropValue 427

edcPropCtrl.TInspectorList.cSubProperty 427

edcPropCtrl.TInspectorList.Ctl3D 427

edcPropCtrl.TInspectorList.DefPropNameDraw 427

edcPropCtrl.TInspectorList.Designer 427

edcPropCtrl.TInspectorList.DragCursor 428

edcPropCtrl.TInspectorList.DragKind 428

edcPropCtrl.TInspectorList.DragMode 428

edcPropCtrl.TInspectorList.EditorVisible 428

edcPropCtrl.TInspectorList.Enabled 428

edcPropCtrl.TInspectorList.ExpandRefs 428

edcPropCtrl.TInspectorList.FoldingIcon 429

edcPropCtrl.TInspectorList.Font 429

edcPropCtrl.TInspectorList.IncludeRefs 429

edcPropCtrl.TInspectorList.ItemHeight 429

edcPropCtrl.TInspectorList.ItemIndex 429

edcPropCtrl.TInspectorList.Items 429

edcPropCtrl.TInspectorList.MarkNonDefault 430

edcPropCtrl.TInspectorList.OnAcceptCategory 430

edcPropCtrl.TInspectorList.OnAcceptProperty 430

edcPropCtrl.TInspectorList.OnCanResize 430

edcPropCtrl.TInspectorList.OnChangeSelection 431

edcPropCtrl.TInspectorList.OnClick 431

edcPropCtrl.TInspectorList.OnConstrainedResize 431

edcPropCtrl.TInspectorList.OnContextPopup 431

edcPropCtrl.TInspectorList.OnDblClick 432

edcPropCtrl.TInspectorList.OnDragDrop 432

edcPropCtrl.TInspectorList.OnDragOver 432

edcPropCtrl.TInspectorList.OnDrawPropCell 433

2 EControl Form Designer Pro

s

edcPropCtrl.TInspectorList.OnEndDrag 433

edcPropCtrl.TInspectorList.OnEnter 433

edcPropCtrl.TInspectorList.OnExit 433

edcPropCtrl.TInspectorList.OnGetCellParams 433

edcPropCtrl.TInspectorList.OnGetPropReadOnly 433

edcPropCtrl.TInspectorList.OnKeyDown 433

edcPropCtrl.TInspectorList.OnKeyPress 434

edcPropCtrl.TInspectorList.OnKeyUp 434

edcPropCtrl.TInspectorList.OnMouseDown 434

edcPropCtrl.TInspectorList.OnMouseMove 435

edcPropCtrl.TInspectorList.OnMouseUp 435

edcPropCtrl.TInspectorList.OnPropListUpdated 435

edcPropCtrl.TInspectorList.OnResize 435

edcPropCtrl.TInspectorList.OnSetPropValueA 435

edcPropCtrl.TInspectorList.OnSetPropValueW 436

edcPropCtrl.TInspectorList.OnStartDrag 436

edcPropCtrl.TInspectorList.ParentBiDiMode 436

edcPropCtrl.TInspectorList.ParentColor 436

edcPropCtrl.TInspectorList.ParentCtl3D 436

edcPropCtrl.TInspectorList.ParentFont 436

edcPropCtrl.TInspectorList.ParentShowHint 437

edcPropCtrl.TInspectorList.PopupListAlign 437

edcPropCtrl.TInspectorList.PopupMenu 437

edcPropCtrl.TInspectorList.ReadOnly 437

edcPropCtrl.TInspectorList.ShowGrid 437

edcPropCtrl.TInspectorList.ShowGutter 437

edcPropCtrl.TInspectorList.ShowHint 437

edcPropCtrl.TInspectorList.ShowReadOnly 437

edcPropCtrl.TInspectorList.ShowSelFrame 438

edcPropCtrl.TInspectorList.SplitPos 438

edcPropCtrl.TInspectorList.TabOrder 438

edcPropCtrl.TInspectorList.TabStop 438

edcPropCtrl.TInspectorList.TopItem 438

edcPropCtrl.TInspectorList.TypeKinds 438

edcPropCtrl.TInspectorList.TypeSelector 438

edcPropCtrl.TInspectorList.Visible 439

edcPropCtrl.TOnInspSetPropValueEventA 447

edcPropCtrl.TOnInspSetPropValueEventA type 447

edcPropCtrl.TOnInspSetPropValueEventW 448

edcPropCtrl.TOnInspSetPropValueEventW type 448

edcPropCtrl.TPropertyNode 439

edcPropCtrl.TPropertyNode.Create 441

edcPropCtrl.TPropertyNode.Editor 442

edcPropCtrl.TPropertyNode.Expandable 441

edcPropCtrl.TPropertyNode.GetName 441

edcPropCtrl.TPropertyNode.IsDefault 442

edcPropCtrl.TPropertyNode.IsReference 442

edcPropCtrl.TPropertyNode.IsSubProperty 442

edcPropCtrl.TPropertyNode.Owner 441

edcPropCtrl.TPropertyNode.PropInfo 442

edcPropCtrl.TPropertyNode.ReflectModified 441

edcPropCtrl.TPropertyNodes 442

edcPropCtrl.TPropertyNodes.Clear 445

edcPropCtrl.TPropertyNodes.Create 445

edcPropCtrl.TPropertyNodes.Destroy 445

edcPropCtrl.TPropertyNodes.ExpandItem 445

edcPropCtrl.TPropertyNodes.GetProps 445

edcPropCtrl.TTypeSelector 446

edcPropCtrl.TTypeSelector enumeration 446

edcPropCtrl.TzDesignerSelections 445

edcPropEdit namespace

Classes 448

Interfaces 464

Types 465

edcPropEdit.IPropertyStatusImage 464

edcPropEdit.IPropertyStatusImage.DrawStatus 464

edcPropEdit.IPropertyStatusImage.GetStatusWidth 464

edcPropEdit.IPropertyStatusImage.StatusClick 465

edcPropEdit.TCustomPropertyEdit 448

edcPropEdit.TCustomPropertyEdit.AcceptListValue 453

edcPropEdit.TCustomPropertyEdit.AcceptTab 455

edcPropEdit.TCustomPropertyEdit.ButtonClick 453

edcPropEdit.TCustomPropertyEdit.Change 453

edcPropEdit.TCustomPropertyEdit.ChangePropertyValue 453

edcPropEdit.TCustomPropertyEdit.Component 456

edcPropEdit.TCustomPropertyEdit.Create 453

edcPropEdit.TCustomPropertyEdit.DblClick 453

edcPropEdit.TCustomPropertyEdit.Designer 456

edcPropEdit.TCustomPropertyEdit.DoEdit 454

edcPropEdit.TCustomPropertyEdit.DoExit 454

edcPropEdit.TCustomPropertyEdit.DropDown 454

edcPropEdit.TCustomPropertyEdit.GetEditor 454

edcPropEdit.TCustomPropertyEdit.GetStr 454

edcPropEdit.TCustomPropertyEdit.GetWStr 454

2 EControl Form Designer Pro

t

edcPropEdit.TCustomPropertyEdit.MouseDown 454

edcPropEdit.TCustomPropertyEdit.Notification 455

edcPropEdit.TCustomPropertyEdit.OnSetPropValueA 457

edcPropEdit.TCustomPropertyEdit.OnSetPropValueW 457

edcPropEdit.TCustomPropertyEdit.PaintStatus 455

edcPropEdit.TCustomPropertyEdit.PropertyEditor 456

edcPropEdit.TCustomPropertyEdit.PropertyName 456

edcPropEdit.TCustomPropertyEdit.ReadOnly 456

edcPropEdit.TCustomPropertyEdit.SetValue 455

edcPropEdit.TCustomPropertyEdit.TypeKinds 456

edcPropEdit.TCustomPropertyEdit.UpdateEditState 455

edcPropEdit.TOnSetPropValueEventA 465

edcPropEdit.TOnSetPropValueEventA type 465

edcPropEdit.TOnSetPropValueEventW 465

edcPropEdit.TOnSetPropValueEventW type 465

edcPropEdit.TPropertyEdit 457

edcPropEdit.TPropertyEdit.Component 462

edcPropEdit.TPropertyEdit.Designer 462

edcPropEdit.TPropertyEdit.ListAlign 462

edcPropEdit.TPropertyEdit.OnSetPropValueA 462

edcPropEdit.TPropertyEdit.OnSetPropValueW 463

edcPropEdit.TPropertyEdit.PropertyName 463

edcPropEdit.TPropertyEdit.ReadOnly 463

edcPropEdit.TPropertyEdit.TypeKinds 463

edcPropEdit.TPropertyNameProperty 463

edcToolList namespace

Classes 470

edcToolList.TPaletteToolList 470

edcToolList.TPaletteToolList.Align 477

edcToolList.TPaletteToolList.AllowArrange 478

edcToolList.TPaletteToolList.Anchors 478

edcToolList.TPaletteToolList.AutoCollapse 478

edcToolList.TPaletteToolList.BevelEdges 478

edcToolList.TPaletteToolList.BevelInner 478

edcToolList.TPaletteToolList.BevelKind 479

edcToolList.TPaletteToolList.BevelOuter 479

edcToolList.TPaletteToolList.BiDiMode 479

edcToolList.TPaletteToolList.CategoryHeight 479

edcToolList.TPaletteToolList.ClsChanged 476

edcToolList.TPaletteToolList.ClsPalChanged 476

edcToolList.TPaletteToolList.Color 479

edcToolList.TPaletteToolList.ComponentAt 476

edcToolList.TPaletteToolList.Constraints 480

edcToolList.TPaletteToolList.Create 476

edcToolList.TPaletteToolList.Ctl3D 480

edcToolList.TPaletteToolList.CustomItems 480

edcToolList.TPaletteToolList.Destroy 477

edcToolList.TPaletteToolList.DragCursor 481

edcToolList.TPaletteToolList.DragImageType 481

edcToolList.TPaletteToolList.DragKind 481

edcToolList.TPaletteToolList.DragMode 481

edcToolList.TPaletteToolList.DrawItemImage 477

edcToolList.TPaletteToolList.Enabled 481

edcToolList.TPaletteToolList.Filtered 481

edcToolList.TPaletteToolList.FilterString 482

edcToolList.TPaletteToolList.FoldingIcon 482

edcToolList.TPaletteToolList.Font 482

edcToolList.TPaletteToolList.HintProps 482

edcToolList.TPaletteToolList.ItemHeight 482

edcToolList.TPaletteToolList.ItemIndexChanged 477

edcToolList.TPaletteToolList.Items 482

edcToolList.TPaletteToolList.ItemsArranged 477

edcToolList.TPaletteToolList.OnCanResize 482

edcToolList.TPaletteToolList.OnClick 483

edcToolList.TPaletteToolList.OnConstrainedResize 483

edcToolList.TPaletteToolList.OnContextPopup 483

edcToolList.TPaletteToolList.OnDblClick 484

edcToolList.TPaletteToolList.OnDragDrop 484

edcToolList.TPaletteToolList.OnDragOver 484

edcToolList.TPaletteToolList.OnEndDrag 484

edcToolList.TPaletteToolList.OnEnter 484

edcToolList.TPaletteToolList.OnExit 485

edcToolList.TPaletteToolList.OnKeyDown 485

edcToolList.TPaletteToolList.OnKeyPress 485

edcToolList.TPaletteToolList.OnKeyUp 485

edcToolList.TPaletteToolList.OnMouseDown 486

edcToolList.TPaletteToolList.OnMouseMove 486

edcToolList.TPaletteToolList.OnMouseUp 486

edcToolList.TPaletteToolList.OnPalChange 489

edcToolList.TPaletteToolList.OnResize 486

edcToolList.TPaletteToolList.OnStartDrag 487

edcToolList.TPaletteToolList.ParentBiDiMode 487

edcToolList.TPaletteToolList.ParentColor 487

edcToolList.TPaletteToolList.ParentCtl3D 487

2 EControl Form Designer Pro

u

edcToolList.TPaletteToolList.ParentFont 487

edcToolList.TPaletteToolList.ParentShowHint 488

edcToolList.TPaletteToolList.PopupMenu 488

edcToolList.TPaletteToolList.RowSpace 488

edcToolList.TPaletteToolList.ShowCaptions 488

edcToolList.TPaletteToolList.ShowCategory 477

edcToolList.TPaletteToolList.ShowHint 488

edcToolList.TPaletteToolList.StyleCategory 488

edcToolList.TPaletteToolList.StyleCategoryMouseOver 488

edcToolList.TPaletteToolList.StyleCategorySelected 488

edcToolList.TPaletteToolList.StyleItem 488

edcToolList.TPaletteToolList.StyleItemMouseOver 488

edcToolList.TPaletteToolList.StyleItemSelected 488

edcToolList.TPaletteToolList.TabOrder 489

edcToolList.TPaletteToolList.TabStop 489

edcToolList.TPaletteToolList.TransparentImages 489

edcToolList.TPaletteToolList.VerticalGroups 489

edcToolList.TPaletteToolList.Visible 489

eddAlignDlg namespace

Classes 465

eddAlignDlg.TAlignmentDlg 465

eddAlignPal namespace

Classes 466

eddAlignPal.TAlignPalette 466

eddCrOrdDl namespace

Classes 467

eddCrOrdDl.TCreateOrderDlg 468

eddCustomPal namespace

Classes 468

eddCustomPal.TCustomizePaletteDlg 468

eddDsnOpt namespace

Classes 490

eddDsnOpt.TDsnOptionsDlg 490

eddDsnOpt.TDsnOptionsDlg.Designer 491

eddObjInspFrm namespace

Classes 494

Types 498

eddObjInspFrm.TObjectInspectorFrame 495

eddObjInspFrm.TObjectInspectorFrame.ComponnentCombo
497

eddObjInspFrm.TObjectInspectorFrame.Create 496

eddObjInspFrm.TObjectInspectorFrame.Customize 497

eddObjInspFrm.TObjectInspectorFrame.EventsList 497

eddObjInspFrm.TObjectInspectorFrame.IntegralHeight 497

eddObjInspFrm.TObjectInspectorFrame.OnHideClick 498

eddObjInspFrm.TObjectInspectorFrame.OnStayOnTopClick
498

eddObjInspFrm.TObjectInspectorFrame.PageControl 497

eddObjInspFrm.TObjectInspectorFrame.Pages 497

eddObjInspFrm.TObjectInspectorFrame.PropertyList 497

eddObjInspFrm.TObjectInspectorFrame.ReadOnly 497

eddObjInspFrm.TObjectInspectorFrame.ShowInstanceList
497

eddObjInspFrm.TObjectInspectorFrame.ShowStatusBar 497

eddObjInspFrm.TObjInspTabs 498

eddObjInspFrm.TObjInspTabs type 498

eddObjInspProp namespace

Classes 491

eddObjInspProp.TObjInspPropDlg 491

eddObjInspProp.TObjInspPropDlg.ObjectInspector 493

eddObjTreeFrame namespace

Classes 500

eddObjTreeFrame.TObjectTreeFrame 500

eddObjTreeFrame.TObjectTreeFrame.Create 500

eddObjTreeFrame.TObjectTreeFrame.ObjectTree 501

eddPackageCtrl namespace

Classes 493

eddPackageCtrl.TPackageCtrlDlg 493

eddPageName namespace

Classes 494

eddPageName.TPageNameDlg 494

eddScaleDl namespace

Classes 498

eddScaleDl.TScaleDlg 498

eddSelFrame namespace

Classes 499

eddSelFrame.TSelFrameDlg 499

eddSizeDlg namespace

Classes 501

eddSizeDlg.TSizeAdjDlg 501

eddTabOrdDl namespace

Classes 502

eddTabOrdDl.TTabOrderDlg 502

edIOUtils namespace

Functions 503

edIOUtils.zCopyCmpResource 504

2 EControl Form Designer Pro

v

edIOUtils.zCopyCmpResource function 504

edIOUtils.zReadCmpFromFile 504

edIOUtils.zReadCmpFromFile function 504

edIOUtils.zReadCmpFromStream 504

edIOUtils.zReadCmpFromStream function 504

edIOUtils.zWriteCmpToFile 505

edIOUtils.zWriteCmpToFile function 505

edIOUtils.zWriteCmpToStream 505

edIOUtils.zWriteCmpToStream function 505

edManager namespace

Classes 505

Functions 513

Interfaces 511

Structs, Records, Enums 513

Variables 514

edManager.DsnManager 514

edManager.DsnManager variable 514

edManager.GetClassDragImage 513

edManager.GetClassDragImage function 513

edManager.IClassSelector 511

edManager.IClassSelector.ClsChanged 511

edManager.IClassSelector.ClsPalChanged 512

edManager.IDesignIDEEvents 512

edManager.IDesignIDEEvents.ActiveDsnChanged 512

edManager.IDesignIDEEvents.BeforeRegisterComponent 512

edManager.IDesignIDEEvents.GetGlobalComponents 512

edManager.IDesignIDEEvents.GetWorkspaceOrigin 513

edManager.IDesignIDEEvents.KeyDown 513

edManager.IDesignIDEEvents.KeyPress 513

edManager.TComponentClassDragImage 513

edManager.TComponentClassDragImage enumeration 513

edManager.TDesignerManager 505

edManager.TDesignerManager.ActiveDesigner 510

edManager.TDesignerManager.AddClient 507

edManager.TDesignerManager.BeforeRegisterComponent
507

edManager.TDesignerManager.ComponentClass 510

edManager.TDesignerManager.Create 507

edManager.TDesignerManager.CreateCurrent 507

edManager.TDesignerManager.DesignerClosed 507

edManager.TDesignerManager.DesignerOpened 508

edManager.TDesignerManager.Destroy 508

edManager.TDesignerManager.GetGlobalComponents 508

edManager.TDesignerManager.GetWorkspaceOrigin 508

edManager.TDesignerManager.ItemDeleted 508

edManager.TDesignerManager.ItemInserted 508

edManager.TDesignerManager.ItemsModified 509

edManager.TDesignerManager.KeyDown 509

edManager.TDesignerManager.KeyPress 509

edManager.TDesignerManager.MultiCreate 511

edManager.TDesignerManager.PaletteChanged 509

edManager.TDesignerManager.RemoveClient 509

edManager.TDesignerManager.ResetCmpClass 509

edManager.TDesignerManager.SelectionChanged 509

edManager.TDesignerManager.SetActiveDesigner 510

edsMenuDsn namespace

Classes 514

edsMenuDsn.TMenuDsnWnd 514

edsMenuDsn.TzMenuEditor 515

edsMenuDsn.TzMenuItemsPropertyEditor 515

eduDMContainer namespace

Classes 515

eduDMContainer.TDsnDM 516

eduServObj namespace

Classes 516

Functions 523

Structs, Records, Enums 523

eduServObj.DrawPatternRect 523

eduServObj.DrawPatternRect function 523

eduServObj.IsServiceControl 523

eduServObj.IsServiceControl function 523

eduServObj.TAlignRuler 516

eduServObj.TComponentCaption 517

eduServObj.TComponentIcon 517

eduServObj.TDraggedControl 517

eduServObj.TMarkerShape 524

eduServObj.TMarkerShape enumeration 524

eduServObj.TSmallRect 517

eduServObj.TTabOrderIcons 518

eduServObj.TTabOrderIcons.Color 519

eduServObj.TTabOrderIcons.Font 519

eduServObj.TTabOrderIcons.Height 519

eduServObj.TTabOrderIcons.Hide 519

eduServObj.TTabOrderIcons.HorzAlign 519

eduServObj.TTabOrderIcons.SetTabOrder 519

2 EControl Form Designer Pro

w

eduServObj.TTabOrderIcons.Show 519

eduServObj.TTabOrderIcons.VertAlign 519

eduServObj.TTabOrderIcons.Visible 519

eduServObj.TTabOrderIcons.Width 520

eduServObj.TVerticalAlignment 524

eduServObj.TVerticalAlignment enumeration 524

eduServObj.TzBoundCtrl 520

eduServObj.TzBoundCtrl.Bitmap 522

eduServObj.TzBoundCtrl.Color 522

eduServObj.TzBoundCtrl.Control 522

eduServObj.TzBoundCtrl.DrawMultSel 522

eduServObj.TzBoundCtrl.GrabAtPos 521

eduServObj.TzBoundCtrl.GrabSize 522

eduServObj.TzBoundCtrl.Hide 521

eduServObj.TzBoundCtrl.Invalidate 521

eduServObj.TzBoundCtrl.Local 522

eduServObj.TzBoundCtrl.Locked 522

eduServObj.TzBoundCtrl.MarkerShape 522

eduServObj.TzBoundCtrl.Recreate 521

eduServObj.TzBoundCtrl.Update 521

eduServObj.TzBoundCtrl.Visible 523

edUtils namespace

Functions 524

Structs, Records, Enums 527

edUtils.DsnAlignSelected 525

edUtils.DsnAlignSelected function 525

edUtils.DsnLoadPackage 525

edUtils.DsnLoadPackage function 525

edUtils.DsnReadCmpFromStream 525

edUtils.DsnReadCmpFromStream function 525

edUtils.DsnReadFromFile 525

edUtils.DsnReadFromFile function 525

edUtils.DsnWriteCmpToStream 526

edUtils.DsnWriteCmpToStream function 526

edUtils.DsnWriteToFile 526

edUtils.DsnWriteToFile function 526

edUtils.GetDesigner 526

edUtils.GetDesigner function 526

edUtils.InvalidateControl 526

edUtils.InvalidateControl function 526

edUtils.IsControlParent 526

edUtils.IsControlParent function 526

edUtils.NormalizeRect 527

edUtils.NormalizeRect function 527

edUtils.PerformDsnAction 527

edUtils.PerformDsnAction function 527

edUtils.ShowDesignerOptionsDlg 527

edUtils.ShowDesignerOptionsDlg function 527

edUtils.ShowDsnAbout 527

edUtils.ShowDsnAbout function 527

edUtils.TDesignerAction 528

edUtils.TDesignerAction enumeration 528

event handlers; methods 10

Examples 9

F
Features 2

Frames class 242

I
IClassSelector interface 511

ClsChanged 511

ClsPalChanged 512

IDesignIDEEvents interface 512

ActiveDsnChanged 512

BeforeRegisterComponent 512

GetGlobalComponents 512

GetWorkspaceOrigin 513

KeyDown 513

KeyPress 513

Insallation 3

Integration with scripters 6

IPropertyStatusImage interface 464

DrawStatus 464

GetStatusWidth 464

StatusClick 465

L
License 8

O
Overview 1

2 EControl Form Designer Pro

x

R
Registration Method Example 10

T
TAlignmentDlg class 465

TAlignPalette class 466

TAlignRuler class 516

TBaseDesigner class 144

Active 151

CanProcessNCMessages 146

Client2Screen 147

ClientOrg 147

Create 147

DesignState 147

Destroy 147

DoObjectHint 147

DragDrop 147

DragOver 148

HintObject 152

IsRTL 148

KeyDown 148

KeyPress 149

KeyUp 149

Loaded 149

MouseDown 150

MouseMove 150

MouseUp 150

OnActiveChanged 152

OnDragDrop 152

OnDragOver 152

OnHandleControlMessage 153

OnKeyDown 153

OnKeyPress 153

OnKeyUp 154

OnMouseDown 154

OnMouseMove 154

OnMouseUp 154

ProcessMessage 151

ResetHint 151

Screen2Client 151

SetActive 151

ShowHint 151

ShowHints 152

TBtnEdit class 70

AdjustClientRect 73

Alignment 76

ButtonClick 73

ButtonVisible 76

ButtonWidth 77

Canvas 77

Create 73

CreateParams 73

CreateWnd 73

Destroy 74

EndTracking 74

KeyDown 74

KeyPress 74

MouseMove 74

MouseUp 75

MultiLine 77

OnButtonClick 78

Paint 75

PaintBtnGlyph 75

PaintStatus 75

PaintWindow 75

PtInButton 75

StartTracking 76

StatusWidth 77

StopTracking 76

TrackButton 76

WantReturns 77

WantTabs 78

WordWrap 78

TBtnMargins class 18

Bottom 19

BtnHorz 19

BtnVert 19

Left 19

Right 20

Top 20

TBtnMargins.Margins example 10

TBtnPanel class 28

Align 32

2 EControl Form Designer Pro

y

Anchors 33

AutoSize 33

BevelInner 33

BevelOuter 33

BevelWidth 34

BiDiMode 34

BorderStyle 34

BorderWidth 34

ButtonCount 35

ButtonHeight 35

ButtonWidth 35

Color 35

Constraints 36

Ctl3D 36

DownButton 36

DragCursor 36

DragKind 36

DragMode 37

Enabled 37

Flat 37

Font 37

HintProps 37

Margins 37

OnButtonClick 38

OnCanResize 38

OnClick 38

OnConstrainedResize 38

OnContextPopup 39

OnDblClick 39

OnDragDrop 39

OnDragOver 39

OnDrawButton 40

OnEndDrag 40

OnEnter 40

OnExit 40

OnGetButtonHint 41

OnMouseDown 41

OnMouseMove 41

OnMouseUp 41

OnResize 42

OnStartDrag 42

Orientation 42

ParentBiDiMode 42

ParentColor 42

ParentCtl3D 43

ParentFont 43

ParentShowHint 43

PopupMenu 43

RowCount 43

ShowHint 43

TabOrder 43

TabStop 43

Transparent 44

Visible 44

TCategoryNode class 396

Clear 398

Create 398

Expandable 398

GetName 399

HasValue 399

TComponentCaption class 517

TComponentClassInfo class 242

ComponentClass 244

Create 243

Destroy 243

DisplayName 244

Hidden 244

Icon 244

InitPage 244

IsIconValid 244

Module 244

Page 245

TComponentCombo class 341

Align 346

Anchors 346

AutoCloseUp 347

AutoDropDown 347

AutoHint 347

BiDiMode 347

Change 344

ClassNameColor 347

ClassNameDelim 348

Color 348

Constraints 348

2 EControl Form Designer Pro

z

Create 344

Ctl3D 348

Designer 348

Destroy 345

DoAddObject 345

DragCursor 348

DragKind 349

DragMode 349

DropDownCount 349

DropDownWidth 349

Enabled 349

FillObjList 345

Font 350

ImeMode 350

ImeName 350

IncludeContainer 350

ItemHeight 350

MaxLength 351

NameColor 351

Notification 345

OnCanAddObject 358

OnClick 351

OnCloseUp 351

OnContextPopup 351

OnDblClick 352

OnDragDrop 352

OnDragOver 352

OnDrawItem 353

OnDropDown 353

OnEndDock 353

OnEndDrag 353

OnEnter 353

OnExit 354

OnGetClassName 358

OnGetComponents 358

OnKeyDown 354

OnKeyPress 354

OnKeyUp 354

OnMeasureItem 355

OnSelChanged 358

OnSelect 355

OnStartDock 355

OnStartDrag 355

ParentBiDiMode 356

ParentColor 356

ParentCtl3D 356

ParentFont 356

ParentShowHint 356

PopupMenu 356

SetSelection 345

ShowClassName 356

ShowComponents 357

ShowHint 357

Sorted 357

TabOrder 357

TabStop 357

Text 357

UpdateObjectList 345

Visible 358

TComponentIcon class 517

TControlGroups class 156

Clear 158

Count 158

Create 158

Destroy 158

GroupControls 158

GroupForControl 158

Groups 158

GroupSelected 158

UnGroup 158

UnGroupSelected 158

TCreateOrderDlg class 468

TCustomBtnPanel class 20

AutoSize 25

ButtonAtPos 22

ButtonClick 22

ButtonCount 25

ButtonHeight 25

ButtonRect 22

ButtonWidth 25

CanAutoSize 23

Caption 25

Create 23

Destroy 23

2 EControl Form Designer Pro

aa

DownButton 26

DrawButton 23

Flat 26

GetButtonHint 24

HintProps 26

InvalidateButtons 24

Loaded 24

Margins 26

MouseDown 24

OnButtonClick 27

OnDrawButton 27

OnGetButtonHint 28

Orientation 26

Paint 24

RowCount 27

Transparent 27

TCustomDesignerObjTree class 267

AddSprigAddItems 269

AddType 269

AddTypeCount 269

AddTypes 271

CanDelete 269

CanMove 269

Create 269

DeleteSelected 270

Designer 271

Destroy 270

Loaded 270

Move 270

Notification 270

OnCreateSprigNode 271

RootSprig 271

TCustomEditEx class 78

AcceptListValue 82

ActiveList 84

ButtonClick 82

CloseUp 82

Create 82

Destroy 82

DoDropDownKeys 83

DropDown 83

EditStyle 84

EndTracking 83

KeyPress 83

ListAlign 84

MouseDown 83

MouseMove 83

OnAcceptListValue 85

OnCloseUp 85

OnDropDown 85

OnMeasureWidth 85

PaintBtnGlyph 84

PickList 84

StartTracking 84

TCustomInspectorList class 399

AcceptProperty 404

ByCategories 407

Categories 408

cCategories 408

cDefValues 408

cEditBackGround 408

cEditValue 408

Component 408

CopyName 404

CopyValue 405

cPropName 409

cPropReadOnly 409

cPropReference 409

cPropValue 409

Create 405

CreateEditor 405

CreateItems 405

cSubProperty 409

CutValue 405

DefPropNameDraw 409

Designer 409

DoPrepareCanvas 405

DrawPropCell 406

EditedObject 410

ExpandRefs 410

FocusEditor 406

GetDesigner 406

HiddenCount 410

HintProps 410

2 EControl Form Designer Pro

bb

IncludeRefs 410

IsPropReadOnly 406

KeyDown 406

Loaded 406

MarkNonDefault 410

MouseDown 406

OnAcceptCategory 412

OnAcceptProperty 412

OnChangeSelection 412

OnGetPropReadOnly 413

OnPropListUpdated 413

OnPropValueChanged 413

OnSetPropValueA 413

OnSetPropValueW 413

PasteValue 406

PopupListAlign 411

PropValueChanged 407

ReadOnly 411

SaveValue 407

SearchPropKey 411

SearchPropMode 411

Selected 411

SelectedCount 411

SetItemIndex 407

ShowReadOnly 411

TypeKinds 411

TypeSelector 412

UpdateEditor 407

UpdateList 407

TCustomizePaletteDlg class 468

TCustomModuleInfo class 245

TCustomPropertyEdit class 448

AcceptListValue 453

AcceptTab 455

ButtonClick 453

Change 453

ChangePropertyValue 453

Component 456

Create 453

DblClick 453

Designer 456

DoEdit 454

DoExit 454

DropDown 454

GetEditor 454

GetStr 454

GetWStr 454

MouseDown 454

Notification 455

OnSetPropValueA 457

OnSetPropValueW 457

PaintStatus 455

PropertyEditor 456

PropertyName 456

ReadOnly 456

SetValue 455

TypeKinds 456

UpdateEditState 455

TCustomPropList class 46

cGutter 50

cGutterBnd 51

cHighlight 51

cHighlightText 51

Create 49

CreateItems 49

Current 49

Destroy 49

DoPrepareCanvas 50

DrawCell 50

DrawPropCell 50

FoldingIcon 51

GutterWidth 50

IsHeaderItem 50

Items 51

LeftMargin 51

LevelWidth 51

MouseDown 50

OnDrawPropCell 51

OnGetCellParams 52

ShowGutter 51

TCustomToolList class 116

AllowArrange 120

AutoCollapse 120

CategoryHeight 120

2 EControl Form Designer Pro

cc

CollapseAll 118

Create 119

Destroy 119

DrawItemImage 119

ExpandAll 119

Filtered 120

FilterString 121

FoldingIcon 121

GetCategoryItem 119

HintProps 121

Images 121

InsertAtItem 121

ItemAtPos 119

ItemHeight 121

ItemIndex 121

ItemIndexChanged 119

ItemRect 119

Items 121

ItemsArranged 120

ItemsChanged 120

ItemsHeight 120

MakeTopItem 120

MakeVisible 120

MouseOverItem 122

OnItemArranged 123

OnItemChanged 123

PaintItem 120

RightClickSelect 122

RowSpace 122

Selected 122

SelectFirstVisible 120

StyleCategory 122

StyleCategoryMouseOver 122

StyleCategorySelected 122

StyleItem 122

StyleItemMouseOver 122

StyleItemSelected 122

VerticalGroups 122

ViewOrigin 123

TDefaultMethodRegister class 259

Add 261, 262, 263, 264

Add method 261

AddMethod 264

Count 265

Create 264

Destroy 264

FInfos 261

GetMethodsNames 264

Items 265

RemoveObject 265

ValidateMethod 265

TDesignerAction class 308

Caption 309

Enabled 309

HelpContext 309

HelpKeyword 310

HelpType 310

Hint 310

ImageIndex 310

OnExecute 310

OnHint 310

OnUpdate 311

SecondaryShortCuts 311

ShortCut 311

Update 309

Visible 311

TDesignerEvents class 389

OnActiveDsnChanged 391

OnClassChanged 391

OnDesignerClosed 391

OnDesignerInitialized 391

OnDsnKeyDown 392

OnGetGlobalComponents 392

OnGetWorkspaceOrigin 392

OnItemDeleted 392

OnItemInserted 393

OnItemsModified 393

OnKeyPress 393

OnPaletteChanged 393

OnRegisterComponent 394

OnSelectionChanged 394

TDesignerManager class 505

ActiveDesigner 510

AddClient 507

2 EControl Form Designer Pro

dd

BeforeRegisterComponent 507

ComponentClass 510

Create 507

CreateCurrent 507

DesignerClosed 507

DesignerOpened 508

Destroy 508

GetGlobalComponents 508

GetWorkspaceOrigin 508

ItemDeleted 508

ItemInserted 508

ItemsModified 509

KeyDown 509

KeyPress 509

MultiCreate 511

PaletteChanged 509

RemoveClient 509

ResetCmpClass 509

SelectionChanged 509

SetActiveDesigner 510

TDesignerObjTree class 271

Align 277

Anchors 277

AutoExpand 278

BevelEdges 278

BevelInner 278

BevelKind 278

BevelOuter 279

BevelWidth 279

BiDiMode 279

BorderStyle 279

BorderWidth 279

ChangeDelay 280

Color 280

Constraints 280

Create 277

Ctl3D 280

DragCursor 280

DragKind 281

DragMode 281

Enabled 281

Font 281

HideSelection 281

HotTrack 281

Images 282

Indent 282

Items 282

MultiSelect 282

MultiSelectStyle 282

OnAddition 283

OnAdvancedCustomDraw 283

OnAdvancedCustomDrawItem 283

OnChange 283

OnChanging 284

OnClick 284

OnCollapsed 284

OnCollapsing 284

OnCompare 284

OnContextPopup 285

OnCreateNodeClass 285

OnCreateSprigNode 285

OnCustomDraw 285

OnCustomDrawItem 286

OnDblClick 286

OnDeletion 286

OnDragDrop 286

OnDragOver 286

OnEdited 287

OnEditing 287

OnEndDock 287

OnEndDrag 287

OnEnter 288

OnExit 288

OnExpanded 288

OnExpanding 288

OnGetImageIndex 288

OnGetSelectedIndex 288

OnKeyDown 289

OnKeyPress 289

OnKeyUp 289

OnMouseDown 289

OnMouseMove 290

OnMouseUp 290

OnStartDock 290

2 EControl Form Designer Pro

ee

OnStartDrag 291

ParentBiDiMode 291

ParentColor 291

ParentCtl3D 291

ParentFont 291

ParentShowHint 291

PopupMenu 292

ReadOnly 292

RightClickSelect 292

RowSelect 292

ShowButtons 292

ShowHint 293

ShowLines 293

ShowRoot 293

SortType 293

StateImages 293

TabOrder 293

TabStop 293

ToolTips 294

Visible 294

TDesignSurface class 237

Activate 238

AdjustScroll 238

DoSizing 238

DsnShowFrame 239

ExecuteAction 238

FlatScrollBars 239

Form 240

FormOrigin 240

FrameSize 240

HideFormBorders 240

RulerClientArea 240

ScrollPos 240

ShowFrame 240

ShowRuler 241

UpdateAction 239

UseUnits 241

TDraggedControl class 517

TdsnAlignmentDlg class 311

Execute 313

TdsnAlignToGrid class 313

Execute 314

TdsnBringToFront class 315

Execute 316

TdsnCopy class 316

TdsnCreationOrderDlg class 317

Execute 318

TdsnCut class 318

TdsnDelete class 318

TdsnDesignMode class 319

Execute 320

Update 320

TDsnDM class 516

TdsnFlipChildren class 320

Execute 322

TdsnFlipChildrenAll class 322

Execute 323

TdsnGroupControls class 323

Execute 325

Update 325

TDsnInplaceEditor class 295

Adapter 300

Alignment 300

Close 299

Color 300

Create 299

Destroy 300

IsUnicode 301

LoadText 300

MultiLine 301

OnChange 301

OnExit 301

SaveText 300

TextW 301

WordWrap 302

TdsnLockControls class 325

Execute 326

Update 326

TDsnOptionsDlg class 490

Designer 491

TdsnPaste class 327

TdsnRedo class 327

TdsnScale class 327

Execute 328

2 EControl Form Designer Pro

ff

TDsnSelAction class 329

Update 330

TdsnSelectAll class 330

TdsnSendToBack class 330

Execute 332

TdsnShowTabOrder class 332

Execute 333

Update 333

TdsnSizeDlg class 334

Execute 335

TdsnTabOrderDlg class 335

Execute 336

TdsnTargetAction class 337

TdsnTextEditMode class 337

Execute 338

Update 338

TdsnUndo class 338

TdsnUngroupControls class 339

Execute 340

TDualList class 52

BorderStyle 58

Canvas 58

Create 54

CreateEditor 54

CreateHandle 54

Destroy 54

DoMouseWheel 54

DrawCell 55

DrawStr 55

DrawStrW 55

Editor 59

EditorVisible 59

ExecuteAction 55

FocusEditor 56

IsHeaderItem 56

ItemCount 59

ItemHeight 59

ItemIndex 59

ItemRect 56

KeyDown 56

MouseDown 56

MouseMove 56

MouseToItem 57

MouseUp 57

OnClick 60

Paint 57

SetItemIndex 57

ShowGrid 60

ShowSelFrame 60

SplitPos 60

TabOrder 60

TabStop 60

TopItem 60

UpdateAction 57

UpdateEditor 58

TecHintHelper class 111

CancelHint 112

CanMoveLeft 113

Color 113

ControlWndProc 112

Create 112

Destroy 113

Enabled 113

Font 113

HidePause 114

Pause 114

ResetHint 113

ShortPause 114

ShowHint 113

TEditEx class 85

Alignment 92

Anchors 92

AutoSelect 92

AutoSize 92

BevelEdges 93

BevelInner 93

BevelKind 93

BevelOuter 93

BevelWidth 93

BiDiMode 94

BorderStyle 94

ButtonWidth 94

CharCase 94

Color 95

2 EControl Form Designer Pro

gg

Constraints 95

Ctl3D 95

DragCursor 95

DragKind 95

DragMode 95

EditMask 96

EditStyle 96

Enabled 96

Font 96

ImeMode 96

ImeName 97

IsUnicode 97

ListAlign 97

MaxLength 97

OnAcceptListValue 98

OnButtonClick 98

OnChange 98

OnClick 98

OnCloseUp 98

OnDblClick 98

OnDragDrop 98

OnDragOver 99

OnDropDown 99

OnEndDrag 99

OnEnter 99

OnExit 100

OnKeyDown 100

OnKeyPress 100

OnKeyUp 100

OnMeasureWidth 101

OnMouseDown 101

OnMouseMove 101

OnMouseUp 101

OnStartDrag 102

ParentBiDiMode 102

ParentColor 102

ParentCtl3D 102

ParentFont 102

ParentShowHint 102

PasswordChar 103

PickList 103

PopupMenu 103

ReadOnly 103

SelTextW 103

ShowHint 104

StatusWidth 104

TabOrder 104

TabStop 104

Text 104

TextW 104

Visible 104

TFrameInfo class 245

FrameClass 246

FrameResource 246

TInplaceComponentEditor class 302

BoundRect 305

Control 305

Create 303

GetBoundRect 303

GetText 304

GetTextW 304

HandlePos 304

IsAutoUpdate 304

IsUnicode 304

SetEditor 304

SetHitPoint 305

SetText 305

SetTextW 305

Text 305

TextW 306

TInspectorList class 413

Align 422

Anchors 423

BevelEdges 423

BevelInner 423

BevelKind 424

BevelOuter 424

BiDiMode 424

BorderStyle 424

ByCategories 425

cCategories 425

cDefValues 425

cEditBackGround 425

cEditValue 425

2 EControl Form Designer Pro

hh

cGutter 425

cGutterBnd 425

cHighlight 425

cHighlightText 426

Color 426

Component 426

Constraints 426

cPropName 426

cPropReadOnly 426

cPropReference 427

cPropValue 427

cSubProperty 427

Ctl3D 427

DefPropNameDraw 427

Designer 427

DragCursor 428

DragKind 428

DragMode 428

EditorVisible 428

Enabled 428

ExpandRefs 428

FoldingIcon 429

Font 429

IncludeRefs 429

ItemHeight 429

ItemIndex 429

Items 429

MarkNonDefault 430

OnAcceptCategory 430

OnAcceptProperty 430

OnCanResize 430

OnChangeSelection 431

OnClick 431

OnConstrainedResize 431

OnContextPopup 431

OnDblClick 432

OnDragDrop 432

OnDragOver 432

OnDrawPropCell 433

OnEndDrag 433

OnEnter 433

OnExit 433

OnGetCellParams 433

OnGetPropReadOnly 433

OnKeyDown 433

OnKeyPress 434

OnKeyUp 434

OnMouseDown 434

OnMouseMove 435

OnMouseUp 435

OnPropListUpdated 435

OnResize 435

OnSetPropValueA 435

OnSetPropValueW 436

OnStartDrag 436

ParentBiDiMode 436

ParentColor 436

ParentCtl3D 436

ParentFont 436

ParentShowHint 437

PopupListAlign 437

PopupMenu 437

ReadOnly 437

ShowGrid 437

ShowGutter 437

ShowHint 437

ShowReadOnly 437

ShowSelFrame 438

SplitPos 438

TabOrder 438

TabStop 438

TopItem 438

TypeKinds 438

TypeSelector 438

Visible 439

TMenuDsnWnd class 514

TObjectInspectorFrame class 495

ComponnentCombo 497

Create 496

Customize 497

EventsList 497

IntegralHeight 497

OnHideClick 498

OnStayOnTopClick 498

2 EControl Form Designer Pro

ii

PageControl 497

Pages 497

PropertyList 497

ReadOnly 497

ShowInstanceList 497

ShowStatusBar 497

TObjectTreeFrame class 500

Create 500

ObjectTree 501

TObjInspPropDlg class 491

ObjectInspector 493

TPackageCtrlDlg class 493

TPackageInfo class 246

Active 247

Create 247

Description 247

Destroy 247

FileName 247

Handle 247

Requires 247

Units 248

TPackageMng class 248

AddComponent 250

AddPackage 250

AutoSave 255

BeginUpdate 250

ComponentCount 255

Components 255

Create 250

CreateFrame 251

CustomizePackages 251

CustomizePalette 251

DeleteComponent 251

DeleteComponent method 251

Destroy 251

EndUpdate 252

FindClass 252

FindClassName 252

FindClassNameIdx 252

FindPackage 252

FrameInfos 255

GetCustomModule 252

IsNoIcon 253

LoadPaleteFromIni 253

OnRegisterComponent 256

OnRegisterComponentInfo 256

OnUnRegisterComponentInfo 256

Packages 255

Pages 256

ReadRegInfo 253

RegisterFrame 253

RegSubkey 256

RemoveEmptyPages 253

RemovePackage 254

RenamePage 254

ResetPalette 254

SavePaletteToIni 254

SaveRegInfo 254

SetComponentOrder 255

TPageNameDlg class 494

TPalettePanel class 360

Align 366

Anchors 366

AutoSize 367

BevelInner 367

BevelOuter 367

BevelWidth 367

BiDiMode 368

BorderStyle 368

BorderWidth 368

ButtonClick 364

ButtonHeight 368

ButtonWidth 369

Color 369

Constraints 369

Create 365

Ctl3D 369

Destroy 365

DownButton 370

DragCursor 370

DragImageType 370

DragKind 370

DragMode 370

DrawButton 365

2 EControl Form Designer Pro

jj

Enabled 370

Flat 371

Font 371

GetButtonHint 365

HintProps 371

Margins 371

OnButtonClick 371

OnCanResize 372

OnClick 372

OnConstrainedResize 372

OnContextPopup 372

OnDblClick 373

OnDragDrop 373

OnDragOver 373

OnEndDrag 374

OnEnter 374

OnExit 374

OnMouseDown 374

OnMouseMove 374

OnMouseUp 375

OnResize 375

OnStartDrag 375

Orientation 375

Page 376

ParentBiDiMode 376

ParentColor 376

ParentCtl3D 376

ParentFont 376

ParentShowHint 376

PopupMenu 376

RowCount 376

ShowHint 377

TabOrder 377

TabStop 377

Transparent 377

UpdateList 366

Visible 377

TPaletteTab class 377

Align 380

Anchors 380

BiDiMode 381

Constraints 381

DragCursor 381

DragKind 381

DragMode 381

Enabled 381

Flat 382

Font 382

HintProps 382

HotTrack 382

Images 382

MultiLine 382

OnChange 383

OnChanging 383

OnContextPopup 383

OnDragDrop 383

OnDragOver 383

OnDrawTab 383

OnEndDock 384

OnEndDrag 384

OnEnter 384

OnExit 384

OnGetImageIndex 384

OnMouseDown 384

OnMouseMove 385

OnMouseUp 385

OnResize 385

OnStartDrag 385

OwnerDraw 385

PalettePanel 386

ParentBiDiMode 386

ParentFont 386

ParentShowHint 386

PopupMenu 386

RaggedRight 386

ResetOnChange 386

ScrollOpposite 387

ShowHint 387

Style 387

TabHeight 387

TabIndex 387

TabOrder 387

TabPosition 388

Tabs 388

2 EControl Form Designer Pro

kk

TabStop 388

TabWidth 388

Visible 388

TPaletteToolList class 470

Align 477

AllowArrange 478

Anchors 478

AutoCollapse 478

BevelEdges 478

BevelInner 478

BevelKind 479

BevelOuter 479

BiDiMode 479

CategoryHeight 479

ClsChanged 476

ClsPalChanged 476

Color 479

ComponentAt 476

Constraints 480

Create 476

Ctl3D 480

CustomItems 480

Destroy 477

DragCursor 481

DragImageType 481

DragKind 481

DragMode 481

DrawItemImage 477

Enabled 481

Filtered 481

FilterString 482

FoldingIcon 482

Font 482

HintProps 482

ItemHeight 482

ItemIndexChanged 477

Items 482

ItemsArranged 477

OnCanResize 482

OnClick 483

OnConstrainedResize 483

OnContextPopup 483

OnDblClick 484

OnDragDrop 484

OnDragOver 484

OnEndDrag 484

OnEnter 484

OnExit 485

OnKeyDown 485

OnKeyPress 485

OnKeyUp 485

OnMouseDown 486

OnMouseMove 486

OnMouseUp 486

OnPalChange 489

OnResize 486

OnStartDrag 487

ParentBiDiMode 487

ParentColor 487

ParentCtl3D 487

ParentFont 487

ParentShowHint 488

PopupMenu 488

RowSpace 488

ShowCaptions 488

ShowCategory 477

ShowHint 488

StyleCategory 488

StyleCategoryMouseOver 488

StyleCategorySelected 488

StyleItem 488

StyleItemMouseOver 488

StyleItemSelected 488

TabOrder 489

TabStop 489

TransparentImages 489

VerticalGroups 489

Visible 489

TPasteInfo class 159

Create 159

CurrOffset 160

Destroy 160

IncForParent 160

Init 160

2 EControl Form Designer Pro

ll

TPopupListbox class 105

CreateParams 106

CreateWnd 106

ItemHeight 106

KeyPress 106

OnDrawItem 106

OnMeasureItem 107

Sorted 107

Style 107

TPropertyEdit class 457

Component 462

Designer 462

ListAlign 462

OnSetPropValueA 462

OnSetPropValueW 463

PropertyName 463

ReadOnly 463

TypeKinds 463

TPropertyItem class 61

Add 62

Changed 62

Clear 62

Count 64

Create 62

Delete 63

Destroy 63

DisplayName 64

Expandable 63

Expanded 64

GetName 63

HasValue 63

IndexOf 63

Insert 63

IsEqual 63

IsRoot 63

Items 64

Level 64

Move 63

Name 64

Parent 65

PathName 65

Root 64

Visible 65

TPropertyNameProperty class 463

TPropertyNode class 439

Create 441

Editor 442

Expandable 441

GetName 441

IsDefault 442

IsReference 442

IsSubProperty 442

Owner 441

PropInfo 442

ReflectModified 441

TPropertyNodes class 442

Clear 445

Create 445

Destroy 445

ExpandItem 445

GetProps 445

TPropListRoot class 65

BeginUpdate 67

Changed 67

Create 67

Destroy 68

EndUpdate 68

ExpandItem 68

ExpCount 68

ExpIndexOf 68

ExpItems 68

Owner 69

RestoreState 68

SaveState 68

UpdateList 68

TScaleDlg class 498

TSelFrameDlg class 499

TSizeAdjDlg class 501

TSmallRect class 517

TTabOrderDlg class 502

TTabOrderIcons class 518

Color 519

Font 519

Height 519

2 EControl Form Designer Pro

mm

Hide 519

HorzAlign 519

SetTabOrder 519

Show 519

VertAlign 519

Visible 519

Width 520

TToolItemStyle class 123

Alignment 124

BoundPen 125

Brush 125

Create 124

Destroy 124

DrawItemRect 124

Font 125

OnChange 125

Shape 125

TToolList class 125

Align 130

AllowArrange 131

Anchors 131

AutoCollapse 131

BevelEdges 131

BevelInner 131

BevelKind 132

BevelOuter 132

BiDiMode 132

CategoryHeight 132

Color 132

Constraints 133

Ctl3D 133

DragCursor 133

DragKind 133

DragMode 133

Enabled 133

Filtered 134

FilterString 134

FoldingIcon 134

Font 134

HintProps 134

Images 134

ItemHeight 134

ItemIndex 135

Items 135

OnCanResize 135

OnClick 135

OnConstrainedResize 135

OnContextPopup 136

OnDblClick 136

OnDragDrop 136

OnDragOver 136

OnEndDrag 137

OnEnter 137

OnExit 137

OnItemArranged 137

OnItemChanged 137

OnMouseDown 137

OnMouseMove 138

OnMouseUp 138

OnResize 138

OnStartDrag 138

ParentBiDiMode 139

ParentColor 139

ParentCtl3D 139

ParentFont 139

ParentShowHint 139

PopupMenu 139

RightClickSelect 139

RowSpace 140

Selected 140

ShowHint 140

StyleCategory 140

StyleCategoryMouseOver 140

StyleCategorySelected 140

StyleItem 140

StyleItemMouseOver 140

StyleItemSelected 140

TabOrder 140

TabStop 140

VerticalGroups 141

Visible 141

TToolListItem class 141

Caption 142

Expanded 142

2 EControl Form Designer Pro

nn

Hint 142

ImageIndex 142

IsCategory 142

Tag 142

ToolList 143

Visible 143

TToolListItems class 143

Items 143

TUnicodeEdit class 107

Create 108

Destroy 108

IsUnicode 108

SelTextW 109

Text 109

TextW 109

TzBoundCtrl class 520

Bitmap 522

Color 522

Control 522

DrawMultSel 522

GrabAtPos 521

GrabSize 522

Hide 521

Invalidate 521

Local 522

Locked 522

MarkerShape 522

Recreate 521

Update 521

Visible 523

TzCustomFormDesigner class 161

AddCompEditorMenu 170

AlignSelected 172

AlignToGrid 172

AllowComponents 187

AutoAlign 187

BDSStyle 188

BringToFront 172

BuildLocalMenu 172

CancelDrag 173

CanDelete 173

CanInsert 173

CanMove 173

CanPaste 173

CanRedo 170

CanRename 173

CanResize 174

CanSelect 174

CanUndo 171

CaptionFont 188

CheckAction 171

ClearCompEditorMenu 171

ClearSelection 174

ClearUndo 171

CloseDisactive 188

CloseTextEditor 171

ContainerWindow 188

CopySelection 174

Create 174

CutSelection 174

DeleteSelection 175

DesignSurface 188

Destroy 175

DisplayControlGrid 189

DisplayGrid 189

DoObjectHint 175

DragDraw 175

DragDrop 171

DragOver 171

DragParentLimit 189

Edit 175

EditAction 172

EndDrag 176

Events 189

ExecuteAction 175

FlatIcons 189

FlipChildren 176

Form 189

GetCompObj 176

GetComponent 176

GetComponentName 176

GetComponentNames 177

GetControlAt 177

GetEditState 173

2 EControl Form Designer Pro

oo

GetMethodName 177

GetNewName 177

GetObjectName 177

GetRoot 178

GetRootClassName 178

GetScriptEvent 178

GetScrollRanges 178

GetSelections 178

GetShiftState 179

GridStepX 190

GridStepY 190

Groups 190

GuidelinesStyle 191

IgnoreReadErrors 191

Intf_Notification 179

IsComponentHidden 179

IsDesignMsg 180

IsLocked 179

IsProtected 180

IsRootSelected 180

IsSourceReadOnly 180

KeyDown 180

KeyPress 181

KeyUp 181

LoadFromFile 177

LoadFromStream 178

LockControls 190

LockPublished 190

MethodExists 181

Modified 181

MouseDown 182

MouseMove 182

MouseUp 182

MultiSelect 190

Navigate 182

NoSelection 183

Notification 183

NotifySelChanged 183

OnCanDelete 195

OnCanEdit 194

OnCanInsert 195

OnCanMove 196

OnCanRename 196

OnCanResize 196

OnCanSelect 196

OnCreateComponent 197

OnCreateFrame 197

OnCreateIcon 197

OnCreateMethod 198

OnDrawControl 195

OnExecuteAction 195

OnFormClosed 198

OnGetComponentHint 198

OnGetComponentLocked 195

OnGetMethodNames 198

OnGetObjectName 195

OnGetScriptProc 199

OnNotification 199

OnPopUndo 196

OnPushUndo 197

OnRenameMethod 200

OnSetNewName 197

OnSetScriptProc 200

OnShowMethod 201

OnUpdateAction 198

OnValidateMethod 201

PaintControl 184

PaintGrid 184

PasteSelection 184

PopupMenu 191

PopupMenuFilter 192

ReadComp 184

ReadOnly 191

Redo 179

RenameMethod 184

Root 192

RootModified 192

SaveToFile 179

SaveToStream 180

Scale 185

SelCount 193

SelectAll 185

SelectComponent 185

Selected 193

2 EControl Form Designer Pro

pp

SelectedComponent 185

SelectedComponentsCount 180

SelectionChanged 185

SelectObj 185

SelectRect 185

SelMarker 193

SendToBack 186

SetPasteName 186

SetScriptEvent 186

SetSelections 186

ShowCaptions 193

ShowMethod 186

ShowPopupMenu 186

ShowTabOrder 182

SizeSelected 186

SnapToGrid 193

StartDrag 187

StoreEvents 191

TabOrderIcons 191

Target 193

TextEditMode 191

Undo 183

UndoLimit 192

UndoLoad 192

UniqueName 187

UpdateAction 182

UpdateCompIcons 187

ValidateMethod 187

TzDesignerSelections class 445

TzFormDesigner class 201

Active 214

AllowComponents 214

AutoAlign 214

BDSStyle 214

CaptionFont 214

CloseDisactive 214

DesignSurface 215

DisplayControlGrid 215

DisplayGrid 215

DragParentLimit 215

FlatIcons 215

GridStepX 215

GridStepY 216

GuidelinesStyle 216

IgnoreReadErrors 216

LockControls 216

LockPublished 216

MultiSelect 216

OnActiveChanged 217

OnCanDelete 217

OnCanEdit 217

OnCanInsert 217

OnCanMove 217

OnCanRename 218

OnCanResize 218

OnCanSelect 218

OnCreateComponent 218

OnCreateFrame 219

OnCreateIcon 219

OnCreateMethod 219

OnDragDrop 219

OnDragOver 220

OnDrawControl 220

OnExecuteAction 220

OnFormClosed 220

OnGetComponentHint 220

OnGetComponentLocked 221

OnGetMethodNames 221

OnGetObjectName 221

OnGetScriptProc 222

OnHandleControlMessage 222

OnKeyDown 222

OnKeyPress 223

OnKeyUp 223

OnMouseDown 223

OnMouseMove 223

OnMouseUp 224

OnNotification 224

OnPopUndo 224

OnPushUndo 224

OnRenameMethod 224

OnSetNewName 225

OnSetScriptProc 225

OnShowMethod 225

2 EControl Form Designer Pro

qq

OnUpdateAction 225

OnValidateMethod 225

PopupMenu 226

PopupMenuFilter 226

ReadOnly 226

SelMarker 226

ShowCaptions 227

ShowHints 227

SnapToGrid 227

StoreEvents 227

TabOrderIcons 227

Target 227

TextEditMode 228

UndoLimit 229

TzMenuEditor class 515

TzMenuItemsPropertyEditor class 515

U
Using DesignIDE.BPL 5

V
Version 2.00 12

Version 2.10 14

Version 2.20 15

Version 2.30 17

Version 2.40 17

Version 2.50 17

2 EControl Form Designer Pro

rr

	EControl Form Designer Pro
	Table of Contents
	EControl Form Designer Pro
	Overview
	Features
	Insallation
	Using DesignIDE.BPL
	Integration with scripters
	License
	Change Log
	Version 2.00
	Version 2.10
	Version 2.20
	Version 2.30
	Version 2.40
	Version 2.50

	ecBtnPanel Namespace
	Classes
	TBtnMargins Class
	TBtnMargins Properties

	TCustomBtnPanel Class
	TCustomBtnPanel Methods
	TCustomBtnPanel Properties
	TCustomBtnPanel Events

	TBtnPanel Class
	TBtnPanel Properties

	Structs, Records, Enums
	ecBtnPanel.TRowOrientation Enumeration

	Types
	ecBtnPanel.TButtonClickEvent Type
	ecBtnPanel.TDrawButtonEvent Type
	ecBtnPanel.TGetButtonHintEvent Type

	ecDlList Namespace
	Classes
	TCustomPropList Class
	TCustomPropList Methods
	TCustomPropList Properties
	TCustomPropList Events

	TDualList Class
	TDualList Methods
	TDualList Properties

	TPropertyItem Class
	TPropertyItem Methods
	TPropertyItem Properties

	TPropListRoot Class
	TPropListRoot Methods
	TPropListRoot Properties

	Structs, Records, Enums
	ecDlList.TCellType Enumeration

	Types
	ecDlList.TCustomPropDrawEvent Type
	ecDlList.TGetCellParamsEvent Type

	ecExtEdit Namespace
	Classes
	TBtnEdit Class
	TBtnEdit Methods
	TBtnEdit Properties
	TBtnEdit Events

	TCustomEditEx Class
	TCustomEditEx Methods
	TCustomEditEx Properties
	TCustomEditEx Events

	TEditEx Class
	TEditEx Properties

	TPopupListbox Class
	TPopupListbox Methods
	TPopupListbox Properties

	TUnicodeEdit Class
	TUnicodeEdit Methods
	TUnicodeEdit Properties

	Structs, Records, Enums
	ecExtEdit.TInplaceEditStyle Enumeration

	Types
	ecExtEdit.TCloseUpEvent Type
	ecExtEdit.TMeasureWidthEvent Type
	ecExtEdit.TOnAcceptListValueEvent Type

	ecHintHelper Namespace
	Classes
	TecHintHelper Class
	TecHintHelper Methods
	TecHintHelper Properties

	Structs, Records, Enums
	ecHintHelper.TCMGetHintData Record
	ecHintHelper.TecHintData Record

	Types
	ecHintHelper.PecHintData Type

	Constants
	ecHintHelper.CM_GETHINTDATA Constant

	ecToolList Namespace
	Classes
	TCustomToolList Class
	TCustomToolList Methods
	TCustomToolList Properties
	TCustomToolList Events

	TToolItemStyle Class
	TToolItemStyle Methods
	TToolItemStyle Properties
	TToolItemStyle Events

	TToolList Class
	TToolList Properties

	TToolListItem Class
	TToolListItem Properties

	TToolListItems Class
	TToolListItems Properties

	Structs, Records, Enums
	ecToolList.TItemShape Enumeration

	Types
	ecToolList.TToolItemState Type

	ed_DsnBase Namespace
	Classes
	TBaseDesigner Class
	TBaseDesigner Methods
	TBaseDesigner Properties
	TBaseDesigner Events

	Structs, Records, Enums
	ed_DsnBase.TDesignOperation Enumeration
	ed_DsnBase.TDsnDragState Enumeration

	Types
	ed_DsnBase.TDesignOperations Type
	ed_DsnBase.THandleControlMessage Type

	ed_Designer Namespace
	Classes
	TControlGroups Class
	TControlGroups Methods
	TControlGroups Properties

	TPasteInfo Class
	TPasteInfo Methods
	TPasteInfo Properties

	TzCustomFormDesigner Class
	TzCustomFormDesigner Methods
	TzCustomFormDesigner Properties
	TzCustomFormDesigner Events

	TzFormDesigner Class
	TzFormDesigner Properties

	Structs, Records, Enums
	ed_Designer.TBufferizedType Enumeration
	ed_Designer.TCompAlign Enumeration
	ed_Designer.TCompSize Enumeration
	ed_Designer.TGuidelinesStyle Enumeration
	ed_Designer.TLocalMenuFilter Enumeration

	Types
	ed_Designer.TComponentEvent Type
	ed_Designer.TCreateComponentEvent Type
	ed_Designer.TCreateFrameEvent Type
	ed_Designer.TCreateIconEvent Type
	ed_Designer.TCreateMethodEvent Type
	ed_Designer.TDrawControlEvent Type
	ed_Designer.TGetComponentHintEvent Type
	ed_Designer.TGetMethodNamesEvent Type
	ed_Designer.TGetObjNameEvent Type
	ed_Designer.TGetScriptProcEvent Type
	ed_Designer.TGuidelinesStyles Type
	ed_Designer.THandleActionEvent Type
	ed_Designer.TLocalMenuFilters Type
	ed_Designer.TNotificationEvent Type
	ed_Designer.TRenameEvent Type
	ed_Designer.TRenameMethodEvent Type
	ed_Designer.TSetNameEvent Type
	ed_Designer.TSetScriptProcEvent Type
	ed_Designer.TShowMethodEvent Type
	ed_Designer.TUndoRecEvent Type
	ed_Designer.TValidateMethodEvent Type

	Constants
	ed_Designer.DM_POSCHANGED Constant
	ed_Designer.sLineBreak Constant

	ed_dsncont Namespace
	Classes
	TDesignSurface Class
	TDesignSurface Methods
	TDesignSurface Properties

	Structs, Records, Enums
	ed_dsncont.TRulerUnits Enumeration

	ed_RegComps Namespace
	Classes
	Frames Class
	TComponentClassInfo Class
	TComponentClassInfo Methods
	TComponentClassInfo Properties

	TCustomModuleInfo Class
	TFrameInfo Class
	TFrameInfo Properties

	TPackageInfo Class
	TPackageInfo Methods
	TPackageInfo Properties

	TPackageMng Class
	TPackageMng Methods
	TPackageMng Properties
	TPackageMng Events

	Functions
	ed_RegComps.DrawBtnIcon Function

	Structs, Records, Enums
	ed_RegComps.TIconBtnStyle Enumeration

	Types
	ed_RegComps.TComponentRegEvent Type
	ed_RegComps.TComponentRegInfoEvent Type

	Variables
	ed_RegComps.PackageMng Variable
	ed_RegComps.Runtime Variable

	ed_RegMeth Namespace
	Classes
	TDefaultMethodRegister Class
	TDefaultMethodRegister Fields
	TDefaultMethodRegister Methods
	TDefaultMethodRegister Properties

	Structs, Records, Enums
	ed_RegMeth.TMethodInfo Record

	Types
	ed_RegMeth.PMethod Type
	ed_RegMeth.PMethodInfo Type

	Variables
	ed_RegMeth.MethRegister Variable

	ed_ObjTree Namespace
	Classes
	TCustomDesignerObjTree Class
	TCustomDesignerObjTree Methods
	TCustomDesignerObjTree Properties
	TCustomDesignerObjTree Events

	TDesignerObjTree Class
	TDesignerObjTree Methods
	TDesignerObjTree Properties

	Functions
	ed_ObjTree.CreateGhostedImages Function

	Types
	ed_ObjTree.TCreateSprigNodeEvent Type

	ed_TextEdit Namespace
	Classes
	TDsnInplaceEditor Class
	TDsnInplaceEditor Methods
	TDsnInplaceEditor Properties

	TInplaceComponentEditor Class
	TInplaceComponentEditor Methods
	TInplaceComponentEditor Properties

	Functions
	ed_TextEdit.CreateImplEditor Function
	ed_TextEdit.RegisterInplaceComponentEditor Function

	Types
	ed_TextEdit.TInplaceComponentEditorClass Type

	edActns Namespace
	Classes
	TDesignerAction Class
	TDesignerAction Methods
	TDesignerAction Properties

	TdsnAlignmentDlg Class
	TdsnAlignmentDlg Methods

	TdsnAlignToGrid Class
	TdsnAlignToGrid Methods

	TdsnBringToFront Class
	TdsnBringToFront Methods

	TdsnCopy Class
	TdsnCreationOrderDlg Class
	TdsnCreationOrderDlg Methods

	TdsnCut Class
	TdsnDelete Class
	TdsnDesignMode Class
	TdsnDesignMode Methods

	TdsnFlipChildren Class
	TdsnFlipChildren Methods

	TdsnFlipChildrenAll Class
	TdsnFlipChildrenAll Methods

	TdsnGroupControls Class
	TdsnGroupControls Methods

	TdsnLockControls Class
	TdsnLockControls Methods

	TdsnPaste Class
	TdsnRedo Class
	TdsnScale Class
	TdsnScale Methods

	TDsnSelAction Class
	TDsnSelAction Methods

	TdsnSelectAll Class
	TdsnSendToBack Class
	TdsnSendToBack Methods

	TdsnShowTabOrder Class
	TdsnShowTabOrder Methods

	TdsnSizeDlg Class
	TdsnSizeDlg Methods

	TdsnTabOrderDlg Class
	TdsnTabOrderDlg Methods

	TdsnTargetAction Class
	TdsnTextEditMode Class
	TdsnTextEditMode Methods

	TdsnUndo Class
	TdsnUngroupControls Class
	TdsnUngroupControls Methods

	edcCmbCombo Namespace
	Classes
	TComponentCombo Class
	TComponentCombo Methods
	TComponentCombo Properties
	TComponentCombo Events

	Types
	edcCmbCombo.TCanAddObjectEvent Type
	edcCmbCombo.TGetClassNameEvent Type
	edcCmbCombo.TGetComponentsEvent Type
	edcCmbCombo.TSelChangedEvent Type

	edcCompPal Namespace
	Classes
	TPalettePanel Class
	TPalettePanel Methods
	TPalettePanel Properties

	TPaletteTab Class
	TPaletteTab Properties

	edcDsnEvents Namespace
	Classes
	TDesignerEvents Class
	TDesignerEvents Events

	Types
	edcDsnEvents.TDesignerEvent Type
	edcDsnEvents.TDsnItemEvent Type
	edcDsnEvents.TDsnKeyDownEvent Type
	edcDsnEvents.TDsnKeyPressEvent Type
	edcDsnEvents.TGetGlobalsEvent Type
	edcDsnEvents.TOnGetPoint Type
	edcDsnEvents.TRegisterComponentEvent Type

	edcPropCtrl Namespace
	Classes
	TCategoryNode Class
	TCategoryNode Methods

	TCustomInspectorList Class
	TCustomInspectorList Methods
	TCustomInspectorList Properties
	TCustomInspectorList Events

	TInspectorList Class
	TInspectorList Properties

	TPropertyNode Class
	TPropertyNode Methods
	TPropertyNode Properties

	TPropertyNodes Class
	TPropertyNodes Methods

	TzDesignerSelections Class

	Structs, Records, Enums
	edcPropCtrl.TTypeSelector Enumeration

	Types
	edcPropCtrl.IFormDesigner Type
	edcPropCtrl.IProperty Type
	edcPropCtrl.TAcceptCategoryEvent Type
	edcPropCtrl.TAcceptPropertyEvent Type
	edcPropCtrl.TChangeSelectionEvent Type
	edcPropCtrl.TGetPropReadonlyEvent Type
	edcPropCtrl.TOnInspSetPropValueEventA Type
	edcPropCtrl.TOnInspSetPropValueEventW Type

	edcPropEdit Namespace
	Classes
	TCustomPropertyEdit Class
	TCustomPropertyEdit Methods
	TCustomPropertyEdit Properties
	TCustomPropertyEdit Events

	TPropertyEdit Class
	TPropertyEdit Properties

	TPropertyNameProperty Class

	Interfaces
	IPropertyStatusImage Interface
	IPropertyStatusImage Methods

	Types
	edcPropEdit.TOnSetPropValueEventA Type
	edcPropEdit.TOnSetPropValueEventW Type

	eddAlignDlg Namespace
	Classes
	TAlignmentDlg Class

	eddAlignPal Namespace
	Classes
	TAlignPalette Class

	eddCrOrdDl Namespace
	Classes
	TCreateOrderDlg Class

	eddCustomPal Namespace
	Classes
	TCustomizePaletteDlg Class

	edcToolList Namespace
	Classes
	TPaletteToolList Class
	TPaletteToolList Methods
	TPaletteToolList Properties
	TPaletteToolList Events

	eddDsnOpt Namespace
	Classes
	TDsnOptionsDlg Class
	TDsnOptionsDlg Properties

	eddObjInspProp Namespace
	Classes
	TObjInspPropDlg Class
	TObjInspPropDlg Properties

	eddPackageCtrl Namespace
	Classes
	TPackageCtrlDlg Class

	eddPageName Namespace
	Classes
	TPageNameDlg Class

	eddObjInspFrm Namespace
	Classes
	TObjectInspectorFrame Class
	TObjectInspectorFrame Methods
	TObjectInspectorFrame Properties
	TObjectInspectorFrame Events

	Types
	eddObjInspFrm.TObjInspTabs Type

	eddScaleDl Namespace
	Classes
	TScaleDlg Class

	eddSelFrame Namespace
	Classes
	TSelFrameDlg Class

	eddObjTreeFrame Namespace
	Classes
	TObjectTreeFrame Class
	TObjectTreeFrame Methods
	TObjectTreeFrame Properties

	eddSizeDlg Namespace
	Classes
	TSizeAdjDlg Class

	eddTabOrdDl Namespace
	Classes
	TTabOrderDlg Class

	edIOUtils Namespace
	Functions
	edIOUtils.zCopyCmpResource Function
	edIOUtils.zReadCmpFromFile Function
	edIOUtils.zReadCmpFromStream Function
	edIOUtils.zWriteCmpToFile Function
	edIOUtils.zWriteCmpToStream Function

	edManager Namespace
	Classes
	TDesignerManager Class
	TDesignerManager Methods
	TDesignerManager Properties

	Interfaces
	IClassSelector Interface
	IClassSelector Methods

	IDesignIDEEvents Interface
	IDesignIDEEvents Methods

	Functions
	edManager.GetClassDragImage Function

	Structs, Records, Enums
	edManager.TComponentClassDragImage Enumeration

	Variables
	edManager.DsnManager Variable

	edsMenuDsn Namespace
	Classes
	TMenuDsnWnd Class
	TzMenuEditor Class
	TzMenuItemsPropertyEditor Class

	eduDMContainer Namespace
	Classes
	TDsnDM Class

	eduServObj Namespace
	Classes
	TAlignRuler Class
	TComponentCaption Class
	TComponentIcon Class
	TDraggedControl Class
	TSmallRect Class
	TTabOrderIcons Class
	TTabOrderIcons Methods
	TTabOrderIcons Properties

	TzBoundCtrl Class
	TzBoundCtrl Methods
	TzBoundCtrl Properties

	Functions
	eduServObj.DrawPatternRect Function
	eduServObj.IsServiceControl Function

	Structs, Records, Enums
	eduServObj.TMarkerShape Enumeration
	eduServObj.TVerticalAlignment Enumeration

	edUtils Namespace
	Functions
	edUtils.DsnAlignSelected Function
	edUtils.DsnLoadPackage Function
	edUtils.DsnReadCmpFromStream Function
	edUtils.DsnReadFromFile Function
	edUtils.DsnWriteCmpToStream Function
	edUtils.DsnWriteToFile Function
	edUtils.GetDesigner Function
	edUtils.InvalidateControl Function
	edUtils.IsControlParent Function
	edUtils.NormalizeRect Function
	edUtils.PerformDsnAction Function
	edUtils.ShowDesignerOptionsDlg Function
	edUtils.ShowDsnAbout Function

	Structs, Records, Enums
	edUtils.TDesignerAction Enumeration

	Index

